// Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "key.h" #include "arith_uint256.h" #include "crypto/hmac_sha512.h" #include "eccryptoverify.h" #include "pubkey.h" #include "random.h" #include #include "ecwrapper.h" //! anonymous namespace namespace { class CSecp256k1Init { public: CSecp256k1Init() { secp256k1_start(SECP256K1_START_SIGN); } ~CSecp256k1Init() { secp256k1_stop(); } }; static CSecp256k1Init instance_of_csecp256k1; } // anon namespace bool CKey::Check(const unsigned char *vch) { return eccrypto::Check(vch); } void CKey::MakeNewKey(bool fCompressedIn) { RandAddSeedPerfmon(); do { GetRandBytes(vch, sizeof(vch)); } while (!Check(vch)); fValid = true; fCompressed = fCompressedIn; } bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) { if (!secp256k1_ec_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size())) return false; fCompressed = fCompressedIn; fValid = true; return true; } CPrivKey CKey::GetPrivKey() const { assert(fValid); CPrivKey privkey; int privkeylen, ret; privkey.resize(279); privkeylen = 279; ret = secp256k1_ec_privkey_export(begin(), (unsigned char*)&privkey[0], &privkeylen, fCompressed); assert(ret); privkey.resize(privkeylen); return privkey; } CPubKey CKey::GetPubKey() const { assert(fValid); CPubKey result; int clen = 65; int ret = secp256k1_ec_pubkey_create((unsigned char*)result.begin(), &clen, begin(), fCompressed); assert((int)result.size() == clen); assert(ret); assert(result.IsValid()); return result; } extern "C" { static int secp256k1_nonce_function_test_case(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int attempt, const void *data) { const uint32_t *test_case = static_cast(data); uint256 nonce; secp256k1_nonce_function_rfc6979(nonce.begin(), msg32, key32, attempt, NULL); nonce = ArithToUint256(UintToArith256(nonce) + *test_case); memcpy(nonce32, nonce.begin(), 32); return 1; } } bool CKey::Sign(const uint256 &hash, std::vector& vchSig, uint32_t test_case) const { if (!fValid) return false; vchSig.resize(72); int nSigLen = 72; int ret = secp256k1_ecdsa_sign(hash.begin(), (unsigned char*)&vchSig[0], &nSigLen, begin(), test_case == 0 ? secp256k1_nonce_function_rfc6979 : secp256k1_nonce_function_test_case, test_case == 0 ? NULL : &test_case); assert(ret); vchSig.resize(nSigLen); return true; } bool CKey::VerifyPubKey(const CPubKey& pubkey) const { if (pubkey.IsCompressed() != fCompressed) { return false; } unsigned char rnd[8]; std::string str = "Bitcoin key verification\n"; GetRandBytes(rnd, sizeof(rnd)); uint256 hash; CHash256().Write((unsigned char*)str.data(), str.size()).Write(rnd, sizeof(rnd)).Finalize(hash.begin()); std::vector vchSig; Sign(hash, vchSig); return pubkey.Verify(hash, vchSig); } bool CKey::SignCompact(const uint256 &hash, std::vector& vchSig) const { if (!fValid) return false; vchSig.resize(65); int rec = -1; int ret = secp256k1_ecdsa_sign_compact(hash.begin(), &vchSig[1], begin(), secp256k1_nonce_function_rfc6979, NULL, &rec); assert(ret); assert(rec != -1); vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); return true; } bool CKey::Load(CPrivKey &privkey, CPubKey &vchPubKey, bool fSkipCheck=false) { if (!secp256k1_ec_privkey_import((unsigned char*)begin(), &privkey[0], privkey.size())) return false; fCompressed = vchPubKey.IsCompressed(); fValid = true; if (fSkipCheck) return true; return VerifyPubKey(vchPubKey); } bool CKey::Derive(CKey& keyChild, unsigned char ccChild[32], unsigned int nChild, const unsigned char cc[32]) const { assert(IsValid()); assert(IsCompressed()); unsigned char out[64]; LockObject(out); if ((nChild >> 31) == 0) { CPubKey pubkey = GetPubKey(); assert(pubkey.begin() + 33 == pubkey.end()); BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, out); } else { assert(begin() + 32 == end()); BIP32Hash(cc, nChild, 0, begin(), out); } memcpy(ccChild, out+32, 32); memcpy((unsigned char*)keyChild.begin(), begin(), 32); bool ret = secp256k1_ec_privkey_tweak_add((unsigned char*)keyChild.begin(), out); UnlockObject(out); keyChild.fCompressed = true; keyChild.fValid = ret; return ret; } bool CExtKey::Derive(CExtKey &out, unsigned int nChild) const { out.nDepth = nDepth + 1; CKeyID id = key.GetPubKey().GetID(); memcpy(&out.vchFingerprint[0], &id, 4); out.nChild = nChild; return key.Derive(out.key, out.vchChainCode, nChild, vchChainCode); } void CExtKey::SetMaster(const unsigned char *seed, unsigned int nSeedLen) { static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; unsigned char out[64]; LockObject(out); CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(out); key.Set(&out[0], &out[32], true); memcpy(vchChainCode, &out[32], 32); UnlockObject(out); nDepth = 0; nChild = 0; memset(vchFingerprint, 0, sizeof(vchFingerprint)); } CExtPubKey CExtKey::Neuter() const { CExtPubKey ret; ret.nDepth = nDepth; memcpy(&ret.vchFingerprint[0], &vchFingerprint[0], 4); ret.nChild = nChild; ret.pubkey = key.GetPubKey(); memcpy(&ret.vchChainCode[0], &vchChainCode[0], 32); return ret; } void CExtKey::Encode(unsigned char code[74]) const { code[0] = nDepth; memcpy(code+1, vchFingerprint, 4); code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF; code[7] = (nChild >> 8) & 0xFF; code[8] = (nChild >> 0) & 0xFF; memcpy(code+9, vchChainCode, 32); code[41] = 0; assert(key.size() == 32); memcpy(code+42, key.begin(), 32); } void CExtKey::Decode(const unsigned char code[74]) { nDepth = code[0]; memcpy(vchFingerprint, code+1, 4); nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8]; memcpy(vchChainCode, code+9, 32); key.Set(code+42, code+74, true); } bool ECC_InitSanityCheck() { if (!CECKey::SanityCheck()) { return false; } CKey key; key.MakeNewKey(true); CPubKey pubkey = key.GetPubKey(); return key.VerifyPubKey(pubkey); }