// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_UINT256_H #define BITCOIN_UINT256_H #include #include #include #include #include #include #include extern const signed char p_util_hexdigit[256]; // defined in util.cpp inline signed char HexDigit(char c) { return p_util_hexdigit[(unsigned char)c]; } class uint_error : public std::runtime_error { public: explicit uint_error(const std::string& str) : std::runtime_error(str) {} }; /** Template base class for unsigned big integers. */ template class base_uint { private: enum { WIDTH=BITS/32 }; uint32_t pn[WIDTH]; public: base_uint() { for (int i = 0; i < WIDTH; i++) pn[i] = 0; } base_uint(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] = b.pn[i]; } base_uint& operator=(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] = b.pn[i]; return *this; } base_uint(uint64_t b) { pn[0] = (unsigned int)b; pn[1] = (unsigned int)(b >> 32); for (int i = 2; i < WIDTH; i++) pn[i] = 0; } explicit base_uint(const std::string& str) { SetHex(str); } explicit base_uint(const std::vector& vch) { if (vch.size() != sizeof(pn)) throw uint_error("Converting vector of wrong size to base_uint"); memcpy(pn, &vch[0], sizeof(pn)); } bool operator!() const { for (int i = 0; i < WIDTH; i++) if (pn[i] != 0) return false; return true; } const base_uint operator~() const { base_uint ret; for (int i = 0; i < WIDTH; i++) ret.pn[i] = ~pn[i]; return ret; } const base_uint operator-() const { base_uint ret; for (int i = 0; i < WIDTH; i++) ret.pn[i] = ~pn[i]; ret++; return ret; } double getdouble() const { double ret = 0.0; double fact = 1.0; for (int i = 0; i < WIDTH; i++) { ret += fact * pn[i]; fact *= 4294967296.0; } return ret; } base_uint& operator=(uint64_t b) { pn[0] = (unsigned int)b; pn[1] = (unsigned int)(b >> 32); for (int i = 2; i < WIDTH; i++) pn[i] = 0; return *this; } base_uint& operator^=(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] ^= b.pn[i]; return *this; } base_uint& operator&=(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] &= b.pn[i]; return *this; } base_uint& operator|=(const base_uint& b) { for (int i = 0; i < WIDTH; i++) pn[i] |= b.pn[i]; return *this; } base_uint& operator^=(uint64_t b) { pn[0] ^= (unsigned int)b; pn[1] ^= (unsigned int)(b >> 32); return *this; } base_uint& operator|=(uint64_t b) { pn[0] |= (unsigned int)b; pn[1] |= (unsigned int)(b >> 32); return *this; } base_uint& operator<<=(unsigned int shift) { base_uint a(*this); for (int i = 0; i < WIDTH; i++) pn[i] = 0; int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { if (i+k+1 < WIDTH && shift != 0) pn[i+k+1] |= (a.pn[i] >> (32-shift)); if (i+k < WIDTH) pn[i+k] |= (a.pn[i] << shift); } return *this; } base_uint& operator>>=(unsigned int shift) { base_uint a(*this); for (int i = 0; i < WIDTH; i++) pn[i] = 0; int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { if (i-k-1 >= 0 && shift != 0) pn[i-k-1] |= (a.pn[i] << (32-shift)); if (i-k >= 0) pn[i-k] |= (a.pn[i] >> shift); } return *this; } base_uint& operator+=(const base_uint& b) { uint64_t carry = 0; for (int i = 0; i < WIDTH; i++) { uint64_t n = carry + pn[i] + b.pn[i]; pn[i] = n & 0xffffffff; carry = n >> 32; } return *this; } base_uint& operator-=(const base_uint& b) { *this += -b; return *this; } base_uint& operator+=(uint64_t b64) { base_uint b; b = b64; *this += b; return *this; } base_uint& operator-=(uint64_t b64) { base_uint b; b = b64; *this += -b; return *this; } base_uint& operator*=(uint32_t b32) { uint64_t carry = 0; for (int i = 0; i < WIDTH; i++) { uint64_t n = carry + (uint64_t)b32 * pn[i]; pn[i] = n & 0xffffffff; carry = n >> 32; } return *this; } base_uint& operator*=(const base_uint& b) { base_uint a = *this; *this = 0; for (int j = 0; j < WIDTH; j++) { uint64_t carry = 0; for (int i = 0; i + j < WIDTH; i++) { uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i]; pn[i + j] = n & 0xffffffff; carry = n >> 32; } } return *this; } base_uint& operator/=(const base_uint& b) { base_uint div = b; // make a copy, so we can shift. base_uint num = *this; // make a copy, so we can subtract. *this = 0; // the quotient. int num_bits = num.bits(); int div_bits = div.bits(); if (div_bits == 0) throw uint_error("Division by zero"); if (div_bits > num_bits) // the result is certainly 0. return *this; int shift = num_bits - div_bits; div <<= shift; // shift so that div and nun align. while (shift >= 0) { if (num >= div) { num -= div; pn[shift / 32] |= (1 << (shift & 31)); // set a bit of the result. } div >>= 1; // shift back. shift--; } // num now contains the remainder of the division. return *this; } base_uint& operator++() { // prefix operator int i = 0; while (++pn[i] == 0 && i < WIDTH-1) i++; return *this; } const base_uint operator++(int) { // postfix operator const base_uint ret = *this; ++(*this); return ret; } base_uint& operator--() { // prefix operator int i = 0; while (--pn[i] == (uint32_t)-1 && i < WIDTH-1) i++; return *this; } const base_uint operator--(int) { // postfix operator const base_uint ret = *this; --(*this); return ret; } int CompareTo(const base_uint& b) const { for (int i = base_uint::WIDTH-1; i >= 0; i--) { if (pn[i] < b.pn[i]) return -1; if (pn[i] > b.pn[i]) return 1; } return 0; } bool EqualTo(uint64_t b) const { for (int i = base_uint::WIDTH-1; i >= 2; i--) { if (pn[i]) return false; } if (pn[1] != (b >> 32)) return false; if (pn[0] != (b & 0xfffffffful)) return false; return true; } friend inline const base_uint operator+(const base_uint& a, const base_uint& b) { return base_uint(a) += b; } friend inline const base_uint operator-(const base_uint& a, const base_uint& b) { return base_uint(a) -= b; } friend inline const base_uint operator*(const base_uint& a, const base_uint& b) { return base_uint(a) *= b; } friend inline const base_uint operator/(const base_uint& a, const base_uint& b) { return base_uint(a) /= b; } friend inline const base_uint operator|(const base_uint& a, const base_uint& b) { return base_uint(a) |= b; } friend inline const base_uint operator&(const base_uint& a, const base_uint& b) { return base_uint(a) &= b; } friend inline const base_uint operator^(const base_uint& a, const base_uint& b) { return base_uint(a) ^= b; } friend inline const base_uint operator>>(const base_uint& a, int shift) { return base_uint(a) >>= shift; } friend inline const base_uint operator<<(const base_uint& a, int shift) { return base_uint(a) <<= shift; } friend inline const base_uint operator*(const base_uint& a, uint32_t b) { return base_uint(a) *= b; } friend inline bool operator==(const base_uint& a, const base_uint& b) { return a.CompareTo(b) == 0; } friend inline bool operator!=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) != 0; } friend inline bool operator>(const base_uint& a, const base_uint& b) { return a.CompareTo(b) > 0; } friend inline bool operator<(const base_uint& a, const base_uint& b) { return a.CompareTo(b) < 0; } friend inline bool operator>=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) >= 0; } friend inline bool operator<=(const base_uint& a, const base_uint& b) { return a.CompareTo(b) <= 0; } friend inline bool operator==(const base_uint& a, uint64_t b) { return a.EqualTo(b); } friend inline bool operator!=(const base_uint& a, uint64_t b) { return !a.EqualTo(b); } std::string GetHex() const { char psz[sizeof(pn)*2 + 1]; for (unsigned int i = 0; i < sizeof(pn); i++) sprintf(psz + i*2, "%02x", ((unsigned char*)pn)[sizeof(pn) - i - 1]); return std::string(psz, psz + sizeof(pn)*2); } void SetHex(const char* psz) { memset(pn,0,sizeof(pn)); // skip leading spaces while (isspace(*psz)) psz++; // skip 0x if (psz[0] == '0' && tolower(psz[1]) == 'x') psz += 2; // hex string to uint const char* pbegin = psz; while (::HexDigit(*psz) != -1) psz++; psz--; unsigned char* p1 = (unsigned char*)pn; unsigned char* pend = p1 + WIDTH * 4; while (psz >= pbegin && p1 < pend) { *p1 = ::HexDigit(*psz--); if (psz >= pbegin) { *p1 |= ((unsigned char)::HexDigit(*psz--) << 4); p1++; } } } void SetHex(const std::string& str) { SetHex(str.c_str()); } std::string ToString() const { return (GetHex()); } unsigned char* begin() { return (unsigned char*)&pn[0]; } unsigned char* end() { return (unsigned char*)&pn[WIDTH]; } const unsigned char* begin() const { return (unsigned char*)&pn[0]; } const unsigned char* end() const { return (unsigned char*)&pn[WIDTH]; } unsigned int size() const { return sizeof(pn); } // Returns the position of the highest bit set plus one, or zero if the // value is zero. unsigned int bits() const { for (int pos = WIDTH-1; pos >= 0; pos--) { if (pn[pos]) { for (int bits = 31; bits > 0; bits--) { if (pn[pos] & 1<= 2); return pn[0] | (uint64_t)pn[1] << 32; } unsigned int GetSerializeSize(int nType, int nVersion) const { return sizeof(pn); } template void Serialize(Stream& s, int nType, int nVersion) const { s.write((char*)pn, sizeof(pn)); } template void Unserialize(Stream& s, int nType, int nVersion) { s.read((char*)pn, sizeof(pn)); } }; /** 160-bit unsigned big integer. */ class uint160 : public base_uint<160> { public: uint160() {} uint160(const base_uint<160>& b) : base_uint<160>(b) {} uint160(uint64_t b) : base_uint<160>(b) {} explicit uint160(const std::string& str) : base_uint<160>(str) {} explicit uint160(const std::vector& vch) : base_uint<160>(vch) {} }; /** 256-bit unsigned big integer. */ class uint256 : public base_uint<256> { public: uint256() {} uint256(const base_uint<256>& b) : base_uint<256>(b) {} uint256(uint64_t b) : base_uint<256>(b) {} explicit uint256(const std::string& str) : base_uint<256>(str) {} explicit uint256(const std::vector& vch) : base_uint<256>(vch) {} // The "compact" format is a representation of a whole // number N using an unsigned 32bit number similar to a // floating point format. // The most significant 8 bits are the unsigned exponent of base 256. // This exponent can be thought of as "number of bytes of N". // The lower 23 bits are the mantissa. // Bit number 24 (0x800000) represents the sign of N. // N = (-1^sign) * mantissa * 256^(exponent-3) // // Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn(). // MPI uses the most significant bit of the first byte as sign. // Thus 0x1234560000 is compact (0x05123456) // and 0xc0de000000 is compact (0x0600c0de) // (0x05c0de00) would be -0x40de000000 // // Bitcoin only uses this "compact" format for encoding difficulty // targets, which are unsigned 256bit quantities. Thus, all the // complexities of the sign bit and using base 256 are probably an // implementation accident. // // This implementation directly uses shifts instead of going // through an intermediate MPI representation. uint256& SetCompact(uint32_t nCompact, bool *pfNegative = NULL, bool *pfOverflow = NULL) { int nSize = nCompact >> 24; uint32_t nWord = nCompact & 0x007fffff; if (nSize <= 3) { nWord >>= 8*(3-nSize); *this = nWord; } else { *this = nWord; *this <<= 8*(nSize-3); } if (pfNegative) *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0; if (pfOverflow) *pfOverflow = nWord != 0 && ((nSize > 34) || (nWord > 0xff && nSize > 33) || (nWord > 0xffff && nSize > 32)); return *this; } uint32_t GetCompact(bool fNegative = false) const { int nSize = (bits() + 7) / 8; uint32_t nCompact = 0; if (nSize <= 3) nCompact = GetLow64() << 8*(3-nSize); else { uint256 bn = *this >> 8*(nSize-3); nCompact = bn.GetLow64(); } // The 0x00800000 bit denotes the sign. // Thus, if it is already set, divide the mantissa by 256 and increase the exponent. if (nCompact & 0x00800000) { nCompact >>= 8; nSize++; } assert((nCompact & ~0x007fffff) == 0); assert(nSize < 256); nCompact |= nSize << 24; nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0); return nCompact; } }; #endif