// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "txmempool.h" #include "clientversion.h" #include "consensus/consensus.h" #include "consensus/validation.h" #include "main.h" #include "policy/fees.h" #include "streams.h" #include "util.h" #include "utilmoneystr.h" #include "version.h" using namespace std; CTxMemPoolEntry::CTxMemPoolEntry(const CTransaction& _tx, const CAmount& _nFee, int64_t _nTime, double _dPriority, unsigned int _nHeight, bool poolHasNoInputsOf): tx(_tx), nFee(_nFee), nTime(_nTime), dPriority(_dPriority), nHeight(_nHeight), hadNoDependencies(poolHasNoInputsOf) { nTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); nModSize = tx.CalculateModifiedSize(nTxSize); nUsageSize = RecursiveDynamicUsage(tx); nCountWithDescendants = 1; nSizeWithDescendants = nTxSize; nFeesWithDescendants = nFee; } CTxMemPoolEntry::CTxMemPoolEntry(const CTxMemPoolEntry& other) { *this = other; } double CTxMemPoolEntry::GetPriority(unsigned int currentHeight) const { CAmount nValueIn = tx.GetValueOut()+nFee; double deltaPriority = ((double)(currentHeight-nHeight)*nValueIn)/nModSize; double dResult = dPriority + deltaPriority; return dResult; } // Update the given tx for any in-mempool descendants. // Assumes that setMemPoolChildren is correct for the given tx and all // descendants. bool CTxMemPool::UpdateForDescendants(txiter updateIt, int maxDescendantsToVisit, cacheMap &cachedDescendants, const std::set &setExclude) { // Track the number of entries (outside setExclude) that we'd need to visit // (will bail out if it exceeds maxDescendantsToVisit) int nChildrenToVisit = 0; setEntries stageEntries, setAllDescendants; stageEntries = GetMemPoolChildren(updateIt); while (!stageEntries.empty()) { const txiter cit = *stageEntries.begin(); if (cit->IsDirty()) { // Don't consider any more children if any descendant is dirty return false; } setAllDescendants.insert(cit); stageEntries.erase(cit); const setEntries &setChildren = GetMemPoolChildren(cit); BOOST_FOREACH(const txiter childEntry, setChildren) { cacheMap::iterator cacheIt = cachedDescendants.find(childEntry); if (cacheIt != cachedDescendants.end()) { // We've already calculated this one, just add the entries for this set // but don't traverse again. BOOST_FOREACH(const txiter cacheEntry, cacheIt->second) { // update visit count only for new child transactions // (outside of setExclude and stageEntries) if (setAllDescendants.insert(cacheEntry).second && !setExclude.count(cacheEntry->GetTx().GetHash()) && !stageEntries.count(cacheEntry)) { nChildrenToVisit++; } } } else if (!setAllDescendants.count(childEntry)) { // Schedule for later processing and update our visit count if (stageEntries.insert(childEntry).second && !setExclude.count(childEntry->GetTx().GetHash())) { nChildrenToVisit++; } } if (nChildrenToVisit > maxDescendantsToVisit) { return false; } } } // setAllDescendants now contains all in-mempool descendants of updateIt. // Update and add to cached descendant map int64_t modifySize = 0; CAmount modifyFee = 0; int64_t modifyCount = 0; BOOST_FOREACH(txiter cit, setAllDescendants) { if (!setExclude.count(cit->GetTx().GetHash())) { modifySize += cit->GetTxSize(); modifyFee += cit->GetFee(); modifyCount++; cachedDescendants[updateIt].insert(cit); } } mapTx.modify(updateIt, update_descendant_state(modifySize, modifyFee, modifyCount)); return true; } // vHashesToUpdate is the set of transaction hashes from a disconnected block // which has been re-added to the mempool. // for each entry, look for descendants that are outside hashesToUpdate, and // add fee/size information for such descendants to the parent. void CTxMemPool::UpdateTransactionsFromBlock(const std::vector &vHashesToUpdate) { LOCK(cs); // For each entry in vHashesToUpdate, store the set of in-mempool, but not // in-vHashesToUpdate transactions, so that we don't have to recalculate // descendants when we come across a previously seen entry. cacheMap mapMemPoolDescendantsToUpdate; // Use a set for lookups into vHashesToUpdate (these entries are already // accounted for in the state of their ancestors) std::set setAlreadyIncluded(vHashesToUpdate.begin(), vHashesToUpdate.end()); // Iterate in reverse, so that whenever we are looking at at a transaction // we are sure that all in-mempool descendants have already been processed. // This maximizes the benefit of the descendant cache and guarantees that // setMemPoolChildren will be updated, an assumption made in // UpdateForDescendants. BOOST_REVERSE_FOREACH(const uint256 &hash, vHashesToUpdate) { // we cache the in-mempool children to avoid duplicate updates setEntries setChildren; // calculate children from mapNextTx txiter it = mapTx.find(hash); if (it == mapTx.end()) { continue; } std::map::iterator iter = mapNextTx.lower_bound(COutPoint(hash, 0)); // First calculate the children, and update setMemPoolChildren to // include them, and update their setMemPoolParents to include this tx. for (; iter != mapNextTx.end() && iter->first.hash == hash; ++iter) { const uint256 &childHash = iter->second.ptx->GetHash(); txiter childIter = mapTx.find(childHash); assert(childIter != mapTx.end()); // We can skip updating entries we've encountered before or that // are in the block (which are already accounted for). if (setChildren.insert(childIter).second && !setAlreadyIncluded.count(childHash)) { UpdateChild(it, childIter, true); UpdateParent(childIter, it, true); } } if (!UpdateForDescendants(it, 100, mapMemPoolDescendantsToUpdate, setAlreadyIncluded)) { // Mark as dirty if we can't do the calculation. mapTx.modify(it, set_dirty()); } } } bool CTxMemPool::CalculateMemPoolAncestors(const CTxMemPoolEntry &entry, setEntries &setAncestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString, bool fSearchForParents /* = true */) { setEntries parentHashes; const CTransaction &tx = entry.GetTx(); if (fSearchForParents) { // Get parents of this transaction that are in the mempool // GetMemPoolParents() is only valid for entries in the mempool, so we // iterate mapTx to find parents. for (unsigned int i = 0; i < tx.vin.size(); i++) { txiter piter = mapTx.find(tx.vin[i].prevout.hash); if (piter != mapTx.end()) { parentHashes.insert(piter); if (parentHashes.size() + 1 > limitAncestorCount) { errString = strprintf("too many unconfirmed parents [limit: %u]", limitAncestorCount); return false; } } } } else { // If we're not searching for parents, we require this to be an // entry in the mempool already. txiter it = mapTx.iterator_to(entry); parentHashes = GetMemPoolParents(it); } size_t totalSizeWithAncestors = entry.GetTxSize(); while (!parentHashes.empty()) { txiter stageit = *parentHashes.begin(); setAncestors.insert(stageit); parentHashes.erase(stageit); totalSizeWithAncestors += stageit->GetTxSize(); if (stageit->GetSizeWithDescendants() + entry.GetTxSize() > limitDescendantSize) { errString = strprintf("exceeds descendant size limit for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantSize); return false; } else if (stageit->GetCountWithDescendants() + 1 > limitDescendantCount) { errString = strprintf("too many descendants for tx %s [limit: %u]", stageit->GetTx().GetHash().ToString(), limitDescendantCount); return false; } else if (totalSizeWithAncestors > limitAncestorSize) { errString = strprintf("exceeds ancestor size limit [limit: %u]", limitAncestorSize); return false; } const setEntries & setMemPoolParents = GetMemPoolParents(stageit); BOOST_FOREACH(const txiter &phash, setMemPoolParents) { // If this is a new ancestor, add it. if (setAncestors.count(phash) == 0) { parentHashes.insert(phash); } if (parentHashes.size() + setAncestors.size() + 1 > limitAncestorCount) { errString = strprintf("too many unconfirmed ancestors [limit: %u]", limitAncestorCount); return false; } } } return true; } void CTxMemPool::UpdateAncestorsOf(bool add, txiter it, setEntries &setAncestors) { setEntries parentIters = GetMemPoolParents(it); // add or remove this tx as a child of each parent BOOST_FOREACH(txiter piter, parentIters) { UpdateChild(piter, it, add); } const int64_t updateCount = (add ? 1 : -1); const int64_t updateSize = updateCount * it->GetTxSize(); const CAmount updateFee = updateCount * it->GetFee(); BOOST_FOREACH(txiter ancestorIt, setAncestors) { mapTx.modify(ancestorIt, update_descendant_state(updateSize, updateFee, updateCount)); } } void CTxMemPool::UpdateChildrenForRemoval(txiter it) { const setEntries &setMemPoolChildren = GetMemPoolChildren(it); BOOST_FOREACH(txiter updateIt, setMemPoolChildren) { UpdateParent(updateIt, it, false); } } void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove) { // For each entry, walk back all ancestors and decrement size associated with this // transaction const uint64_t nNoLimit = std::numeric_limits::max(); BOOST_FOREACH(txiter removeIt, entriesToRemove) { setEntries setAncestors; const CTxMemPoolEntry &entry = *removeIt; std::string dummy; // Since this is a tx that is already in the mempool, we can call CMPA // with fSearchForParents = false. If the mempool is in a consistent // state, then using true or false should both be correct, though false // should be a bit faster. // However, if we happen to be in the middle of processing a reorg, then // the mempool can be in an inconsistent state. In this case, the set // of ancestors reachable via mapLinks will be the same as the set of // ancestors whose packages include this transaction, because when we // add a new transaction to the mempool in addUnchecked(), we assume it // has no children, and in the case of a reorg where that assumption is // false, the in-mempool children aren't linked to the in-block tx's // until UpdateTransactionsFromBlock() is called. // So if we're being called during a reorg, ie before // UpdateTransactionsFromBlock() has been called, then mapLinks[] will // differ from the set of mempool parents we'd calculate by searching, // and it's important that we use the mapLinks[] notion of ancestor // transactions as the set of things to update for removal. CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false); // Note that UpdateAncestorsOf severs the child links that point to // removeIt in the entries for the parents of removeIt. This is // fine since we don't need to use the mempool children of any entries // to walk back over our ancestors (but we do need the mempool // parents!) UpdateAncestorsOf(false, removeIt, setAncestors); } // After updating all the ancestor sizes, we can now sever the link between each // transaction being removed and any mempool children (ie, update setMemPoolParents // for each direct child of a transaction being removed). BOOST_FOREACH(txiter removeIt, entriesToRemove) { UpdateChildrenForRemoval(removeIt); } } void CTxMemPoolEntry::SetDirty() { nCountWithDescendants = 0; nSizeWithDescendants = nTxSize; nFeesWithDescendants = nFee; } void CTxMemPoolEntry::UpdateState(int64_t modifySize, CAmount modifyFee, int64_t modifyCount) { if (!IsDirty()) { nSizeWithDescendants += modifySize; assert(int64_t(nSizeWithDescendants) > 0); nFeesWithDescendants += modifyFee; assert(nFeesWithDescendants >= 0); nCountWithDescendants += modifyCount; assert(int64_t(nCountWithDescendants) > 0); } } CTxMemPool::CTxMemPool(const CFeeRate& _minRelayFee) : nTransactionsUpdated(0) { // Sanity checks off by default for performance, because otherwise // accepting transactions becomes O(N^2) where N is the number // of transactions in the pool fSanityCheck = false; minerPolicyEstimator = new CBlockPolicyEstimator(_minRelayFee); } CTxMemPool::~CTxMemPool() { delete minerPolicyEstimator; } void CTxMemPool::pruneSpent(const uint256 &hashTx, CCoins &coins) { LOCK(cs); std::map::iterator it = mapNextTx.lower_bound(COutPoint(hashTx, 0)); // iterate over all COutPoints in mapNextTx whose hash equals the provided hashTx while (it != mapNextTx.end() && it->first.hash == hashTx) { coins.Spend(it->first.n); // and remove those outputs from coins it++; } } unsigned int CTxMemPool::GetTransactionsUpdated() const { LOCK(cs); return nTransactionsUpdated; } void CTxMemPool::AddTransactionsUpdated(unsigned int n) { LOCK(cs); nTransactionsUpdated += n; } bool CTxMemPool::addUnchecked(const uint256& hash, const CTxMemPoolEntry &entry, setEntries &setAncestors, bool fCurrentEstimate) { // Add to memory pool without checking anything. // Used by main.cpp AcceptToMemoryPool(), which DOES do // all the appropriate checks. LOCK(cs); indexed_transaction_set::iterator newit = mapTx.insert(entry).first; mapLinks.insert(make_pair(newit, TxLinks())); // Update cachedInnerUsage to include contained transaction's usage. // (When we update the entry for in-mempool parents, memory usage will be // further updated.) cachedInnerUsage += entry.DynamicMemoryUsage(); const CTransaction& tx = newit->GetTx(); std::set setParentTransactions; for (unsigned int i = 0; i < tx.vin.size(); i++) { mapNextTx[tx.vin[i].prevout] = CInPoint(&tx, i); setParentTransactions.insert(tx.vin[i].prevout.hash); } // Don't bother worrying about child transactions of this one. // Normal case of a new transaction arriving is that there can't be any // children, because such children would be orphans. // An exception to that is if a transaction enters that used to be in a block. // In that case, our disconnect block logic will call UpdateTransactionsFromBlock // to clean up the mess we're leaving here. // Update ancestors with information about this tx BOOST_FOREACH (const uint256 &phash, setParentTransactions) { txiter pit = mapTx.find(phash); if (pit != mapTx.end()) { UpdateParent(newit, pit, true); } } UpdateAncestorsOf(true, newit, setAncestors); nTransactionsUpdated++; totalTxSize += entry.GetTxSize(); minerPolicyEstimator->processTransaction(entry, fCurrentEstimate); return true; } void CTxMemPool::removeUnchecked(txiter it) { const uint256 hash = it->GetTx().GetHash(); BOOST_FOREACH(const CTxIn& txin, it->GetTx().vin) mapNextTx.erase(txin.prevout); totalTxSize -= it->GetTxSize(); cachedInnerUsage -= it->DynamicMemoryUsage(); cachedInnerUsage -= memusage::DynamicUsage(mapLinks[it].parents) + memusage::DynamicUsage(mapLinks[it].children); mapLinks.erase(it); mapTx.erase(it); nTransactionsUpdated++; minerPolicyEstimator->removeTx(hash); } // Calculates descendants of entry that are not already in setDescendants, and adds to // setDescendants. Assumes entryit is already a tx in the mempool and setMemPoolChildren // is correct for tx and all descendants. // Also assumes that if an entry is in setDescendants already, then all // in-mempool descendants of it are already in setDescendants as well, so that we // can save time by not iterating over those entries. void CTxMemPool::CalculateDescendants(txiter entryit, setEntries &setDescendants) { setEntries stage; if (setDescendants.count(entryit) == 0) { stage.insert(entryit); } // Traverse down the children of entry, only adding children that are not // accounted for in setDescendants already (because those children have either // already been walked, or will be walked in this iteration). while (!stage.empty()) { txiter it = *stage.begin(); setDescendants.insert(it); stage.erase(it); const setEntries &setChildren = GetMemPoolChildren(it); BOOST_FOREACH(const txiter &childiter, setChildren) { if (!setDescendants.count(childiter)) { stage.insert(childiter); } } } } void CTxMemPool::remove(const CTransaction &origTx, std::list& removed, bool fRecursive) { // Remove transaction from memory pool { LOCK(cs); setEntries txToRemove; txiter origit = mapTx.find(origTx.GetHash()); if (origit != mapTx.end()) { txToRemove.insert(origit); } else if (fRecursive) { // If recursively removing but origTx isn't in the mempool // be sure to remove any children that are in the pool. This can // happen during chain re-orgs if origTx isn't re-accepted into // the mempool for any reason. for (unsigned int i = 0; i < origTx.vout.size(); i++) { std::map::iterator it = mapNextTx.find(COutPoint(origTx.GetHash(), i)); if (it == mapNextTx.end()) continue; txiter nextit = mapTx.find(it->second.ptx->GetHash()); assert(nextit != mapTx.end()); txToRemove.insert(nextit); } } setEntries setAllRemoves; if (fRecursive) { BOOST_FOREACH(txiter it, txToRemove) { CalculateDescendants(it, setAllRemoves); } } else { setAllRemoves.swap(txToRemove); } BOOST_FOREACH(txiter it, setAllRemoves) { removed.push_back(it->GetTx()); } RemoveStaged(setAllRemoves); } } void CTxMemPool::removeCoinbaseSpends(const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight) { // Remove transactions spending a coinbase which are now immature LOCK(cs); list transactionsToRemove; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { const CTransaction& tx = it->GetTx(); BOOST_FOREACH(const CTxIn& txin, tx.vin) { indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash); if (it2 != mapTx.end()) continue; const CCoins *coins = pcoins->AccessCoins(txin.prevout.hash); if (fSanityCheck) assert(coins); if (!coins || (coins->IsCoinBase() && ((signed long)nMemPoolHeight) - coins->nHeight < COINBASE_MATURITY)) { transactionsToRemove.push_back(tx); break; } } } BOOST_FOREACH(const CTransaction& tx, transactionsToRemove) { list removed; remove(tx, removed, true); } } void CTxMemPool::removeConflicts(const CTransaction &tx, std::list& removed) { // Remove transactions which depend on inputs of tx, recursively list result; LOCK(cs); BOOST_FOREACH(const CTxIn &txin, tx.vin) { std::map::iterator it = mapNextTx.find(txin.prevout); if (it != mapNextTx.end()) { const CTransaction &txConflict = *it->second.ptx; if (txConflict != tx) { remove(txConflict, removed, true); } } } } /** * Called when a block is connected. Removes from mempool and updates the miner fee estimator. */ void CTxMemPool::removeForBlock(const std::vector& vtx, unsigned int nBlockHeight, std::list& conflicts, bool fCurrentEstimate) { LOCK(cs); std::vector entries; BOOST_FOREACH(const CTransaction& tx, vtx) { uint256 hash = tx.GetHash(); indexed_transaction_set::iterator i = mapTx.find(hash); if (i != mapTx.end()) entries.push_back(*i); } BOOST_FOREACH(const CTransaction& tx, vtx) { std::list dummy; remove(tx, dummy, false); removeConflicts(tx, conflicts); ClearPrioritisation(tx.GetHash()); } // After the txs in the new block have been removed from the mempool, update policy estimates minerPolicyEstimator->processBlock(nBlockHeight, entries, fCurrentEstimate); } void CTxMemPool::clear() { LOCK(cs); mapLinks.clear(); mapTx.clear(); mapNextTx.clear(); totalTxSize = 0; cachedInnerUsage = 0; ++nTransactionsUpdated; } void CTxMemPool::check(const CCoinsViewCache *pcoins) const { if (!fSanityCheck) return; LogPrint("mempool", "Checking mempool with %u transactions and %u inputs\n", (unsigned int)mapTx.size(), (unsigned int)mapNextTx.size()); uint64_t checkTotal = 0; uint64_t innerUsage = 0; CCoinsViewCache mempoolDuplicate(const_cast(pcoins)); LOCK(cs); list waitingOnDependants; for (indexed_transaction_set::const_iterator it = mapTx.begin(); it != mapTx.end(); it++) { unsigned int i = 0; checkTotal += it->GetTxSize(); innerUsage += it->DynamicMemoryUsage(); const CTransaction& tx = it->GetTx(); txlinksMap::const_iterator linksiter = mapLinks.find(it); assert(linksiter != mapLinks.end()); const TxLinks &links = linksiter->second; innerUsage += memusage::DynamicUsage(links.parents) + memusage::DynamicUsage(links.children); bool fDependsWait = false; setEntries setParentCheck; BOOST_FOREACH(const CTxIn &txin, tx.vin) { // Check that every mempool transaction's inputs refer to available coins, or other mempool tx's. indexed_transaction_set::const_iterator it2 = mapTx.find(txin.prevout.hash); if (it2 != mapTx.end()) { const CTransaction& tx2 = it2->GetTx(); assert(tx2.vout.size() > txin.prevout.n && !tx2.vout[txin.prevout.n].IsNull()); fDependsWait = true; setParentCheck.insert(it2); } else { const CCoins* coins = pcoins->AccessCoins(txin.prevout.hash); assert(coins && coins->IsAvailable(txin.prevout.n)); } // Check whether its inputs are marked in mapNextTx. std::map::const_iterator it3 = mapNextTx.find(txin.prevout); assert(it3 != mapNextTx.end()); assert(it3->second.ptx == &tx); assert(it3->second.n == i); i++; } assert(setParentCheck == GetMemPoolParents(it)); // Check children against mapNextTx CTxMemPool::setEntries setChildrenCheck; std::map::const_iterator iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetHash(), 0)); int64_t childSizes = 0; CAmount childFees = 0; for (; iter != mapNextTx.end() && iter->first.hash == it->GetTx().GetHash(); ++iter) { txiter childit = mapTx.find(iter->second.ptx->GetHash()); assert(childit != mapTx.end()); // mapNextTx points to in-mempool transactions if (setChildrenCheck.insert(childit).second) { childSizes += childit->GetTxSize(); childFees += childit->GetFee(); } } assert(setChildrenCheck == GetMemPoolChildren(it)); // Also check to make sure size/fees is greater than sum with immediate children. // just a sanity check, not definitive that this calc is correct... // also check that the size is less than the size of the entire mempool. if (!it->IsDirty()) { assert(it->GetSizeWithDescendants() >= childSizes + it->GetTxSize()); assert(it->GetFeesWithDescendants() >= childFees + it->GetFee()); } else { assert(it->GetSizeWithDescendants() == it->GetTxSize()); assert(it->GetFeesWithDescendants() == it->GetFee()); } assert(it->GetFeesWithDescendants() >= 0); if (fDependsWait) waitingOnDependants.push_back(&(*it)); else { CValidationState state; assert(CheckInputs(tx, state, mempoolDuplicate, false, 0, false, NULL)); UpdateCoins(tx, state, mempoolDuplicate, 1000000); } } unsigned int stepsSinceLastRemove = 0; while (!waitingOnDependants.empty()) { const CTxMemPoolEntry* entry = waitingOnDependants.front(); waitingOnDependants.pop_front(); CValidationState state; if (!mempoolDuplicate.HaveInputs(entry->GetTx())) { waitingOnDependants.push_back(entry); stepsSinceLastRemove++; assert(stepsSinceLastRemove < waitingOnDependants.size()); } else { assert(CheckInputs(entry->GetTx(), state, mempoolDuplicate, false, 0, false, NULL)); UpdateCoins(entry->GetTx(), state, mempoolDuplicate, 1000000); stepsSinceLastRemove = 0; } } for (std::map::const_iterator it = mapNextTx.begin(); it != mapNextTx.end(); it++) { uint256 hash = it->second.ptx->GetHash(); indexed_transaction_set::const_iterator it2 = mapTx.find(hash); const CTransaction& tx = it2->GetTx(); assert(it2 != mapTx.end()); assert(&tx == it->second.ptx); assert(tx.vin.size() > it->second.n); assert(it->first == it->second.ptx->vin[it->second.n].prevout); } assert(totalTxSize == checkTotal); assert(innerUsage == cachedInnerUsage); } void CTxMemPool::queryHashes(vector& vtxid) { vtxid.clear(); LOCK(cs); vtxid.reserve(mapTx.size()); for (indexed_transaction_set::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi) vtxid.push_back(mi->GetTx().GetHash()); } bool CTxMemPool::lookup(uint256 hash, CTransaction& result) const { LOCK(cs); indexed_transaction_set::const_iterator i = mapTx.find(hash); if (i == mapTx.end()) return false; result = i->GetTx(); return true; } CFeeRate CTxMemPool::estimateFee(int nBlocks) const { LOCK(cs); return minerPolicyEstimator->estimateFee(nBlocks); } double CTxMemPool::estimatePriority(int nBlocks) const { LOCK(cs); return minerPolicyEstimator->estimatePriority(nBlocks); } bool CTxMemPool::WriteFeeEstimates(CAutoFile& fileout) const { try { LOCK(cs); fileout << 109900; // version required to read: 0.10.99 or later fileout << CLIENT_VERSION; // version that wrote the file minerPolicyEstimator->Write(fileout); } catch (const std::exception&) { LogPrintf("CTxMemPool::WriteFeeEstimates(): unable to write policy estimator data (non-fatal)\n"); return false; } return true; } bool CTxMemPool::ReadFeeEstimates(CAutoFile& filein) { try { int nVersionRequired, nVersionThatWrote; filein >> nVersionRequired >> nVersionThatWrote; if (nVersionRequired > CLIENT_VERSION) return error("CTxMemPool::ReadFeeEstimates(): up-version (%d) fee estimate file", nVersionRequired); LOCK(cs); minerPolicyEstimator->Read(filein); } catch (const std::exception&) { LogPrintf("CTxMemPool::ReadFeeEstimates(): unable to read policy estimator data (non-fatal)\n"); return false; } return true; } void CTxMemPool::PrioritiseTransaction(const uint256 hash, const string strHash, double dPriorityDelta, const CAmount& nFeeDelta) { { LOCK(cs); std::pair &deltas = mapDeltas[hash]; deltas.first += dPriorityDelta; deltas.second += nFeeDelta; } LogPrintf("PrioritiseTransaction: %s priority += %f, fee += %d\n", strHash, dPriorityDelta, FormatMoney(nFeeDelta)); } void CTxMemPool::ApplyDeltas(const uint256 hash, double &dPriorityDelta, CAmount &nFeeDelta) { LOCK(cs); std::map >::iterator pos = mapDeltas.find(hash); if (pos == mapDeltas.end()) return; const std::pair &deltas = pos->second; dPriorityDelta += deltas.first; nFeeDelta += deltas.second; } void CTxMemPool::ClearPrioritisation(const uint256 hash) { LOCK(cs); mapDeltas.erase(hash); } bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const { for (unsigned int i = 0; i < tx.vin.size(); i++) if (exists(tx.vin[i].prevout.hash)) return false; return true; } CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView *baseIn, CTxMemPool &mempoolIn) : CCoinsViewBacked(baseIn), mempool(mempoolIn) { } bool CCoinsViewMemPool::GetCoins(const uint256 &txid, CCoins &coins) const { // If an entry in the mempool exists, always return that one, as it's guaranteed to never // conflict with the underlying cache, and it cannot have pruned entries (as it contains full) // transactions. First checking the underlying cache risks returning a pruned entry instead. CTransaction tx; if (mempool.lookup(txid, tx)) { coins = CCoins(tx, MEMPOOL_HEIGHT); return true; } return (base->GetCoins(txid, coins) && !coins.IsPruned()); } bool CCoinsViewMemPool::HaveCoins(const uint256 &txid) const { return mempool.exists(txid) || base->HaveCoins(txid); } size_t CTxMemPool::DynamicMemoryUsage() const { LOCK(cs); // Estimate the overhead of mapTx to be 9 pointers + an allocation, as no exact formula for boost::multi_index_contained is implemented. return memusage::MallocUsage(sizeof(CTxMemPoolEntry) + 9 * sizeof(void*)) * mapTx.size() + memusage::DynamicUsage(mapNextTx) + memusage::DynamicUsage(mapDeltas) + memusage::DynamicUsage(mapLinks) + cachedInnerUsage; } void CTxMemPool::RemoveStaged(setEntries &stage) { AssertLockHeld(cs); UpdateForRemoveFromMempool(stage); BOOST_FOREACH(const txiter& it, stage) { removeUnchecked(it); } } bool CTxMemPool::addUnchecked(const uint256&hash, const CTxMemPoolEntry &entry, bool fCurrentEstimate) { LOCK(cs); setEntries setAncestors; uint64_t nNoLimit = std::numeric_limits::max(); std::string dummy; CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy); return addUnchecked(hash, entry, setAncestors, fCurrentEstimate); } void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add) { setEntries s; if (add && mapLinks[entry].children.insert(child).second) { cachedInnerUsage += memusage::IncrementalDynamicUsage(s); } else if (!add && mapLinks[entry].children.erase(child)) { cachedInnerUsage -= memusage::IncrementalDynamicUsage(s); } } void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add) { setEntries s; if (add && mapLinks[entry].parents.insert(parent).second) { cachedInnerUsage += memusage::IncrementalDynamicUsage(s); } else if (!add && mapLinks[entry].parents.erase(parent)) { cachedInnerUsage -= memusage::IncrementalDynamicUsage(s); } } const CTxMemPool::setEntries & CTxMemPool::GetMemPoolParents(txiter entry) const { assert (entry != mapTx.end()); txlinksMap::const_iterator it = mapLinks.find(entry); assert(it != mapLinks.end()); return it->second.parents; } const CTxMemPool::setEntries & CTxMemPool::GetMemPoolChildren(txiter entry) const { assert (entry != mapTx.end()); txlinksMap::const_iterator it = mapLinks.find(entry); assert(it != mapLinks.end()); return it->second.children; }