// Copyright (c) 2009-2010 Satoshi Nakamoto // Distributed under the MIT/X11 software license, see the accompanying // file license.txt or http://www.opensource.org/licenses/mit-license.php. #include "headers.h" map mapArgs; map > mapMultiArgs; bool fDebug = false; bool fPrintToConsole = false; bool fPrintToDebugger = false; char pszSetDataDir[MAX_PATH] = ""; bool fShutdown = false; bool fDaemon = false; // Init openssl library multithreading support static wxMutex** ppmutexOpenSSL; void locking_callback(int mode, int i, const char* file, int line) { if (mode & CRYPTO_LOCK) ppmutexOpenSSL[i]->Lock(); else ppmutexOpenSSL[i]->Unlock(); } // Init class CInit { public: CInit() { // Init openssl library multithreading support ppmutexOpenSSL = (wxMutex**)OPENSSL_malloc(CRYPTO_num_locks() * sizeof(wxMutex*)); for (int i = 0; i < CRYPTO_num_locks(); i++) ppmutexOpenSSL[i] = new wxMutex(); CRYPTO_set_locking_callback(locking_callback); #ifdef __WXMSW__ // Seed random number generator with screen scrape and other hardware sources RAND_screen(); #endif // Seed random number generator with performance counter RandAddSeed(); } ~CInit() { // Shutdown openssl library multithreading support CRYPTO_set_locking_callback(NULL); for (int i = 0; i < CRYPTO_num_locks(); i++) delete ppmutexOpenSSL[i]; OPENSSL_free(ppmutexOpenSSL); } } instance_of_cinit; void RandAddSeed() { // Seed with CPU performance counter int64 nCounter = PerformanceCounter(); RAND_add(&nCounter, sizeof(nCounter), 1.5); memset(&nCounter, 0, sizeof(nCounter)); } void RandAddSeedPerfmon() { RandAddSeed(); // This can take up to 2 seconds, so only do it every 10 minutes static int64 nLastPerfmon; if (GetTime() < nLastPerfmon + 10 * 60) return; nLastPerfmon = GetTime(); #ifdef __WXMSW__ // Don't need this on Linux, OpenSSL automatically uses /dev/urandom // Seed with the entire set of perfmon data unsigned char pdata[250000]; memset(pdata, 0, sizeof(pdata)); unsigned long nSize = sizeof(pdata); long ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", NULL, NULL, pdata, &nSize); RegCloseKey(HKEY_PERFORMANCE_DATA); if (ret == ERROR_SUCCESS) { uint256 hash; SHA256(pdata, nSize, (unsigned char*)&hash); RAND_add(&hash, sizeof(hash), min(nSize/500.0, (double)sizeof(hash))); hash = 0; memset(pdata, 0, nSize); printf("%s RandAddSeed() %d bytes\n", DateTimeStrFormat("%x %H:%M:%S", GetTime()).c_str(), nSize); } #else printf("%s RandAddSeed()\n", DateTimeStrFormat("%x %H:%M:%S", GetTime()).c_str()); #endif } uint64 GetRand(uint64 nMax) { if (nMax == 0) return 0; // The range of the random source must be a multiple of the modulus // to give every possible output value an equal possibility uint64 nRange = (UINT64_MAX / nMax) * nMax; uint64 nRand = 0; do RAND_bytes((unsigned char*)&nRand, sizeof(nRand)); while (nRand >= nRange); return (nRand % nMax); } inline int OutputDebugStringF(const char* pszFormat, ...) { int ret = 0; if (fPrintToConsole || wxTheApp == NULL) { // print to console va_list arg_ptr; va_start(arg_ptr, pszFormat); ret = vprintf(pszFormat, arg_ptr); va_end(arg_ptr); } else { // print to debug.log char pszFile[MAX_PATH+100]; GetDataDir(pszFile); strlcat(pszFile, "/debug.log", sizeof(pszFile)); FILE* fileout = fopen(pszFile, "a"); if (fileout) { //// Debug print useful for profiling //fprintf(fileout, " %"PRI64d" ", wxGetLocalTimeMillis().GetValue()); va_list arg_ptr; va_start(arg_ptr, pszFormat); ret = vfprintf(fileout, pszFormat, arg_ptr); va_end(arg_ptr); fclose(fileout); } } #ifdef __WXMSW__ if (fPrintToDebugger) { // accumulate a line at a time static CCriticalSection cs_OutputDebugStringF; CRITICAL_BLOCK(cs_OutputDebugStringF) { static char pszBuffer[50000]; static char* pend; if (pend == NULL) pend = pszBuffer; va_list arg_ptr; va_start(arg_ptr, pszFormat); int limit = END(pszBuffer) - pend - 2; int ret = _vsnprintf(pend, limit, pszFormat, arg_ptr); va_end(arg_ptr); if (ret < 0 || ret >= limit) { pend = END(pszBuffer) - 2; *pend++ = '\n'; } else pend += ret; *pend = '\0'; char* p1 = pszBuffer; char* p2; while (p2 = strchr(p1, '\n')) { p2++; char c = *p2; *p2 = '\0'; OutputDebugStringA(p1); *p2 = c; p1 = p2; } if (p1 != pszBuffer) memmove(pszBuffer, p1, pend - p1 + 1); pend -= (p1 - pszBuffer); } } #endif return ret; } // Safer snprintf // - prints up to limit-1 characters // - output string is always null terminated even if limit reached // - return value is the number of characters actually printed int my_snprintf(char* buffer, size_t limit, const char* format, ...) { if (limit == 0) return 0; va_list arg_ptr; va_start(arg_ptr, format); int ret = _vsnprintf(buffer, limit, format, arg_ptr); va_end(arg_ptr); if (ret < 0 || ret >= limit) { ret = limit - 1; buffer[limit-1] = 0; } return ret; } string strprintf(const char* format, ...) { char buffer[50000]; char* p = buffer; int limit = sizeof(buffer); int ret; loop { va_list arg_ptr; va_start(arg_ptr, format); ret = _vsnprintf(p, limit, format, arg_ptr); va_end(arg_ptr); if (ret >= 0 && ret < limit) break; if (p != buffer) delete p; limit *= 2; p = new char[limit]; if (p == NULL) throw std::bad_alloc(); } #ifdef _MSC_VER // msvc optimisation if (p == buffer) return string(p, p+ret); #endif string str(p, p+ret); if (p != buffer) delete p; return str; } bool error(const char* format, ...) { char buffer[50000]; int limit = sizeof(buffer); va_list arg_ptr; va_start(arg_ptr, format); int ret = _vsnprintf(buffer, limit, format, arg_ptr); va_end(arg_ptr); if (ret < 0 || ret >= limit) { ret = limit - 1; buffer[limit-1] = 0; } printf("ERROR: %s\n", buffer); return false; } void ParseString(const string& str, char c, vector& v) { unsigned int i1 = 0; unsigned int i2; do { i2 = str.find(c, i1); v.push_back(str.substr(i1, i2-i1)); i1 = i2+1; } while (i2 != str.npos); } string FormatMoney(int64 n, bool fPlus) { n /= CENT; string str = strprintf("%"PRI64d".%02"PRI64d, (n > 0 ? n : -n)/100, (n > 0 ? n : -n)%100); for (int i = 6; i < str.size(); i += 4) if (isdigit(str[str.size() - i - 1])) str.insert(str.size() - i, 1, ','); if (n < 0) str.insert((unsigned int)0, 1, '-'); else if (fPlus && n > 0) str.insert((unsigned int)0, 1, '+'); return str; } bool ParseMoney(const char* pszIn, int64& nRet) { string strWhole; int64 nCents = 0; const char* p = pszIn; while (isspace(*p)) p++; for (; *p; p++) { if (*p == ',' && p > pszIn && isdigit(p[-1]) && isdigit(p[1]) && isdigit(p[2]) && isdigit(p[3]) && !isdigit(p[4])) continue; if (*p == '.') { p++; if (isdigit(*p)) { nCents = 10 * (*p++ - '0'); if (isdigit(*p)) nCents += (*p++ - '0'); } break; } if (isspace(*p)) break; if (!isdigit(*p)) return false; strWhole.insert(strWhole.end(), *p); } for (; *p; p++) if (!isspace(*p)) return false; if (strWhole.size() > 14) return false; if (nCents < 0 || nCents > 99) return false; int64 nWhole = atoi64(strWhole); int64 nPreValue = nWhole * 100 + nCents; int64 nValue = nPreValue * CENT; if (nValue / CENT != nPreValue) return false; if (nValue / COIN != nWhole) return false; nRet = nValue; return true; } vector ParseHex(const char* psz) { vector vch; while (isspace(*psz)) psz++; vch.reserve((strlen(psz)+1)/3); static char phexdigit[256] = { -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, 0,1,2,3,4,5,6,7,8,9,-1,-1,-1,-1,-1,-1, -1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,0xa,0xb,0xc,0xd,0xe,0xf,-1,-1,-1,-1,-1,-1,-1,-1,-1 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1, }; while (*psz) { char c = phexdigit[(unsigned char)*psz++]; if (c == -1) break; unsigned char n = (c << 4); if (*psz) { char c = phexdigit[(unsigned char)*psz++]; if (c == -1) break; n |= c; vch.push_back(n); } while (isspace(*psz)) psz++; } return vch; } vector ParseHex(const std::string& str) { return ParseHex(str.c_str()); } void ParseParameters(int argc, char* argv[]) { mapArgs.clear(); mapMultiArgs.clear(); for (int i = 0; i < argc; i++) { char psz[10000]; strlcpy(psz, argv[i], sizeof(psz)); char* pszValue = (char*)""; if (strchr(psz, '=')) { pszValue = strchr(psz, '='); *pszValue++ = '\0'; } #ifdef __WXMSW__ _strlwr(psz); if (psz[0] == '/') psz[0] = '-'; #endif mapArgs[psz] = pszValue; mapMultiArgs[psz].push_back(pszValue); } } const char* wxGetTranslation(const char* pszEnglish) { // Wrapper of wxGetTranslation returning the same const char* type as was passed in static CCriticalSection cs; CRITICAL_BLOCK(cs) { // Look in cache static map mapCache; map::iterator mi = mapCache.find(pszEnglish); if (mi != mapCache.end()) return (*mi).second; // wxWidgets translation const char* pszTranslated = wxGetTranslation(wxString(pszEnglish, wxConvUTF8)).utf8_str(); if (strcmp(pszEnglish, pszTranslated) == 0) return pszEnglish; // Add to cache, memory doesn't need to be freed char* pszCached = new char[strlen(pszTranslated)+1]; strcpy(pszCached, pszTranslated); mapCache[pszEnglish] = pszCached; return pszCached; } } void FormatException(char* pszMessage, std::exception* pex, const char* pszThread) { #ifdef __WXMSW__ char pszModule[MAX_PATH]; pszModule[0] = '\0'; GetModuleFileNameA(NULL, pszModule, sizeof(pszModule)); #else // might not be thread safe, uses wxString //const char* pszModule = wxStandardPaths::Get().GetExecutablePath().mb_str(); const char* pszModule = "bitcoin"; #endif if (pex) snprintf(pszMessage, 1000, "EXCEPTION: %s \n%s \n%s in %s \n", typeid(*pex).name(), pex->what(), pszModule, pszThread); else snprintf(pszMessage, 1000, "UNKNOWN EXCEPTION \n%s in %s \n", pszModule, pszThread); } void LogException(std::exception* pex, const char* pszThread) { char pszMessage[1000]; FormatException(pszMessage, pex, pszThread); printf("\n%s", pszMessage); } void PrintException(std::exception* pex, const char* pszThread) { char pszMessage[1000]; FormatException(pszMessage, pex, pszThread); printf("\n\n************************\n%s\n", pszMessage); if (wxTheApp) wxMessageBox(pszMessage, "Error", wxOK | wxICON_ERROR); throw; //DebugBreak(); } void GetDataDir(char* pszDir) { // pszDir must be at least MAX_PATH length. if (pszSetDataDir[0] != 0) { strlcpy(pszDir, pszSetDataDir, MAX_PATH); static bool fMkdirDone; if (!fMkdirDone) { fMkdirDone = true; _mkdir(pszDir); } } else { // This can be called during exceptions by printf, so we cache the // value so we don't have to do memory allocations after that. // wxStandardPaths::GetUserDataDir // Return the directory for the user-dependent application data files: // Unix: ~/.appname // Windows: C:\Documents and Settings\username\Application Data\appname // Mac: ~/Library/Application Support/appname static char pszCachedDir[MAX_PATH]; if (pszCachedDir[0] == 0) { strlcpy(pszCachedDir, wxStandardPaths::Get().GetUserDataDir().c_str(), sizeof(pszCachedDir)); _mkdir(pszCachedDir); } strlcpy(pszDir, pszCachedDir, MAX_PATH); } } string GetDataDir() { char pszDir[MAX_PATH]; GetDataDir(pszDir); return pszDir; } int GetFilesize(FILE* file) { int nSavePos = ftell(file); int nFilesize = -1; if (fseek(file, 0, SEEK_END) == 0) nFilesize = ftell(file); fseek(file, nSavePos, SEEK_SET); return nFilesize; } void ShrinkDebugFile() { // Scroll debug.log if it's getting too big string strFile = GetDataDir() + "/debug.log"; FILE* file = fopen(strFile.c_str(), "r"); if (file && GetFilesize(file) > 10 * 1000000) { // Restart the file with some of the end char pch[200000]; fseek(file, -sizeof(pch), SEEK_END); int nBytes = fread(pch, 1, sizeof(pch), file); fclose(file); if (file = fopen(strFile.c_str(), "w")) { fwrite(pch, 1, nBytes, file); fclose(file); } } } // // "Never go to sea with two chronometers; take one or three." // Our three chronometers are: // - System clock // - Median of other server's clocks // - NTP servers // // note: NTP isn't implemented yet, so until then we just use the median // of other nodes clocks to correct ours. // int64 GetTime() { return time(NULL); } static int64 nTimeOffset = 0; int64 GetAdjustedTime() { return GetTime() + nTimeOffset; } void AddTimeData(unsigned int ip, int64 nTime) { int64 nOffsetSample = nTime - GetTime(); // Ignore duplicates static set setKnown; if (!setKnown.insert(ip).second) return; // Add data static vector vTimeOffsets; if (vTimeOffsets.empty()) vTimeOffsets.push_back(0); vTimeOffsets.push_back(nOffsetSample); printf("Added time data, samples %d, offset %+"PRI64d" (%+"PRI64d" minutes)\n", vTimeOffsets.size(), vTimeOffsets.back(), vTimeOffsets.back()/60); if (vTimeOffsets.size() >= 5 && vTimeOffsets.size() % 2 == 1) { sort(vTimeOffsets.begin(), vTimeOffsets.end()); int64 nMedian = vTimeOffsets[vTimeOffsets.size()/2]; nTimeOffset = nMedian; if ((nMedian > 0 ? nMedian : -nMedian) > 5 * 60) { // Only let other nodes change our clock so far before we // go to the NTP servers /// todo: Get time from NTP servers, then set a flag /// to make sure it doesn't get changed again } foreach(int64 n, vTimeOffsets) printf("%+"PRI64d" ", n); printf("| nTimeOffset = %+"PRI64d" (%+"PRI64d" minutes)\n", nTimeOffset, nTimeOffset/60); } }