// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "pow.h" #include "chainparams.h" #include "core.h" #include "main.h" #include "timedata.h" #include "uint256.h" #include "util.h" unsigned int GetNextWorkRequired(const CBlockIndex* pindexLast, const CBlockHeader *pblock) { unsigned int nProofOfWorkLimit = Params().ProofOfWorkLimit().GetCompact(); // Genesis block if (pindexLast == NULL) return nProofOfWorkLimit; // Only change once per interval if ((pindexLast->nHeight+1) % Params().Interval() != 0) { if (Params().AllowMinDifficultyBlocks()) { // Special difficulty rule for testnet: // If the new block's timestamp is more than 2* 10 minutes // then allow mining of a min-difficulty block. if (pblock->GetBlockTime() > pindexLast->GetBlockTime() + Params().TargetSpacing()*2) return nProofOfWorkLimit; else { // Return the last non-special-min-difficulty-rules-block const CBlockIndex* pindex = pindexLast; while (pindex->pprev && pindex->nHeight % Params().Interval() != 0 && pindex->nBits == nProofOfWorkLimit) pindex = pindex->pprev; return pindex->nBits; } } return pindexLast->nBits; } // Go back by what we want to be 14 days worth of blocks const CBlockIndex* pindexFirst = pindexLast; for (int i = 0; pindexFirst && i < Params().Interval()-1; i++) pindexFirst = pindexFirst->pprev; assert(pindexFirst); // Limit adjustment step int64_t nActualTimespan = pindexLast->GetBlockTime() - pindexFirst->GetBlockTime(); LogPrintf(" nActualTimespan = %d before bounds\n", nActualTimespan); if (nActualTimespan < Params().TargetTimespan()/4) nActualTimespan = Params().TargetTimespan()/4; if (nActualTimespan > Params().TargetTimespan()*4) nActualTimespan = Params().TargetTimespan()*4; // Retarget uint256 bnNew; uint256 bnOld; bnNew.SetCompact(pindexLast->nBits); bnOld = bnNew; bnNew *= nActualTimespan; bnNew /= Params().TargetTimespan(); if (bnNew > Params().ProofOfWorkLimit()) bnNew = Params().ProofOfWorkLimit(); /// debug print LogPrintf("GetNextWorkRequired RETARGET\n"); LogPrintf("Params().TargetTimespan() = %d nActualTimespan = %d\n", Params().TargetTimespan(), nActualTimespan); LogPrintf("Before: %08x %s\n", pindexLast->nBits, bnOld.ToString()); LogPrintf("After: %08x %s\n", bnNew.GetCompact(), bnNew.ToString()); return bnNew.GetCompact(); } bool CheckProofOfWork(uint256 hash, unsigned int nBits) { bool fNegative; bool fOverflow; uint256 bnTarget; bnTarget.SetCompact(nBits, &fNegative, &fOverflow); // Check range if (fNegative || bnTarget == 0 || fOverflow || bnTarget > Params().ProofOfWorkLimit()) return error("CheckProofOfWork() : nBits below minimum work"); // Check proof of work matches claimed amount if (hash > bnTarget) return error("CheckProofOfWork() : hash doesn't match nBits"); return true; } // // true if nBits is greater than the minimum amount of work that could // possibly be required deltaTime after minimum work required was nBase // bool CheckMinWork(unsigned int nBits, unsigned int nBase, int64_t deltaTime) { bool fOverflow = false; uint256 bnNewBlock; bnNewBlock.SetCompact(nBits, NULL, &fOverflow); if (fOverflow) return false; const uint256 &bnLimit = Params().ProofOfWorkLimit(); // Testnet has min-difficulty blocks // after Params().TargetSpacing()*2 time between blocks: if (Params().AllowMinDifficultyBlocks() && deltaTime > Params().TargetSpacing()*2) return bnNewBlock <= bnLimit; uint256 bnResult; bnResult.SetCompact(nBase); while (deltaTime > 0 && bnResult < bnLimit) { // Maximum 400% adjustment... bnResult *= 4; // ... in best-case exactly 4-times-normal target time deltaTime -= Params().TargetTimespan()*4; } if (bnResult > bnLimit) bnResult = bnLimit; return bnNewBlock <= bnResult; } void UpdateTime(CBlockHeader* pblock, const CBlockIndex* pindexPrev) { pblock->nTime = std::max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime()); // Updating time can change work required on testnet: if (Params().AllowMinDifficultyBlocks()) pblock->nBits = GetNextWorkRequired(pindexPrev, pblock); } uint256 GetProofIncrement(unsigned int nBits) { uint256 bnTarget; bool fNegative; bool fOverflow; bnTarget.SetCompact(nBits, &fNegative, &fOverflow); if (fNegative || fOverflow || bnTarget == 0) return 0; // We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256 // as it's too large for a uint256. However, as 2**256 is at least as large // as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1, // or ~bnTarget / (nTarget+1) + 1. return (~bnTarget / (bnTarget + 1)) + 1; }