// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "core.h" #include "tinyformat.h" #include std::string COutPoint::ToString() const { return strprintf("COutPoint(%s, %u)", hash.ToString().substr(0,10), n); } CTxIn::CTxIn(COutPoint prevoutIn, CScript scriptSigIn, uint32_t nSequenceIn) { prevout = prevoutIn; scriptSig = scriptSigIn; nSequence = nSequenceIn; } CTxIn::CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn, uint32_t nSequenceIn) { prevout = COutPoint(hashPrevTx, nOut); scriptSig = scriptSigIn; nSequence = nSequenceIn; } std::string CTxIn::ToString() const { std::string str; str += "CTxIn("; str += prevout.ToString(); if (prevout.IsNull()) str += strprintf(", coinbase %s", HexStr(scriptSig)); else str += strprintf(", scriptSig=%s", scriptSig.ToString().substr(0,24)); if (nSequence != std::numeric_limits::max()) str += strprintf(", nSequence=%u", nSequence); str += ")"; return str; } CTxOut::CTxOut(int64_t nValueIn, CScript scriptPubKeyIn) { nValue = nValueIn; scriptPubKey = scriptPubKeyIn; } uint256 CTxOut::GetHash() const { return SerializeHash(*this); } std::string CTxOut::ToString() const { return strprintf("CTxOut(nValue=%d.%08d, scriptPubKey=%s)", nValue / COIN, nValue % COIN, scriptPubKey.ToString().substr(0,30)); } CFeeRate::CFeeRate(int64_t nFeePaid, size_t nSize) { if (nSize > 0) nSatoshisPerK = nFeePaid*1000/nSize; else nSatoshisPerK = 0; } int64_t CFeeRate::GetFee(size_t nSize) const { int64_t nFee = nSatoshisPerK*nSize / 1000; if (nFee == 0 && nSatoshisPerK > 0) nFee = nSatoshisPerK; return nFee; } std::string CFeeRate::ToString() const { return strprintf("%d.%08d BTC/kB", nSatoshisPerK / COIN, nSatoshisPerK % COIN); } CMutableTransaction::CMutableTransaction() : nVersion(CTransaction::CURRENT_VERSION), nLockTime(0) {} CMutableTransaction::CMutableTransaction(const CTransaction& tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime) {} uint256 CMutableTransaction::GetHash() const { return SerializeHash(*this); } void CTransaction::UpdateHash() const { *const_cast(&hash) = SerializeHash(*this); } CTransaction::CTransaction() : hash(0), nVersion(CTransaction::CURRENT_VERSION), vin(), vout(), nLockTime(0) { } CTransaction::CTransaction(const CMutableTransaction &tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime) { UpdateHash(); } CTransaction& CTransaction::operator=(const CTransaction &tx) { *const_cast(&nVersion) = tx.nVersion; *const_cast*>(&vin) = tx.vin; *const_cast*>(&vout) = tx.vout; *const_cast(&nLockTime) = tx.nLockTime; *const_cast(&hash) = tx.hash; return *this; } int64_t CTransaction::GetValueOut() const { int64_t nValueOut = 0; BOOST_FOREACH(const CTxOut& txout, vout) { nValueOut += txout.nValue; if (!MoneyRange(txout.nValue) || !MoneyRange(nValueOut)) throw std::runtime_error("CTransaction::GetValueOut() : value out of range"); } return nValueOut; } double CTransaction::ComputePriority(double dPriorityInputs, unsigned int nTxSize) const { // In order to avoid disincentivizing cleaning up the UTXO set we don't count // the constant overhead for each txin and up to 110 bytes of scriptSig (which // is enough to cover a compressed pubkey p2sh redemption) for priority. // Providing any more cleanup incentive than making additional inputs free would // risk encouraging people to create junk outputs to redeem later. if (nTxSize == 0) nTxSize = ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION); BOOST_FOREACH(const CTxIn& txin, vin) { unsigned int offset = 41U + std::min(110U, (unsigned int)txin.scriptSig.size()); if (nTxSize > offset) nTxSize -= offset; } if (nTxSize == 0) return 0.0; return dPriorityInputs / nTxSize; } std::string CTransaction::ToString() const { std::string str; str += strprintf("CTransaction(hash=%s, ver=%d, vin.size=%u, vout.size=%u, nLockTime=%u)\n", GetHash().ToString().substr(0,10), nVersion, vin.size(), vout.size(), nLockTime); for (unsigned int i = 0; i < vin.size(); i++) str += " " + vin[i].ToString() + "\n"; for (unsigned int i = 0; i < vout.size(); i++) str += " " + vout[i].ToString() + "\n"; return str; } // Amount compression: // * If the amount is 0, output 0 // * first, divide the amount (in base units) by the largest power of 10 possible; call the exponent e (e is max 9) // * if e<9, the last digit of the resulting number cannot be 0; store it as d, and drop it (divide by 10) // * call the result n // * output 1 + 10*(9*n + d - 1) + e // * if e==9, we only know the resulting number is not zero, so output 1 + 10*(n - 1) + 9 // (this is decodable, as d is in [1-9] and e is in [0-9]) uint64_t CTxOutCompressor::CompressAmount(uint64_t n) { if (n == 0) return 0; int e = 0; while (((n % 10) == 0) && e < 9) { n /= 10; e++; } if (e < 9) { int d = (n % 10); assert(d >= 1 && d <= 9); n /= 10; return 1 + (n*9 + d - 1)*10 + e; } else { return 1 + (n - 1)*10 + 9; } } uint64_t CTxOutCompressor::DecompressAmount(uint64_t x) { // x = 0 OR x = 1+10*(9*n + d - 1) + e OR x = 1+10*(n - 1) + 9 if (x == 0) return 0; x--; // x = 10*(9*n + d - 1) + e int e = x % 10; x /= 10; uint64_t n = 0; if (e < 9) { // x = 9*n + d - 1 int d = (x % 9) + 1; x /= 9; // x = n n = x*10 + d; } else { n = x+1; } while (e) { n *= 10; e--; } return n; } uint256 CBlockHeader::GetHash() const { return Hash(BEGIN(nVersion), END(nNonce)); } uint256 CBlock::BuildMerkleTree() const { vMerkleTree.clear(); BOOST_FOREACH(const CTransaction& tx, vtx) vMerkleTree.push_back(tx.GetHash()); int j = 0; for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2) { for (int i = 0; i < nSize; i += 2) { int i2 = std::min(i+1, nSize-1); vMerkleTree.push_back(Hash(BEGIN(vMerkleTree[j+i]), END(vMerkleTree[j+i]), BEGIN(vMerkleTree[j+i2]), END(vMerkleTree[j+i2]))); } j += nSize; } return (vMerkleTree.empty() ? 0 : vMerkleTree.back()); } std::vector CBlock::GetMerkleBranch(int nIndex) const { if (vMerkleTree.empty()) BuildMerkleTree(); std::vector vMerkleBranch; int j = 0; for (int nSize = vtx.size(); nSize > 1; nSize = (nSize + 1) / 2) { int i = std::min(nIndex^1, nSize-1); vMerkleBranch.push_back(vMerkleTree[j+i]); nIndex >>= 1; j += nSize; } return vMerkleBranch; } uint256 CBlock::CheckMerkleBranch(uint256 hash, const std::vector& vMerkleBranch, int nIndex) { if (nIndex == -1) return 0; BOOST_FOREACH(const uint256& otherside, vMerkleBranch) { if (nIndex & 1) hash = Hash(BEGIN(otherside), END(otherside), BEGIN(hash), END(hash)); else hash = Hash(BEGIN(hash), END(hash), BEGIN(otherside), END(otherside)); nIndex >>= 1; } return hash; } std::string CBlock::ToString() const { std::stringstream s; s << strprintf("CBlock(hash=%s, ver=%d, hashPrevBlock=%s, hashMerkleRoot=%s, nTime=%u, nBits=%08x, nNonce=%u, vtx=%u)\n", GetHash().ToString(), nVersion, hashPrevBlock.ToString(), hashMerkleRoot.ToString(), nTime, nBits, nNonce, vtx.size()); for (unsigned int i = 0; i < vtx.size(); i++) { s << " " << vtx[i].ToString() << "\n"; } s << " vMerkleTree: "; for (unsigned int i = 0; i < vMerkleTree.size(); i++) s << " " << vMerkleTree[i].ToString(); s << "\n"; return s.str(); }