dogecoin/src/netbase.cpp
Wladimir J. van der Laan ad49c256c3 Split up util.cpp/h
Split up util.cpp/h into:

- string utilities (hex, base32, base64): no internal dependencies, no dependency on boost (apart from foreach)
- money utilities (parsesmoney, formatmoney)
- time utilities (gettime*, sleep, format date):
- and the rest (logging, argument parsing, config file parsing)

The latter is basically the environment and OS handling,
and is stripped of all utility functions, so we may want to
rename it to something else than util.cpp/h for clarity (Matt suggested
osinterface).

Breaks dependency of sha256.cpp on all the things pulled in by util.
2014-08-26 13:25:22 +02:00

1289 lines
36 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifdef HAVE_CONFIG_H
#include "bitcoin-config.h"
#endif
#include "netbase.h"
#include "hash.h"
#include "sync.h"
#include "uint256.h"
#include "util.h"
#include "utilstrencodings.h"
#ifdef HAVE_GETADDRINFO_A
#include <netdb.h>
#endif
#ifndef WIN32
#if HAVE_INET_PTON
#include <arpa/inet.h>
#endif
#include <fcntl.h>
#endif
#include <boost/algorithm/string/case_conv.hpp> // for to_lower()
#include <boost/algorithm/string/predicate.hpp> // for startswith() and endswith()
#include <boost/thread.hpp>
#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
using namespace std;
// Settings
static proxyType proxyInfo[NET_MAX];
static CService nameProxy;
static CCriticalSection cs_proxyInfos;
int nConnectTimeout = 5000;
bool fNameLookup = false;
static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };
enum Network ParseNetwork(std::string net) {
boost::to_lower(net);
if (net == "ipv4") return NET_IPV4;
if (net == "ipv6") return NET_IPV6;
if (net == "tor" || net == "onion") return NET_TOR;
return NET_UNROUTABLE;
}
std::string GetNetworkName(enum Network net) {
switch(net)
{
case NET_IPV4: return "ipv4";
case NET_IPV6: return "ipv6";
case NET_TOR: return "onion";
default: return "";
}
}
void SplitHostPort(std::string in, int &portOut, std::string &hostOut) {
size_t colon = in.find_last_of(':');
// if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator
bool fHaveColon = colon != in.npos;
bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe
bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos);
if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) {
int32_t n;
if (ParseInt32(in.substr(colon + 1), &n) && n > 0 && n < 0x10000) {
in = in.substr(0, colon);
portOut = n;
}
}
if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']')
hostOut = in.substr(1, in.size()-2);
else
hostOut = in;
}
bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
vIP.clear();
{
CNetAddr addr;
if (addr.SetSpecial(std::string(pszName))) {
vIP.push_back(addr);
return true;
}
}
#ifdef HAVE_GETADDRINFO_A
struct in_addr ipv4_addr;
#ifdef HAVE_INET_PTON
if (inet_pton(AF_INET, pszName, &ipv4_addr) > 0) {
vIP.push_back(CNetAddr(ipv4_addr));
return true;
}
struct in6_addr ipv6_addr;
if (inet_pton(AF_INET6, pszName, &ipv6_addr) > 0) {
vIP.push_back(CNetAddr(ipv6_addr));
return true;
}
#else
ipv4_addr.s_addr = inet_addr(pszName);
if (ipv4_addr.s_addr != INADDR_NONE) {
vIP.push_back(CNetAddr(ipv4_addr));
return true;
}
#endif
#endif
struct addrinfo aiHint;
memset(&aiHint, 0, sizeof(struct addrinfo));
aiHint.ai_socktype = SOCK_STREAM;
aiHint.ai_protocol = IPPROTO_TCP;
aiHint.ai_family = AF_UNSPEC;
#ifdef WIN32
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
#else
aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST;
#endif
struct addrinfo *aiRes = NULL;
#ifdef HAVE_GETADDRINFO_A
struct gaicb gcb, *query = &gcb;
memset(query, 0, sizeof(struct gaicb));
gcb.ar_name = pszName;
gcb.ar_request = &aiHint;
int nErr = getaddrinfo_a(GAI_NOWAIT, &query, 1, NULL);
if (nErr)
return false;
do {
// Should set the timeout limit to a resonable value to avoid
// generating unnecessary checking call during the polling loop,
// while it can still response to stop request quick enough.
// 2 seconds looks fine in our situation.
struct timespec ts = { 2, 0 };
gai_suspend(&query, 1, &ts);
boost::this_thread::interruption_point();
nErr = gai_error(query);
if (0 == nErr)
aiRes = query->ar_result;
} while (nErr == EAI_INPROGRESS);
#else
int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
#endif
if (nErr)
return false;
struct addrinfo *aiTrav = aiRes;
while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
{
if (aiTrav->ai_family == AF_INET)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
}
if (aiTrav->ai_family == AF_INET6)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr));
}
aiTrav = aiTrav->ai_next;
}
freeaddrinfo(aiRes);
return (vIP.size() > 0);
}
bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
std::string strHost(pszName);
if (strHost.empty())
return false;
if (boost::algorithm::starts_with(strHost, "[") && boost::algorithm::ends_with(strHost, "]"))
{
strHost = strHost.substr(1, strHost.size() - 2);
}
return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup);
}
bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions)
{
if (pszName[0] == 0)
return false;
int port = portDefault;
std::string hostname = "";
SplitHostPort(std::string(pszName), port, hostname);
std::vector<CNetAddr> vIP;
bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup);
if (!fRet)
return false;
vAddr.resize(vIP.size());
for (unsigned int i = 0; i < vIP.size(); i++)
vAddr[i] = CService(vIP[i], port);
return true;
}
bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup)
{
std::vector<CService> vService;
bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1);
if (!fRet)
return false;
addr = vService[0];
return true;
}
bool LookupNumeric(const char *pszName, CService& addr, int portDefault)
{
return Lookup(pszName, addr, portDefault, false);
}
bool static Socks5(string strDest, int port, SOCKET& hSocket)
{
LogPrintf("SOCKS5 connecting %s\n", strDest);
if (strDest.size() > 255)
{
CloseSocket(hSocket);
return error("Hostname too long");
}
char pszSocks5Init[] = "\5\1\0";
ssize_t nSize = sizeof(pszSocks5Init) - 1;
ssize_t ret = send(hSocket, pszSocks5Init, nSize, MSG_NOSIGNAL);
if (ret != nSize)
{
CloseSocket(hSocket);
return error("Error sending to proxy");
}
char pchRet1[2];
if (recv(hSocket, pchRet1, 2, 0) != 2)
{
CloseSocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet1[0] != 0x05 || pchRet1[1] != 0x00)
{
CloseSocket(hSocket);
return error("Proxy failed to initialize");
}
string strSocks5("\5\1");
strSocks5 += '\000'; strSocks5 += '\003';
strSocks5 += static_cast<char>(std::min((int)strDest.size(), 255));
strSocks5 += strDest;
strSocks5 += static_cast<char>((port >> 8) & 0xFF);
strSocks5 += static_cast<char>((port >> 0) & 0xFF);
ret = send(hSocket, strSocks5.c_str(), strSocks5.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)strSocks5.size())
{
CloseSocket(hSocket);
return error("Error sending to proxy");
}
char pchRet2[4];
if (recv(hSocket, pchRet2, 4, 0) != 4)
{
CloseSocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet2[0] != 0x05)
{
CloseSocket(hSocket);
return error("Proxy failed to accept request");
}
if (pchRet2[1] != 0x00)
{
CloseSocket(hSocket);
switch (pchRet2[1])
{
case 0x01: return error("Proxy error: general failure");
case 0x02: return error("Proxy error: connection not allowed");
case 0x03: return error("Proxy error: network unreachable");
case 0x04: return error("Proxy error: host unreachable");
case 0x05: return error("Proxy error: connection refused");
case 0x06: return error("Proxy error: TTL expired");
case 0x07: return error("Proxy error: protocol error");
case 0x08: return error("Proxy error: address type not supported");
default: return error("Proxy error: unknown");
}
}
if (pchRet2[2] != 0x00)
{
CloseSocket(hSocket);
return error("Error: malformed proxy response");
}
char pchRet3[256];
switch (pchRet2[3])
{
case 0x01: ret = recv(hSocket, pchRet3, 4, 0) != 4; break;
case 0x04: ret = recv(hSocket, pchRet3, 16, 0) != 16; break;
case 0x03:
{
ret = recv(hSocket, pchRet3, 1, 0) != 1;
if (ret) {
CloseSocket(hSocket);
return error("Error reading from proxy");
}
int nRecv = pchRet3[0];
ret = recv(hSocket, pchRet3, nRecv, 0) != nRecv;
break;
}
default: CloseSocket(hSocket); return error("Error: malformed proxy response");
}
if (ret)
{
CloseSocket(hSocket);
return error("Error reading from proxy");
}
if (recv(hSocket, pchRet3, 2, 0) != 2)
{
CloseSocket(hSocket);
return error("Error reading from proxy");
}
LogPrintf("SOCKS5 connected %s\n", strDest);
return true;
}
bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout)
{
hSocketRet = INVALID_SOCKET;
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString());
return false;
}
SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET)
return false;
#ifdef SO_NOSIGPIPE
int set = 1;
// Different way of disabling SIGPIPE on BSD
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
// Set to non-blocking
if (!SetSocketNonBlocking(hSocket, true))
return error("ConnectSocketDirectly: Setting socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
// WSAEINVAL is here because some legacy version of winsock uses it
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
if (nRet == 0)
{
LogPrint("net", "connection to %s timeout\n", addrConnect.ToString());
CloseSocket(hSocket);
return false;
}
if (nRet == SOCKET_ERROR)
{
LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
{
LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
if (nRet != 0)
{
LogPrintf("connect() to %s failed after select(): %s\n", addrConnect.ToString(), NetworkErrorString(nRet));
CloseSocket(hSocket);
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
LogPrintf("connect() to %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
}
// This is required when using SOCKS5 proxy!
// CNode::ConnectNode turns the socket back to non-blocking.
if (!SetSocketNonBlocking(hSocket, false))
return error("ConnectSocketDirectly: Setting socket to blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
hSocketRet = hSocket;
return true;
}
bool SetProxy(enum Network net, CService addrProxy) {
assert(net >= 0 && net < NET_MAX);
if (!addrProxy.IsValid())
return false;
LOCK(cs_proxyInfos);
proxyInfo[net] = addrProxy;
return true;
}
bool GetProxy(enum Network net, proxyType &proxyInfoOut) {
assert(net >= 0 && net < NET_MAX);
LOCK(cs_proxyInfos);
if (!proxyInfo[net].IsValid())
return false;
proxyInfoOut = proxyInfo[net];
return true;
}
bool SetNameProxy(CService addrProxy) {
if (!addrProxy.IsValid())
return false;
LOCK(cs_proxyInfos);
nameProxy = addrProxy;
return true;
}
bool GetNameProxy(CService &nameProxyOut) {
LOCK(cs_proxyInfos);
if(!nameProxy.IsValid())
return false;
nameProxyOut = nameProxy;
return true;
}
bool HaveNameProxy() {
LOCK(cs_proxyInfos);
return nameProxy.IsValid();
}
bool IsProxy(const CNetAddr &addr) {
LOCK(cs_proxyInfos);
for (int i = 0; i < NET_MAX; i++) {
if (addr == (CNetAddr)proxyInfo[i])
return true;
}
return false;
}
bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout)
{
proxyType proxy;
// no proxy needed (none set for target network)
if (!GetProxy(addrDest.GetNetwork(), proxy))
return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout);
SOCKET hSocket = INVALID_SOCKET;
// first connect to proxy server
if (!ConnectSocketDirectly(proxy, hSocket, nTimeout))
return false;
// do socks negotiation
if (!Socks5(addrDest.ToStringIP(), addrDest.GetPort(), hSocket))
return false;
hSocketRet = hSocket;
return true;
}
bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout)
{
string strDest;
int port = portDefault;
SplitHostPort(string(pszDest), port, strDest);
SOCKET hSocket = INVALID_SOCKET;
CService nameProxy;
GetNameProxy(nameProxy);
CService addrResolved(CNetAddr(strDest, fNameLookup && !HaveNameProxy()), port);
if (addrResolved.IsValid()) {
addr = addrResolved;
return ConnectSocket(addr, hSocketRet, nTimeout);
}
addr = CService("0.0.0.0:0");
if (!HaveNameProxy())
return false;
// first connect to name proxy server
if (!ConnectSocketDirectly(nameProxy, hSocket, nTimeout))
return false;
// do socks negotiation
if (!Socks5(strDest, (unsigned short)port, hSocket))
return false;
hSocketRet = hSocket;
return true;
}
void CNetAddr::Init()
{
memset(ip, 0, sizeof(ip));
}
void CNetAddr::SetIP(const CNetAddr& ipIn)
{
memcpy(ip, ipIn.ip, sizeof(ip));
}
void CNetAddr::SetRaw(Network network, const uint8_t *ip_in)
{
switch(network)
{
case NET_IPV4:
memcpy(ip, pchIPv4, 12);
memcpy(ip+12, ip_in, 4);
break;
case NET_IPV6:
memcpy(ip, ip_in, 16);
break;
default:
assert(!"invalid network");
}
}
static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43};
bool CNetAddr::SetSpecial(const std::string &strName)
{
if (strName.size()>6 && strName.substr(strName.size() - 6, 6) == ".onion") {
std::vector<unsigned char> vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str());
if (vchAddr.size() != 16-sizeof(pchOnionCat))
return false;
memcpy(ip, pchOnionCat, sizeof(pchOnionCat));
for (unsigned int i=0; i<16-sizeof(pchOnionCat); i++)
ip[i + sizeof(pchOnionCat)] = vchAddr[i];
return true;
}
return false;
}
CNetAddr::CNetAddr()
{
Init();
}
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
SetRaw(NET_IPV4, (const uint8_t*)&ipv4Addr);
}
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr)
{
SetRaw(NET_IPV6, (const uint8_t*)&ipv6Addr);
}
CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(pszIp, vIP, 1, fAllowLookup))
*this = vIP[0];
}
CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup))
*this = vIP[0];
}
unsigned int CNetAddr::GetByte(int n) const
{
return ip[15-n];
}
bool CNetAddr::IsIPv4() const
{
return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0);
}
bool CNetAddr::IsIPv6() const
{
return (!IsIPv4() && !IsTor());
}
bool CNetAddr::IsRFC1918() const
{
return IsIPv4() && (
GetByte(3) == 10 ||
(GetByte(3) == 192 && GetByte(2) == 168) ||
(GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31)));
}
bool CNetAddr::IsRFC3927() const
{
return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254);
}
bool CNetAddr::IsRFC3849() const
{
return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8;
}
bool CNetAddr::IsRFC3964() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x02);
}
bool CNetAddr::IsRFC6052() const
{
static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0};
return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0);
}
bool CNetAddr::IsRFC4380() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0);
}
bool CNetAddr::IsRFC4862() const
{
static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0};
return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0);
}
bool CNetAddr::IsRFC4193() const
{
return ((GetByte(15) & 0xFE) == 0xFC);
}
bool CNetAddr::IsRFC6145() const
{
static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0};
return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0);
}
bool CNetAddr::IsRFC4843() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10);
}
bool CNetAddr::IsTor() const
{
return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0);
}
bool CNetAddr::IsLocal() const
{
// IPv4 loopback
if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0))
return true;
// IPv6 loopback (::1/128)
static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
if (memcmp(ip, pchLocal, 16) == 0)
return true;
return false;
}
bool CNetAddr::IsMulticast() const
{
return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0)
|| (GetByte(15) == 0xFF);
}
bool CNetAddr::IsValid() const
{
// Cleanup 3-byte shifted addresses caused by garbage in size field
// of addr messages from versions before 0.2.9 checksum.
// Two consecutive addr messages look like this:
// header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
// so if the first length field is garbled, it reads the second batch
// of addr misaligned by 3 bytes.
if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0)
return false;
// unspecified IPv6 address (::/128)
unsigned char ipNone[16] = {};
if (memcmp(ip, ipNone, 16) == 0)
return false;
// documentation IPv6 address
if (IsRFC3849())
return false;
if (IsIPv4())
{
// INADDR_NONE
uint32_t ipNone = INADDR_NONE;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
// 0
ipNone = 0;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
}
return true;
}
bool CNetAddr::IsRoutable() const
{
return IsValid() && !(IsRFC1918() || IsRFC3927() || IsRFC4862() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsLocal());
}
enum Network CNetAddr::GetNetwork() const
{
if (!IsRoutable())
return NET_UNROUTABLE;
if (IsIPv4())
return NET_IPV4;
if (IsTor())
return NET_TOR;
return NET_IPV6;
}
std::string CNetAddr::ToStringIP() const
{
if (IsTor())
return EncodeBase32(&ip[6], 10) + ".onion";
CService serv(*this, 0);
struct sockaddr_storage sockaddr;
socklen_t socklen = sizeof(sockaddr);
if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) {
char name[1025] = "";
if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name, sizeof(name), NULL, 0, NI_NUMERICHOST))
return std::string(name);
}
if (IsIPv4())
return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0));
else
return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12),
GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8),
GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4),
GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0));
}
std::string CNetAddr::ToString() const
{
return ToStringIP();
}
bool operator==(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) == 0);
}
bool operator!=(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) != 0);
}
bool operator<(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) < 0);
}
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
if (!IsIPv4())
return false;
memcpy(pipv4Addr, ip+12, 4);
return true;
}
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
memcpy(pipv6Addr, ip, 16);
return true;
}
// get canonical identifier of an address' group
// no two connections will be attempted to addresses with the same group
std::vector<unsigned char> CNetAddr::GetGroup() const
{
std::vector<unsigned char> vchRet;
int nClass = NET_IPV6;
int nStartByte = 0;
int nBits = 16;
// all local addresses belong to the same group
if (IsLocal())
{
nClass = 255;
nBits = 0;
}
// all unroutable addresses belong to the same group
if (!IsRoutable())
{
nClass = NET_UNROUTABLE;
nBits = 0;
}
// for IPv4 addresses, '1' + the 16 higher-order bits of the IP
// includes mapped IPv4, SIIT translated IPv4, and the well-known prefix
else if (IsIPv4() || IsRFC6145() || IsRFC6052())
{
nClass = NET_IPV4;
nStartByte = 12;
}
// for 6to4 tunnelled addresses, use the encapsulated IPv4 address
else if (IsRFC3964())
{
nClass = NET_IPV4;
nStartByte = 2;
}
// for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 address
else if (IsRFC4380())
{
vchRet.push_back(NET_IPV4);
vchRet.push_back(GetByte(3) ^ 0xFF);
vchRet.push_back(GetByte(2) ^ 0xFF);
return vchRet;
}
else if (IsTor())
{
nClass = NET_TOR;
nStartByte = 6;
nBits = 4;
}
// for he.net, use /36 groups
else if (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70)
nBits = 36;
// for the rest of the IPv6 network, use /32 groups
else
nBits = 32;
vchRet.push_back(nClass);
while (nBits >= 8)
{
vchRet.push_back(GetByte(15 - nStartByte));
nStartByte++;
nBits -= 8;
}
if (nBits > 0)
vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1));
return vchRet;
}
uint64_t CNetAddr::GetHash() const
{
uint256 hash = Hash(&ip[0], &ip[16]);
uint64_t nRet;
memcpy(&nRet, &hash, sizeof(nRet));
return nRet;
}
// private extensions to enum Network, only returned by GetExtNetwork,
// and only used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO = NET_MAX + 1;
int static GetExtNetwork(const CNetAddr *addr)
{
if (addr == NULL)
return NET_UNKNOWN;
if (addr->IsRFC4380())
return NET_TEREDO;
return addr->GetNetwork();
}
/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
{
enum Reachability {
REACH_UNREACHABLE,
REACH_DEFAULT,
REACH_TEREDO,
REACH_IPV6_WEAK,
REACH_IPV4,
REACH_IPV6_STRONG,
REACH_PRIVATE
};
if (!IsRoutable())
return REACH_UNREACHABLE;
int ourNet = GetExtNetwork(this);
int theirNet = GetExtNetwork(paddrPartner);
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
switch(theirNet) {
case NET_IPV4:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4;
}
case NET_IPV6:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV4: return REACH_IPV4;
case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
}
case NET_TOR:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
case NET_TOR: return REACH_PRIVATE;
}
case NET_TEREDO:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
}
case NET_UNKNOWN:
case NET_UNROUTABLE:
default:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
case NET_TOR: return REACH_PRIVATE; // either from Tor, or don't care about our address
}
}
}
void CService::Init()
{
port = 0;
}
CService::CService()
{
Init();
}
CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn)
{
}
CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}
CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
assert(addr.sin_family == AF_INET);
}
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port))
{
assert(addr.sin6_family == AF_INET6);
}
bool CService::SetSockAddr(const struct sockaddr *paddr)
{
switch (paddr->sa_family) {
case AF_INET:
*this = CService(*(const struct sockaddr_in*)paddr);
return true;
case AF_INET6:
*this = CService(*(const struct sockaddr_in6*)paddr);
return true;
default:
return false;
}
}
CService::CService(const char *pszIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, portDefault, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup))
*this = ip;
}
unsigned short CService::GetPort() const
{
return port;
}
bool operator==(const CService& a, const CService& b)
{
return (CNetAddr)a == (CNetAddr)b && a.port == b.port;
}
bool operator!=(const CService& a, const CService& b)
{
return (CNetAddr)a != (CNetAddr)b || a.port != b.port;
}
bool operator<(const CService& a, const CService& b)
{
return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port);
}
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
{
if (IsIPv4()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
return false;
*addrlen = sizeof(struct sockaddr_in);
struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
memset(paddrin, 0, *addrlen);
if (!GetInAddr(&paddrin->sin_addr))
return false;
paddrin->sin_family = AF_INET;
paddrin->sin_port = htons(port);
return true;
}
if (IsIPv6()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
return false;
*addrlen = sizeof(struct sockaddr_in6);
struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
memset(paddrin6, 0, *addrlen);
if (!GetIn6Addr(&paddrin6->sin6_addr))
return false;
paddrin6->sin6_family = AF_INET6;
paddrin6->sin6_port = htons(port);
return true;
}
return false;
}
std::vector<unsigned char> CService::GetKey() const
{
std::vector<unsigned char> vKey;
vKey.resize(18);
memcpy(&vKey[0], ip, 16);
vKey[16] = port / 0x100;
vKey[17] = port & 0x0FF;
return vKey;
}
std::string CService::ToStringPort() const
{
return strprintf("%u", port);
}
std::string CService::ToStringIPPort() const
{
if (IsIPv4() || IsTor()) {
return ToStringIP() + ":" + ToStringPort();
} else {
return "[" + ToStringIP() + "]:" + ToStringPort();
}
}
std::string CService::ToString() const
{
return ToStringIPPort();
}
void CService::SetPort(unsigned short portIn)
{
port = portIn;
}
CSubNet::CSubNet():
valid(false)
{
memset(netmask, 0, sizeof(netmask));
}
CSubNet::CSubNet(const std::string &strSubnet, bool fAllowLookup)
{
size_t slash = strSubnet.find_last_of('/');
std::vector<CNetAddr> vIP;
valid = true;
// Default to /32 (IPv4) or /128 (IPv6), i.e. match single address
memset(netmask, 255, sizeof(netmask));
std::string strAddress = strSubnet.substr(0, slash);
if (LookupHost(strAddress.c_str(), vIP, 1, fAllowLookup))
{
network = vIP[0];
if (slash != strSubnet.npos)
{
std::string strNetmask = strSubnet.substr(slash + 1);
int32_t n;
// IPv4 addresses start at offset 12, and first 12 bytes must match, so just offset n
int noffset = network.IsIPv4() ? (12 * 8) : 0;
if (ParseInt32(strNetmask, &n)) // If valid number, assume /24 symtex
{
if(n >= 0 && n <= (128 - noffset)) // Only valid if in range of bits of address
{
n += noffset;
// Clear bits [n..127]
for (; n < 128; ++n)
netmask[n>>3] &= ~(1<<(n&7));
}
else
{
valid = false;
}
}
else // If not a valid number, try full netmask syntax
{
if (LookupHost(strNetmask.c_str(), vIP, 1, false)) // Never allow lookup for netmask
{
// Remember: GetByte returns bytes in reversed order
// Copy only the *last* four bytes in case of IPv4, the rest of the mask should stay 1's as
// we don't want pchIPv4 to be part of the mask.
int asize = network.IsIPv4() ? 4 : 16;
for(int x=0; x<asize; ++x)
netmask[15-x] = vIP[0].GetByte(x);
}
else
{
valid = false;
}
}
}
}
else
{
valid = false;
}
}
bool CSubNet::Match(const CNetAddr &addr) const
{
if (!valid || !addr.IsValid())
return false;
for(int x=0; x<16; ++x)
if ((addr.GetByte(x) & netmask[15-x]) != network.GetByte(x))
return false;
return true;
}
std::string CSubNet::ToString() const
{
std::string strNetmask;
if (network.IsIPv4())
strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]);
else
strNetmask = strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3],
netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7],
netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11],
netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]);
return network.ToString() + "/" + strNetmask;
}
bool CSubNet::IsValid() const
{
return valid;
}
bool operator==(const CSubNet& a, const CSubNet& b)
{
return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
}
bool operator!=(const CSubNet& a, const CSubNet& b)
{
return !(a==b);
}
#ifdef WIN32
std::string NetworkErrorString(int err)
{
char buf[256];
buf[0] = 0;
if(FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
buf, sizeof(buf), NULL))
{
return strprintf("%s (%d)", buf, err);
}
else
{
return strprintf("Unknown error (%d)", err);
}
}
#else
std::string NetworkErrorString(int err)
{
char buf[256];
const char *s = buf;
buf[0] = 0;
/* Too bad there are two incompatible implementations of the
* thread-safe strerror. */
#ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */
s = strerror_r(err, buf, sizeof(buf));
#else /* POSIX variant always returns message in buffer */
if (strerror_r(err, buf, sizeof(buf)))
buf[0] = 0;
#endif
return strprintf("%s (%d)", s, err);
}
#endif
bool CloseSocket(SOCKET& hSocket)
{
if (hSocket == INVALID_SOCKET)
return false;
#ifdef WIN32
int ret = closesocket(hSocket);
#else
int ret = close(hSocket);
#endif
hSocket = INVALID_SOCKET;
return ret != SOCKET_ERROR;
}
bool SetSocketNonBlocking(SOCKET& hSocket, bool fNonBlocking)
{
if (fNonBlocking) {
#ifdef WIN32
u_long nOne = 1;
if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) {
#endif
CloseSocket(hSocket);
return false;
}
} else {
#ifdef WIN32
u_long nZero = 0;
if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) {
#endif
CloseSocket(hSocket);
return false;
}
}
return true;
}