dogecoin/test/functional/feature_rbf.py
Sebastian Falbesoner 32d665c265 test: fix "tx-size-small" errors after default address change
Addresses #17043, affects RBF and BIP68 functional tests.

The "tx-size-small" policy rule rejects transactions with a non-witness size of
smaller than 82 bytes (see src/validation.cpp:MemPoolAccept::PreChecks(...)),
which corresponds to a transaction with 1 segwit input and 1 P2WPKH output.

Through the default address change, the created test transactions have segwit
inputs now and sending to short scriptPubKeys might violate this rule. By
bumping the dummy scriptPubKey size to 22 bytes (= the size of a P2WPKH
scriptPubKey), on all occurences the problem is solved.

The dummy scriptPubKey has the format:
    21 <21-byte-long string of 'a' or 1s>

former commit messages, now squashed:
test: rbf, bip68: use constant DUMMY_P2WPKH_SCRIPT for bumped scriptPubKey
test: rbf, bip68: use constant DUMMY_P2WPKH_SCRIPT for dummy scriptPubKeys (b'a' * 35)
test: rbf, bip68: comment DUMMY_P2WPKH_SCRIPT constant, put into common (new) module
2019-10-14 15:03:11 +02:00

572 lines
22 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2014-2019 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the RBF code."""
from decimal import Decimal
from test_framework.messages import COIN, COutPoint, CTransaction, CTxIn, CTxOut
from test_framework.script import CScript, OP_DROP
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import assert_equal, assert_raises_rpc_error, satoshi_round
from test_framework.script_util import DUMMY_P2WPKH_SCRIPT
MAX_REPLACEMENT_LIMIT = 100
def txToHex(tx):
return tx.serialize().hex()
def make_utxo(node, amount, confirmed=True, scriptPubKey=DUMMY_P2WPKH_SCRIPT):
"""Create a txout with a given amount and scriptPubKey
Mines coins as needed.
confirmed - txouts created will be confirmed in the blockchain;
unconfirmed otherwise.
"""
fee = 1*COIN
while node.getbalance() < satoshi_round((amount + fee)/COIN):
node.generate(100)
new_addr = node.getnewaddress()
txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN))
tx1 = node.getrawtransaction(txid, 1)
txid = int(txid, 16)
i = None
for i, txout in enumerate(tx1['vout']):
if txout['scriptPubKey']['addresses'] == [new_addr]:
break
assert i is not None
tx2 = CTransaction()
tx2.vin = [CTxIn(COutPoint(txid, i))]
tx2.vout = [CTxOut(amount, scriptPubKey)]
tx2.rehash()
signed_tx = node.signrawtransactionwithwallet(txToHex(tx2))
txid = node.sendrawtransaction(signed_tx['hex'], 0)
# If requested, ensure txouts are confirmed.
if confirmed:
mempool_size = len(node.getrawmempool())
while mempool_size > 0:
node.generate(1)
new_size = len(node.getrawmempool())
# Error out if we have something stuck in the mempool, as this
# would likely be a bug.
assert new_size < mempool_size
mempool_size = new_size
return COutPoint(int(txid, 16), 0)
class ReplaceByFeeTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 1
self.extra_args = [
[
"-acceptnonstdtxn=1",
"-maxorphantx=1000",
"-limitancestorcount=50",
"-limitancestorsize=101",
"-limitdescendantcount=200",
"-limitdescendantsize=101",
],
]
def skip_test_if_missing_module(self):
self.skip_if_no_wallet()
def run_test(self):
# Leave IBD
self.nodes[0].generate(1)
make_utxo(self.nodes[0], 1*COIN)
# Ensure nodes are synced
self.sync_all()
self.log.info("Running test simple doublespend...")
self.test_simple_doublespend()
self.log.info("Running test doublespend chain...")
self.test_doublespend_chain()
self.log.info("Running test doublespend tree...")
self.test_doublespend_tree()
self.log.info("Running test replacement feeperkb...")
self.test_replacement_feeperkb()
self.log.info("Running test spends of conflicting outputs...")
self.test_spends_of_conflicting_outputs()
self.log.info("Running test new unconfirmed inputs...")
self.test_new_unconfirmed_inputs()
self.log.info("Running test too many replacements...")
self.test_too_many_replacements()
self.log.info("Running test opt-in...")
self.test_opt_in()
self.log.info("Running test RPC...")
self.test_rpc()
self.log.info("Running test prioritised transactions...")
self.test_prioritised_transactions()
self.log.info("Passed")
def test_simple_doublespend(self):
"""Simple doublespend"""
tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
# make_utxo may have generated a bunch of blocks, so we need to sync
# before we can spend the coins generated, or else the resulting
# transactions might not be accepted by our peers.
self.sync_all()
tx1a = CTransaction()
tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx1a_hex = txToHex(tx1a)
tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0)
self.sync_all()
# Should fail because we haven't changed the fee
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT + b'a')]
tx1b_hex = txToHex(tx1b)
# This will raise an exception due to insufficient fee
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, 0)
# Extra 0.1 BTC fee
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(int(0.9 * COIN), DUMMY_P2WPKH_SCRIPT)]
tx1b_hex = txToHex(tx1b)
# Works when enabled
tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, 0)
mempool = self.nodes[0].getrawmempool()
assert tx1a_txid not in mempool
assert tx1b_txid in mempool
assert_equal(tx1b_hex, self.nodes[0].getrawtransaction(tx1b_txid))
def test_doublespend_chain(self):
"""Doublespend of a long chain"""
initial_nValue = 50*COIN
tx0_outpoint = make_utxo(self.nodes[0], initial_nValue)
prevout = tx0_outpoint
remaining_value = initial_nValue
chain_txids = []
while remaining_value > 10*COIN:
remaining_value -= 1*COIN
tx = CTransaction()
tx.vin = [CTxIn(prevout, nSequence=0)]
tx.vout = [CTxOut(remaining_value, CScript([1, OP_DROP] * 15 + [1]))]
tx_hex = txToHex(tx)
txid = self.nodes[0].sendrawtransaction(tx_hex, 0)
chain_txids.append(txid)
prevout = COutPoint(int(txid, 16), 0)
# Whether the double-spend is allowed is evaluated by including all
# child fees - 40 BTC - so this attempt is rejected.
dbl_tx = CTransaction()
dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)]
dbl_tx.vout = [CTxOut(initial_nValue - 30 * COIN, DUMMY_P2WPKH_SCRIPT)]
dbl_tx_hex = txToHex(dbl_tx)
# This will raise an exception due to insufficient fee
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, dbl_tx_hex, 0)
# Accepted with sufficient fee
dbl_tx = CTransaction()
dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)]
dbl_tx.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
dbl_tx_hex = txToHex(dbl_tx)
self.nodes[0].sendrawtransaction(dbl_tx_hex, 0)
mempool = self.nodes[0].getrawmempool()
for doublespent_txid in chain_txids:
assert doublespent_txid not in mempool
def test_doublespend_tree(self):
"""Doublespend of a big tree of transactions"""
initial_nValue = 50*COIN
tx0_outpoint = make_utxo(self.nodes[0], initial_nValue)
def branch(prevout, initial_value, max_txs, tree_width=5, fee=0.0001*COIN, _total_txs=None):
if _total_txs is None:
_total_txs = [0]
if _total_txs[0] >= max_txs:
return
txout_value = (initial_value - fee) // tree_width
if txout_value < fee:
return
vout = [CTxOut(txout_value, CScript([i+1]))
for i in range(tree_width)]
tx = CTransaction()
tx.vin = [CTxIn(prevout, nSequence=0)]
tx.vout = vout
tx_hex = txToHex(tx)
assert len(tx.serialize()) < 100000
txid = self.nodes[0].sendrawtransaction(tx_hex, 0)
yield tx
_total_txs[0] += 1
txid = int(txid, 16)
for i, txout in enumerate(tx.vout):
for x in branch(COutPoint(txid, i), txout_value,
max_txs,
tree_width=tree_width, fee=fee,
_total_txs=_total_txs):
yield x
fee = int(0.0001*COIN)
n = MAX_REPLACEMENT_LIMIT
tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee))
assert_equal(len(tree_txs), n)
# Attempt double-spend, will fail because too little fee paid
dbl_tx = CTransaction()
dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)]
dbl_tx.vout = [CTxOut(initial_nValue - fee * n, DUMMY_P2WPKH_SCRIPT)]
dbl_tx_hex = txToHex(dbl_tx)
# This will raise an exception due to insufficient fee
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, dbl_tx_hex, 0)
# 1 BTC fee is enough
dbl_tx = CTransaction()
dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)]
dbl_tx.vout = [CTxOut(initial_nValue - fee * n - 1 * COIN, DUMMY_P2WPKH_SCRIPT)]
dbl_tx_hex = txToHex(dbl_tx)
self.nodes[0].sendrawtransaction(dbl_tx_hex, 0)
mempool = self.nodes[0].getrawmempool()
for tx in tree_txs:
tx.rehash()
assert tx.hash not in mempool
# Try again, but with more total transactions than the "max txs
# double-spent at once" anti-DoS limit.
for n in (MAX_REPLACEMENT_LIMIT+1, MAX_REPLACEMENT_LIMIT*2):
fee = int(0.0001*COIN)
tx0_outpoint = make_utxo(self.nodes[0], initial_nValue)
tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee))
assert_equal(len(tree_txs), n)
dbl_tx = CTransaction()
dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)]
dbl_tx.vout = [CTxOut(initial_nValue - 2 * fee * n, DUMMY_P2WPKH_SCRIPT)]
dbl_tx_hex = txToHex(dbl_tx)
# This will raise an exception
assert_raises_rpc_error(-26, "too many potential replacements", self.nodes[0].sendrawtransaction, dbl_tx_hex, 0)
for tx in tree_txs:
tx.rehash()
self.nodes[0].getrawtransaction(tx.hash)
def test_replacement_feeperkb(self):
"""Replacement requires fee-per-KB to be higher"""
tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
tx1a = CTransaction()
tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx1a_hex = txToHex(tx1a)
self.nodes[0].sendrawtransaction(tx1a_hex, 0)
# Higher fee, but the fee per KB is much lower, so the replacement is
# rejected.
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*999000]))]
tx1b_hex = txToHex(tx1b)
# This will raise an exception due to insufficient fee
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, 0)
def test_spends_of_conflicting_outputs(self):
"""Replacements that spend conflicting tx outputs are rejected"""
utxo1 = make_utxo(self.nodes[0], int(1.2*COIN))
utxo2 = make_utxo(self.nodes[0], 3*COIN)
tx1a = CTransaction()
tx1a.vin = [CTxIn(utxo1, nSequence=0)]
tx1a.vout = [CTxOut(int(1.1 * COIN), DUMMY_P2WPKH_SCRIPT)]
tx1a_hex = txToHex(tx1a)
tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0)
tx1a_txid = int(tx1a_txid, 16)
# Direct spend an output of the transaction we're replacing.
tx2 = CTransaction()
tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0)]
tx2.vin.append(CTxIn(COutPoint(tx1a_txid, 0), nSequence=0))
tx2.vout = tx1a.vout
tx2_hex = txToHex(tx2)
# This will raise an exception
assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, 0)
# Spend tx1a's output to test the indirect case.
tx1b = CTransaction()
tx1b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)]
tx1b.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx1b_hex = txToHex(tx1b)
tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, 0)
tx1b_txid = int(tx1b_txid, 16)
tx2 = CTransaction()
tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0),
CTxIn(COutPoint(tx1b_txid, 0))]
tx2.vout = tx1a.vout
tx2_hex = txToHex(tx2)
# This will raise an exception
assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, 0)
def test_new_unconfirmed_inputs(self):
"""Replacements that add new unconfirmed inputs are rejected"""
confirmed_utxo = make_utxo(self.nodes[0], int(1.1*COIN))
unconfirmed_utxo = make_utxo(self.nodes[0], int(0.1*COIN), False)
tx1 = CTransaction()
tx1.vin = [CTxIn(confirmed_utxo)]
tx1.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx1_hex = txToHex(tx1)
self.nodes[0].sendrawtransaction(tx1_hex, 0)
tx2 = CTransaction()
tx2.vin = [CTxIn(confirmed_utxo), CTxIn(unconfirmed_utxo)]
tx2.vout = tx1.vout
tx2_hex = txToHex(tx2)
# This will raise an exception
assert_raises_rpc_error(-26, "replacement-adds-unconfirmed", self.nodes[0].sendrawtransaction, tx2_hex, 0)
def test_too_many_replacements(self):
"""Replacements that evict too many transactions are rejected"""
# Try directly replacing more than MAX_REPLACEMENT_LIMIT
# transactions
# Start by creating a single transaction with many outputs
initial_nValue = 10*COIN
utxo = make_utxo(self.nodes[0], initial_nValue)
fee = int(0.0001*COIN)
split_value = int((initial_nValue-fee)/(MAX_REPLACEMENT_LIMIT+1))
outputs = []
for i in range(MAX_REPLACEMENT_LIMIT+1):
outputs.append(CTxOut(split_value, CScript([1])))
splitting_tx = CTransaction()
splitting_tx.vin = [CTxIn(utxo, nSequence=0)]
splitting_tx.vout = outputs
splitting_tx_hex = txToHex(splitting_tx)
txid = self.nodes[0].sendrawtransaction(splitting_tx_hex, 0)
txid = int(txid, 16)
# Now spend each of those outputs individually
for i in range(MAX_REPLACEMENT_LIMIT+1):
tx_i = CTransaction()
tx_i.vin = [CTxIn(COutPoint(txid, i), nSequence=0)]
tx_i.vout = [CTxOut(split_value - fee, DUMMY_P2WPKH_SCRIPT)]
tx_i_hex = txToHex(tx_i)
self.nodes[0].sendrawtransaction(tx_i_hex, 0)
# Now create doublespend of the whole lot; should fail.
# Need a big enough fee to cover all spending transactions and have
# a higher fee rate
double_spend_value = (split_value-100*fee)*(MAX_REPLACEMENT_LIMIT+1)
inputs = []
for i in range(MAX_REPLACEMENT_LIMIT+1):
inputs.append(CTxIn(COutPoint(txid, i), nSequence=0))
double_tx = CTransaction()
double_tx.vin = inputs
double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))]
double_tx_hex = txToHex(double_tx)
# This will raise an exception
assert_raises_rpc_error(-26, "too many potential replacements", self.nodes[0].sendrawtransaction, double_tx_hex, 0)
# If we remove an input, it should pass
double_tx = CTransaction()
double_tx.vin = inputs[0:-1]
double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))]
double_tx_hex = txToHex(double_tx)
self.nodes[0].sendrawtransaction(double_tx_hex, 0)
def test_opt_in(self):
"""Replacing should only work if orig tx opted in"""
tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
# Create a non-opting in transaction
tx1a = CTransaction()
tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0xffffffff)]
tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx1a_hex = txToHex(tx1a)
tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0)
# This transaction isn't shown as replaceable
assert_equal(self.nodes[0].getmempoolentry(tx1a_txid)['bip125-replaceable'], False)
# Shouldn't be able to double-spend
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(int(0.9 * COIN), DUMMY_P2WPKH_SCRIPT)]
tx1b_hex = txToHex(tx1b)
# This will raise an exception
assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[0].sendrawtransaction, tx1b_hex, 0)
tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
# Create a different non-opting in transaction
tx2a = CTransaction()
tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0xfffffffe)]
tx2a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx2a_hex = txToHex(tx2a)
tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, 0)
# Still shouldn't be able to double-spend
tx2b = CTransaction()
tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)]
tx2b.vout = [CTxOut(int(0.9 * COIN), DUMMY_P2WPKH_SCRIPT)]
tx2b_hex = txToHex(tx2b)
# This will raise an exception
assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[0].sendrawtransaction, tx2b_hex, 0)
# Now create a new transaction that spends from tx1a and tx2a
# opt-in on one of the inputs
# Transaction should be replaceable on either input
tx1a_txid = int(tx1a_txid, 16)
tx2a_txid = int(tx2a_txid, 16)
tx3a = CTransaction()
tx3a.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0xffffffff),
CTxIn(COutPoint(tx2a_txid, 0), nSequence=0xfffffffd)]
tx3a.vout = [CTxOut(int(0.9*COIN), CScript([b'c'])), CTxOut(int(0.9*COIN), CScript([b'd']))]
tx3a_hex = txToHex(tx3a)
tx3a_txid = self.nodes[0].sendrawtransaction(tx3a_hex, 0)
# This transaction is shown as replaceable
assert_equal(self.nodes[0].getmempoolentry(tx3a_txid)['bip125-replaceable'], True)
tx3b = CTransaction()
tx3b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)]
tx3b.vout = [CTxOut(int(0.5 * COIN), DUMMY_P2WPKH_SCRIPT)]
tx3b_hex = txToHex(tx3b)
tx3c = CTransaction()
tx3c.vin = [CTxIn(COutPoint(tx2a_txid, 0), nSequence=0)]
tx3c.vout = [CTxOut(int(0.5 * COIN), DUMMY_P2WPKH_SCRIPT)]
tx3c_hex = txToHex(tx3c)
self.nodes[0].sendrawtransaction(tx3b_hex, 0)
# If tx3b was accepted, tx3c won't look like a replacement,
# but make sure it is accepted anyway
self.nodes[0].sendrawtransaction(tx3c_hex, 0)
def test_prioritised_transactions(self):
# Ensure that fee deltas used via prioritisetransaction are
# correctly used by replacement logic
# 1. Check that feeperkb uses modified fees
tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
tx1a = CTransaction()
tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx1a_hex = txToHex(tx1a)
tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0)
# Higher fee, but the actual fee per KB is much lower.
tx1b = CTransaction()
tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)]
tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*740000]))]
tx1b_hex = txToHex(tx1b)
# Verify tx1b cannot replace tx1a.
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, 0)
# Use prioritisetransaction to set tx1a's fee to 0.
self.nodes[0].prioritisetransaction(txid=tx1a_txid, fee_delta=int(-0.1*COIN))
# Now tx1b should be able to replace tx1a
tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, 0)
assert tx1b_txid in self.nodes[0].getrawmempool()
# 2. Check that absolute fee checks use modified fee.
tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN))
tx2a = CTransaction()
tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0)]
tx2a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)]
tx2a_hex = txToHex(tx2a)
self.nodes[0].sendrawtransaction(tx2a_hex, 0)
# Lower fee, but we'll prioritise it
tx2b = CTransaction()
tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)]
tx2b.vout = [CTxOut(int(1.01 * COIN), DUMMY_P2WPKH_SCRIPT)]
tx2b.rehash()
tx2b_hex = txToHex(tx2b)
# Verify tx2b cannot replace tx2a.
assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx2b_hex, 0)
# Now prioritise tx2b to have a higher modified fee
self.nodes[0].prioritisetransaction(txid=tx2b.hash, fee_delta=int(0.1*COIN))
# tx2b should now be accepted
tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, 0)
assert tx2b_txid in self.nodes[0].getrawmempool()
def test_rpc(self):
us0 = self.nodes[0].listunspent()[0]
ins = [us0]
outs = {self.nodes[0].getnewaddress() : Decimal(1.0000000)}
rawtx0 = self.nodes[0].createrawtransaction(ins, outs, 0, True)
rawtx1 = self.nodes[0].createrawtransaction(ins, outs, 0, False)
json0 = self.nodes[0].decoderawtransaction(rawtx0)
json1 = self.nodes[0].decoderawtransaction(rawtx1)
assert_equal(json0["vin"][0]["sequence"], 4294967293)
assert_equal(json1["vin"][0]["sequence"], 4294967295)
rawtx2 = self.nodes[0].createrawtransaction([], outs)
frawtx2a = self.nodes[0].fundrawtransaction(rawtx2, {"replaceable": True})
frawtx2b = self.nodes[0].fundrawtransaction(rawtx2, {"replaceable": False})
json0 = self.nodes[0].decoderawtransaction(frawtx2a['hex'])
json1 = self.nodes[0].decoderawtransaction(frawtx2b['hex'])
assert_equal(json0["vin"][0]["sequence"], 4294967293)
assert_equal(json1["vin"][0]["sequence"], 4294967294)
if __name__ == '__main__':
ReplaceByFeeTest().main()