dogecoin/src/wallet.cpp
Wladimir J. van der Laan 52861fb616 AddToWallet implies BindWallet
Now that AddToWallet is called when loading transactions from the
wallet database, BindWallet can be integrated into that and does not
need to be an extra step.

Leaves behaviour unchanged, but makes the
fFromLoadWallet/!fFromLoadWallet paths in AddToWallet a bit more
symmetric.
2014-05-29 19:52:30 +02:00

2217 lines
73 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin developers
// Copyright (c) 2014 The Dogecoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "wallet.h"
#include "base58.h"
#include "coincontrol.h"
#include "net.h"
#include "checkpoints.h"
#include <boost/algorithm/string/replace.hpp>
#include <openssl/rand.h>
using namespace std;
// Settings
int64_t nTransactionFee = 0;
bool bSpendZeroConfChange = true;
static std::vector<CKeyID> vChangeAddresses;
//////////////////////////////////////////////////////////////////////////////
//
// mapWallet
//
struct CompareValueOnly
{
bool operator()(const pair<int64_t, pair<const CWalletTx*, unsigned int> >& t1,
const pair<int64_t, pair<const CWalletTx*, unsigned int> >& t2) const
{
return t1.first < t2.first;
}
};
const CWalletTx* CWallet::GetWalletTx(const uint256& hash) const
{
LOCK(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(hash);
if (it == mapWallet.end())
return NULL;
return &(it->second);
}
CPubKey CWallet::GenerateNewKey()
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); // default to compressed public keys if we want 0.6.0 wallets
RandAddSeedPerfmon();
CKey secret;
secret.MakeNewKey(fCompressed);
// Compressed public keys were introduced in version 0.6.0
if (fCompressed)
SetMinVersion(FEATURE_COMPRPUBKEY);
CPubKey pubkey = secret.GetPubKey();
// Create new metadata
int64_t nCreationTime = GetTime();
mapKeyMetadata[pubkey.GetID()] = CKeyMetadata(nCreationTime);
if (!nTimeFirstKey || nCreationTime < nTimeFirstKey)
nTimeFirstKey = nCreationTime;
if (!AddKeyPubKey(secret, pubkey))
throw std::runtime_error("CWallet::GenerateNewKey() : AddKey failed");
return pubkey;
}
bool CWallet::AddKeyPubKey(const CKey& secret, const CPubKey &pubkey)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey))
return false;
if (!fFileBacked)
return true;
if (!IsCrypted()) {
return CWalletDB(strWalletFile).WriteKey(pubkey,
secret.GetPrivKey(),
mapKeyMetadata[pubkey.GetID()]);
}
return true;
}
bool CWallet::AddCryptedKey(const CPubKey &vchPubKey,
const vector<unsigned char> &vchCryptedSecret)
{
if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret))
return false;
if (!fFileBacked)
return true;
{
LOCK(cs_wallet);
if (pwalletdbEncryption)
return pwalletdbEncryption->WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
else
return CWalletDB(strWalletFile).WriteCryptedKey(vchPubKey,
vchCryptedSecret,
mapKeyMetadata[vchPubKey.GetID()]);
}
return false;
}
bool CWallet::LoadKeyMetadata(const CPubKey &pubkey, const CKeyMetadata &meta)
{
AssertLockHeld(cs_wallet); // mapKeyMetadata
if (meta.nCreateTime && (!nTimeFirstKey || meta.nCreateTime < nTimeFirstKey))
nTimeFirstKey = meta.nCreateTime;
mapKeyMetadata[pubkey.GetID()] = meta;
return true;
}
bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<unsigned char> &vchCryptedSecret)
{
return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret);
}
bool CWallet::AddCScript(const CScript& redeemScript)
{
if (!CCryptoKeyStore::AddCScript(redeemScript))
return false;
if (!fFileBacked)
return true;
return CWalletDB(strWalletFile).WriteCScript(Hash160(redeemScript), redeemScript);
}
bool CWallet::Unlock(const SecureString& strWalletPassphrase)
{
CCrypter crypter;
CKeyingMaterial vMasterKey;
{
LOCK(cs_wallet);
BOOST_FOREACH(const MasterKeyMap::value_type& pMasterKey, mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey))
continue; // try another master key
if (CCryptoKeyStore::Unlock(vMasterKey))
return true;
}
}
return false;
}
bool CWallet::ChangeWalletPassphrase(const SecureString& strOldWalletPassphrase, const SecureString& strNewWalletPassphrase)
{
bool fWasLocked = IsLocked();
{
LOCK(cs_wallet);
Lock();
CCrypter crypter;
CKeyingMaterial vMasterKey;
BOOST_FOREACH(MasterKeyMap::value_type& pMasterKey, mapMasterKeys)
{
if(!crypter.SetKeyFromPassphrase(strOldWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, vMasterKey))
return false;
if (CCryptoKeyStore::Unlock(vMasterKey))
{
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime)));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod);
pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + pMasterKey.second.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (pMasterKey.second.nDeriveIterations < 25000)
pMasterKey.second.nDeriveIterations = 25000;
LogPrintf("Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod))
return false;
if (!crypter.Encrypt(vMasterKey, pMasterKey.second.vchCryptedKey))
return false;
CWalletDB(strWalletFile).WriteMasterKey(pMasterKey.first, pMasterKey.second);
if (fWasLocked)
Lock();
return true;
}
}
}
return false;
}
void CWallet::SetBestChain(const CBlockLocator& loc)
{
CWalletDB walletdb(strWalletFile);
walletdb.WriteBestBlock(loc);
}
bool CWallet::SetMinVersion(enum WalletFeature nVersion, CWalletDB* pwalletdbIn, bool fExplicit)
{
LOCK(cs_wallet); // nWalletVersion
if (nWalletVersion >= nVersion)
return true;
// when doing an explicit upgrade, if we pass the max version permitted, upgrade all the way
if (fExplicit && nVersion > nWalletMaxVersion)
nVersion = FEATURE_LATEST;
nWalletVersion = nVersion;
if (nVersion > nWalletMaxVersion)
nWalletMaxVersion = nVersion;
if (fFileBacked)
{
CWalletDB* pwalletdb = pwalletdbIn ? pwalletdbIn : new CWalletDB(strWalletFile);
if (nWalletVersion > 40000)
pwalletdb->WriteMinVersion(nWalletVersion);
if (!pwalletdbIn)
delete pwalletdb;
}
return true;
}
bool CWallet::SetMaxVersion(int nVersion)
{
LOCK(cs_wallet); // nWalletVersion, nWalletMaxVersion
// cannot downgrade below current version
if (nWalletVersion > nVersion)
return false;
nWalletMaxVersion = nVersion;
return true;
}
set<uint256> CWallet::GetConflicts(const uint256& txid) const
{
set<uint256> result;
AssertLockHeld(cs_wallet);
std::map<uint256, CWalletTx>::const_iterator it = mapWallet.find(txid);
if (it == mapWallet.end())
return result;
const CWalletTx& wtx = it->second;
std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
BOOST_FOREACH(const CTxIn& txin, wtx.vin)
{
if (mapTxSpends.count(txin.prevout) <= 1)
continue; // No conflict if zero or one spends
range = mapTxSpends.equal_range(txin.prevout);
for (TxSpends::const_iterator it = range.first; it != range.second; ++it)
result.insert(it->second);
}
return result;
}
void CWallet::SyncMetaData(pair<TxSpends::iterator, TxSpends::iterator> range)
{
// We want all the wallet transactions in range to have the same metadata as
// the oldest (smallest nOrderPos).
// So: find smallest nOrderPos:
int nMinOrderPos = std::numeric_limits<int>::max();
const CWalletTx* copyFrom = NULL;
for (TxSpends::iterator it = range.first; it != range.second; ++it)
{
const uint256& hash = it->second;
int n = mapWallet[hash].nOrderPos;
if (n < nMinOrderPos)
{
nMinOrderPos = n;
copyFrom = &mapWallet[hash];
}
}
// Now copy data from copyFrom to rest:
for (TxSpends::iterator it = range.first; it != range.second; ++it)
{
const uint256& hash = it->second;
CWalletTx* copyTo = &mapWallet[hash];
if (copyFrom == copyTo) continue;
copyTo->mapValue = copyFrom->mapValue;
copyTo->vOrderForm = copyFrom->vOrderForm;
// fTimeReceivedIsTxTime not copied on purpose
// nTimeReceived not copied on purpose
copyTo->nTimeSmart = copyFrom->nTimeSmart;
copyTo->fFromMe = copyFrom->fFromMe;
copyTo->strFromAccount = copyFrom->strFromAccount;
// nOrderPos not copied on purpose
// cached members not copied on purpose
}
}
// Outpoint is spent if any non-conflicted transaction
// spends it:
bool CWallet::IsSpent(const uint256& hash, unsigned int n) const
{
const COutPoint outpoint(hash, n);
pair<TxSpends::const_iterator, TxSpends::const_iterator> range;
range = mapTxSpends.equal_range(outpoint);
for (TxSpends::const_iterator it = range.first; it != range.second; ++it)
{
const uint256& wtxid = it->second;
std::map<uint256, CWalletTx>::const_iterator mit = mapWallet.find(wtxid);
if (mit != mapWallet.end() && mit->second.GetDepthInMainChain() >= 0)
return true; // Spent
}
return false;
}
void CWallet::AddToSpends(const COutPoint& outpoint, const uint256& wtxid)
{
mapTxSpends.insert(make_pair(outpoint, wtxid));
pair<TxSpends::iterator, TxSpends::iterator> range;
range = mapTxSpends.equal_range(outpoint);
SyncMetaData(range);
}
void CWallet::AddToSpends(const uint256& wtxid)
{
assert(mapWallet.count(wtxid));
CWalletTx& thisTx = mapWallet[wtxid];
if (thisTx.IsCoinBase()) // Coinbases don't spend anything!
return;
BOOST_FOREACH(const CTxIn& txin, thisTx.vin)
AddToSpends(txin.prevout, wtxid);
}
bool CWallet::EncryptWallet(const SecureString& strWalletPassphrase)
{
if (IsCrypted())
return false;
CKeyingMaterial vMasterKey;
RandAddSeedPerfmon();
vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE);
RAND_bytes(&vMasterKey[0], WALLET_CRYPTO_KEY_SIZE);
CMasterKey kMasterKey;
RandAddSeedPerfmon();
kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE);
RAND_bytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE);
CCrypter crypter;
int64_t nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = 2500000 / ((double)(GetTimeMillis() - nStartTime));
nStartTime = GetTimeMillis();
crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod);
kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + kMasterKey.nDeriveIterations * 100 / ((double)(GetTimeMillis() - nStartTime))) / 2;
if (kMasterKey.nDeriveIterations < 25000)
kMasterKey.nDeriveIterations = 25000;
LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations);
if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod))
return false;
if (!crypter.Encrypt(vMasterKey, kMasterKey.vchCryptedKey))
return false;
{
LOCK(cs_wallet);
mapMasterKeys[++nMasterKeyMaxID] = kMasterKey;
if (fFileBacked)
{
pwalletdbEncryption = new CWalletDB(strWalletFile);
if (!pwalletdbEncryption->TxnBegin())
return false;
pwalletdbEncryption->WriteMasterKey(nMasterKeyMaxID, kMasterKey);
}
if (!EncryptKeys(vMasterKey))
{
if (fFileBacked)
pwalletdbEncryption->TxnAbort();
exit(1); //We now probably have half of our keys encrypted in memory, and half not...die and let the user reload their unencrypted wallet.
}
// Encryption was introduced in version 0.4.0
SetMinVersion(FEATURE_WALLETCRYPT, pwalletdbEncryption, true);
if (fFileBacked)
{
if (!pwalletdbEncryption->TxnCommit())
exit(1); //We now have keys encrypted in memory, but no on disk...die to avoid confusion and let the user reload their unencrypted wallet.
delete pwalletdbEncryption;
pwalletdbEncryption = NULL;
}
Lock();
Unlock(strWalletPassphrase);
NewKeyPool();
Lock();
// Need to completely rewrite the wallet file; if we don't, bdb might keep
// bits of the unencrypted private key in slack space in the database file.
CDB::Rewrite(strWalletFile);
}
NotifyStatusChanged(this);
return true;
}
int64_t CWallet::IncOrderPosNext(CWalletDB *pwalletdb)
{
AssertLockHeld(cs_wallet); // nOrderPosNext
int64_t nRet = nOrderPosNext++;
if (pwalletdb) {
pwalletdb->WriteOrderPosNext(nOrderPosNext);
} else {
CWalletDB(strWalletFile).WriteOrderPosNext(nOrderPosNext);
}
return nRet;
}
CWallet::TxItems CWallet::OrderedTxItems(std::list<CAccountingEntry>& acentries, std::string strAccount)
{
AssertLockHeld(cs_wallet); // mapWallet
CWalletDB walletdb(strWalletFile);
// First: get all CWalletTx and CAccountingEntry into a sorted-by-order multimap.
TxItems txOrdered;
// Note: maintaining indices in the database of (account,time) --> txid and (account, time) --> acentry
// would make this much faster for applications that do this a lot.
for (map<uint256, CWalletTx>::iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
CWalletTx* wtx = &((*it).second);
txOrdered.insert(make_pair(wtx->nOrderPos, TxPair(wtx, (CAccountingEntry*)0)));
}
acentries.clear();
walletdb.ListAccountCreditDebit(strAccount, acentries);
BOOST_FOREACH(CAccountingEntry& entry, acentries)
{
txOrdered.insert(make_pair(entry.nOrderPos, TxPair((CWalletTx*)0, &entry)));
}
return txOrdered;
}
void CWallet::MarkDirty()
{
{
LOCK(cs_wallet);
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
item.second.MarkDirty();
}
}
bool CWallet::AddToWallet(const CWalletTx& wtxIn, bool fFromLoadWallet)
{
uint256 hash = wtxIn.GetHash();
if (fFromLoadWallet)
{
mapWallet[hash] = wtxIn;
mapWallet[hash].BindWallet(this);
AddToSpends(hash);
}
else
{
LOCK(cs_wallet);
// Inserts only if not already there, returns tx inserted or tx found
pair<map<uint256, CWalletTx>::iterator, bool> ret = mapWallet.insert(make_pair(hash, wtxIn));
CWalletTx& wtx = (*ret.first).second;
wtx.BindWallet(this);
bool fInsertedNew = ret.second;
if (fInsertedNew)
{
wtx.nTimeReceived = GetAdjustedTime();
wtx.nOrderPos = IncOrderPosNext();
wtx.nTimeSmart = wtx.nTimeReceived;
if (wtxIn.hashBlock != 0)
{
if (mapBlockIndex.count(wtxIn.hashBlock))
{
unsigned int latestNow = wtx.nTimeReceived;
unsigned int latestEntry = 0;
{
// Tolerate times up to the last timestamp in the wallet not more than 5 minutes into the future
int64_t latestTolerated = latestNow + 300;
std::list<CAccountingEntry> acentries;
TxItems txOrdered = OrderedTxItems(acentries);
for (TxItems::reverse_iterator it = txOrdered.rbegin(); it != txOrdered.rend(); ++it)
{
CWalletTx *const pwtx = (*it).second.first;
if (pwtx == &wtx)
continue;
CAccountingEntry *const pacentry = (*it).second.second;
int64_t nSmartTime;
if (pwtx)
{
nSmartTime = pwtx->nTimeSmart;
if (!nSmartTime)
nSmartTime = pwtx->nTimeReceived;
}
else
nSmartTime = pacentry->nTime;
if (nSmartTime <= latestTolerated)
{
latestEntry = nSmartTime;
if (nSmartTime > latestNow)
latestNow = nSmartTime;
break;
}
}
}
unsigned int& blocktime = mapBlockIndex[wtxIn.hashBlock]->nTime;
wtx.nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow));
}
else
LogPrintf("AddToWallet() : found %s in block %s not in index\n",
wtxIn.GetHash().ToString(),
wtxIn.hashBlock.ToString());
}
AddToSpends(hash);
}
bool fUpdated = false;
if (!fInsertedNew)
{
// Merge
if (wtxIn.hashBlock != 0 && wtxIn.hashBlock != wtx.hashBlock)
{
wtx.hashBlock = wtxIn.hashBlock;
fUpdated = true;
}
if (wtxIn.nIndex != -1 && (wtxIn.vMerkleBranch != wtx.vMerkleBranch || wtxIn.nIndex != wtx.nIndex))
{
wtx.vMerkleBranch = wtxIn.vMerkleBranch;
wtx.nIndex = wtxIn.nIndex;
fUpdated = true;
}
if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe)
{
wtx.fFromMe = wtxIn.fFromMe;
fUpdated = true;
}
}
//// debug print
LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetHash().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : ""));
// Write to disk
if (fInsertedNew || fUpdated)
if (!wtx.WriteToDisk())
return false;
// Break debit/credit balance caches:
wtx.MarkDirty();
// Notify UI of new or updated transaction
NotifyTransactionChanged(this, hash, fInsertedNew ? CT_NEW : CT_UPDATED);
// notify an external script when a wallet transaction comes in or is updated
std::string strCmd = GetArg("-walletnotify", "");
if ( !strCmd.empty())
{
boost::replace_all(strCmd, "%s", wtxIn.GetHash().GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
}
return true;
}
// Add a transaction to the wallet, or update it.
// pblock is optional, but should be provided if the transaction is known to be in a block.
// If fUpdate is true, existing transactions will be updated.
bool CWallet::AddToWalletIfInvolvingMe(const uint256 &hash, const CTransaction& tx, const CBlock* pblock, bool fUpdate)
{
{
AssertLockHeld(cs_wallet);
bool fExisted = mapWallet.count(hash);
if (fExisted && !fUpdate) return false;
if (fExisted || IsMine(tx) || IsFromMe(tx))
{
CWalletTx wtx(this,tx);
// Get merkle branch if transaction was found in a block
if (pblock)
wtx.SetMerkleBranch(pblock);
return AddToWallet(wtx);
}
}
return false;
}
void CWallet::SyncTransaction(const uint256 &hash, const CTransaction& tx, const CBlock* pblock)
{
LOCK2(cs_main, cs_wallet);
if (!AddToWalletIfInvolvingMe(hash, tx, pblock, true))
return; // Not one of ours
// If a transaction changes 'conflicted' state, that changes the balance
// available of the outputs it spends. So force those to be
// recomputed, also:
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
if (mapWallet.count(txin.prevout.hash))
mapWallet[txin.prevout.hash].MarkDirty();
}
}
void CWallet::EraseFromWallet(const uint256 &hash)
{
if (!fFileBacked)
return;
{
LOCK(cs_wallet);
if (mapWallet.erase(hash))
CWalletDB(strWalletFile).EraseTx(hash);
}
return;
}
bool CWallet::IsMine(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.vout.size())
if (IsMine(prev.vout[txin.prevout.n]))
return true;
}
}
return false;
}
int64_t CWallet::GetDebit(const CTxIn &txin) const
{
{
LOCK(cs_wallet);
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.hash);
if (mi != mapWallet.end())
{
const CWalletTx& prev = (*mi).second;
if (txin.prevout.n < prev.vout.size())
if (IsMine(prev.vout[txin.prevout.n]))
return prev.vout[txin.prevout.n].nValue;
}
}
return 0;
}
bool CWallet::IsChange(const CTxOut& txout) const
{
CTxDestination address;
// TODO: fix handling of 'change' outputs. The assumption is that any
// payment to a TX_PUBKEYHASH that is mine but isn't in the address book
// is change. That assumption is likely to break when we implement multisignature
// wallets that return change back into a multi-signature-protected address;
// a better way of identifying which outputs are 'the send' and which are
// 'the change' will need to be implemented (maybe extend CWalletTx to remember
// which output, if any, was change).
if (ExtractDestination(txout.scriptPubKey, address) && ::IsMine(*this, address))
{
LOCK(cs_wallet);
if (!mapAddressBook.count(address))
return true;
}
return false;
}
#pragma mark - CWalletTx
bool CWalletTx::IsTrusted() const
{
// Quick answer in most cases
if (!IsFinalTx(*this))
return false;
int nDepth = GetDepthInMainChain();
if (nDepth >= 1)
return true;
if (nDepth < 0)
return false;
if (!bSpendZeroConfChange || !IsFromMe()) // using wtx's cached debit
return false;
// Trusted if all inputs are from us and are in the mempool:
BOOST_FOREACH(const CTxIn& txin, vin)
{
// Transactions not sent by us: not trusted
const CWalletTx* parent = pwallet->GetWalletTx(txin.prevout.hash);
if (parent == NULL)
return false;
const CTxOut& parentOut = parent->vout[txin.prevout.n];
if (!pwallet->IsMine(parentOut))
return false;
}
return true;
}
int64_t CWalletTx::GetAvailableCredit(bool fUseCache) const
{
if (pwallet == 0)
return 0;
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
if (fUseCache && fAvailableCreditCached)
return nAvailableCreditCached;
int64_t nCredit = 0;
uint256 hashTx = GetHash();
for (unsigned int i = 0; i < vout.size(); i++)
{
if (!pwallet->IsSpent(hashTx, i))
{
const CTxOut &txout = vout[i];
nCredit += pwallet->GetCredit(txout);
if (!MoneyRange(nCredit))
throw std::runtime_error("CWalletTx::GetAvailableCredit() : value out of range");
}
}
nAvailableCreditCached = nCredit;
fAvailableCreditCached = true;
return nCredit;
}
int64_t CWalletTx::GetChange() const
{
if (fChangeCached)
return nChangeCached;
nChangeCached = pwallet->GetChange(*this);
fChangeCached = true;
return nChangeCached;
}
int64_t CWalletTx::GetCredit(bool fUseCache) const
{
// Must wait until coinbase is safely deep enough in the chain before valuing it
if (IsCoinBase() && GetBlocksToMaturity() > 0)
return 0;
// GetBalance can assume transactions in mapWallet won't change
if (fUseCache && fCreditCached)
return nCreditCached;
nCreditCached = pwallet->GetCredit(*this);
fCreditCached = true;
return nCreditCached;
}
int64_t CWalletTx::GetImmatureCredit(bool fUseCache) const
{
if (IsCoinBase() && GetBlocksToMaturity() > 0 && IsInMainChain())
{
if (fUseCache && fImmatureCreditCached)
return nImmatureCreditCached;
nImmatureCreditCached = pwallet->GetCredit(*this);
fImmatureCreditCached = true;
return nImmatureCreditCached;
}
return 0;
}
int64_t CWalletTx::GetDebit() const
{
if (vin.empty())
return 0;
if (fDebitCached)
return nDebitCached;
nDebitCached = pwallet->GetDebit(*this);
fDebitCached = true;
return nDebitCached;
}
int64_t CWalletTx::GetTxTime() const
{
int64_t n = nTimeSmart;
return n ? n : nTimeReceived;
}
int CWalletTx::GetRequestCount() const
{
// Returns -1 if it wasn't being tracked
int nRequests = -1;
{
LOCK(pwallet->cs_wallet);
if (IsCoinBase())
{
// Generated block
if (hashBlock != 0)
{
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
}
}
else
{
// Did anyone request this transaction?
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(GetHash());
if (mi != pwallet->mapRequestCount.end())
{
nRequests = (*mi).second;
// How about the block it's in?
if (nRequests == 0 && hashBlock != 0)
{
map<uint256, int>::const_iterator mi = pwallet->mapRequestCount.find(hashBlock);
if (mi != pwallet->mapRequestCount.end())
nRequests = (*mi).second;
else
nRequests = 1; // If it's in someone else's block it must have got out
}
}
}
}
return nRequests;
}
void CWalletTx::GetAmounts(list<pair<CTxDestination, int64_t> >& listReceived,
list<pair<CTxDestination, int64_t> >& listSent, int64_t& nFee, string& strSentAccount) const
{
nFee = 0;
listReceived.clear();
listSent.clear();
strSentAccount = strFromAccount;
// Compute fee:
int64_t nDebit = GetDebit();
if (nDebit > 0) // debit>0 means we signed/sent this transaction
{
int64_t nValueOut = GetValueOut();
nFee = nDebit - nValueOut;
}
// Sent/received.
BOOST_FOREACH(const CTxOut& txout, vout)
{
bool fIsMine;
// Only need to handle txouts if AT LEAST one of these is true:
// 1) they debit from us (sent)
// 2) the output is to us (received)
if (nDebit > 0)
{
// Don't report 'change' txouts
if (pwallet->IsChange(txout))
continue;
fIsMine = pwallet->IsMine(txout);
}
else if (!(fIsMine = pwallet->IsMine(txout)))
continue;
// In either case, we need to get the destination address
CTxDestination address;
if (!ExtractDestination(txout.scriptPubKey, address))
{
LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, txid %s\n",
this->GetHash().ToString());
address = CNoDestination();
}
// If we are debited by the transaction, add the output as a "sent" entry
if (nDebit > 0)
listSent.push_back(make_pair(address, txout.nValue));
// If we are receiving the output, add it as a "received" entry
if (fIsMine)
listReceived.push_back(make_pair(address, txout.nValue));
}
}
void CWalletTx::GetAccountAmounts(const string& strAccount, int64_t& nReceived,
int64_t& nSent, int64_t& nFee) const
{
nReceived = nSent = nFee = 0;
int64_t allFee;
string strSentAccount;
list<pair<CTxDestination, int64_t> > listReceived;
list<pair<CTxDestination, int64_t> > listSent;
GetAmounts(listReceived, listSent, allFee, strSentAccount);
if (strAccount == strSentAccount)
{
BOOST_FOREACH(const PAIRTYPE(CTxDestination,int64_t)& s, listSent)
nSent += s.second;
nFee = allFee;
}
{
LOCK(pwallet->cs_wallet);
BOOST_FOREACH(const PAIRTYPE(CTxDestination,int64_t)& r, listReceived)
{
if (pwallet->mapAddressBook.count(r.first))
{
map<CTxDestination, CAddressBookData>::const_iterator mi = pwallet->mapAddressBook.find(r.first);
if (mi != pwallet->mapAddressBook.end() && (*mi).second.name == strAccount)
nReceived += r.second;
}
else if (strAccount.empty())
{
nReceived += r.second;
}
}
}
}
bool CWalletTx::WriteToDisk()
{
return CWalletDB(pwallet->strWalletFile).WriteTx(GetHash(), *this);
}
// Scan the block chain (starting in pindexStart) for transactions
// from or to us. If fUpdate is true, found transactions that already
// exist in the wallet will be updated.
int CWallet::ScanForWalletTransactions(CBlockIndex* pindexStart, bool fUpdate)
{
int ret = 0;
int64_t nNow = GetTime();
CBlockIndex* pindex = pindexStart;
{
LOCK2(cs_main, cs_wallet);
// no need to read and scan block, if block was created before
// our wallet birthday (as adjusted for block time variability)
while (pindex && nTimeFirstKey && (pindex->nTime < (nTimeFirstKey - 7200)))
pindex = chainActive.Next(pindex);
ShowProgress(_("Rescanning..."), 0); // show rescan progress in GUI as dialog or on splashscreen, if -rescan on startup
double dProgressStart = Checkpoints::GuessVerificationProgress(pindex, false);
double dProgressTip = Checkpoints::GuessVerificationProgress(chainActive.Tip(), false);
while (pindex)
{
if (pindex->nHeight % 100 == 0 && dProgressTip - dProgressStart > 0.0)
ShowProgress(_("Rescanning..."), std::max(1, std::min(99, (int)((Checkpoints::GuessVerificationProgress(pindex, false) - dProgressStart) / (dProgressTip - dProgressStart) * 100))));
CBlock block;
ReadBlockFromDisk(block, pindex);
BOOST_FOREACH(CTransaction& tx, block.vtx)
{
if (AddToWalletIfInvolvingMe(tx.GetHash(), tx, &block, fUpdate))
ret++;
}
pindex = chainActive.Next(pindex);
if (GetTime() >= nNow + 60) {
nNow = GetTime();
LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, Checkpoints::GuessVerificationProgress(pindex));
}
}
ShowProgress(_("Rescanning..."), 100); // hide progress dialog in GUI
}
return ret;
}
void CWallet::ReacceptWalletTransactions()
{
LOCK2(cs_main, cs_wallet);
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
{
const uint256& wtxid = item.first;
CWalletTx& wtx = item.second;
assert(wtx.GetHash() == wtxid);
int nDepth = wtx.GetDepthInMainChain();
if (!wtx.IsCoinBase() && nDepth < 0)
{
// Try to add to memory pool
LOCK(mempool.cs);
wtx.AcceptToMemoryPool(false);
}
}
}
void CWalletTx::RelayWalletTransaction()
{
if (!IsCoinBase())
{
if (GetDepthInMainChain() == 0) {
uint256 hash = GetHash();
LogPrintf("Relaying wtx %s\n", hash.ToString());
RelayTransaction((CTransaction)*this, hash);
}
}
}
set<uint256> CWalletTx::GetConflicts() const
{
set<uint256> result;
if (pwallet != NULL)
{
uint256 myHash = GetHash();
result = pwallet->GetConflicts(myHash);
result.erase(myHash);
}
return result;
}
void CWallet::ResendWalletTransactions()
{
// Do this infrequently and randomly to avoid giving away
// that these are our transactions.
if (GetTime() < nNextResend)
return;
bool fFirst = (nNextResend == 0);
nNextResend = GetTime() + GetRand(30 * 60);
if (fFirst)
return;
// Only do it if there's been a new block since last time
if (nTimeBestReceived < nLastResend)
return;
nLastResend = GetTime();
// Rebroadcast any of our txes that aren't in a block yet
LogPrintf("ResendWalletTransactions()\n");
{
LOCK(cs_wallet);
// Sort them in chronological order
multimap<unsigned int, CWalletTx*> mapSorted;
BOOST_FOREACH(PAIRTYPE(const uint256, CWalletTx)& item, mapWallet)
{
CWalletTx& wtx = item.second;
// Don't rebroadcast until it's had plenty of time that
// it should have gotten in already by now.
if (nTimeBestReceived - (int64_t)wtx.nTimeReceived > 5 * 60)
mapSorted.insert(make_pair(wtx.nTimeReceived, &wtx));
}
BOOST_FOREACH(PAIRTYPE(const unsigned int, CWalletTx*)& item, mapSorted)
{
CWalletTx& wtx = *item.second;
wtx.RelayWalletTransaction();
}
}
}
//////////////////////////////////////////////////////////////////////////////
//
// Actions
//
int64_t CWallet::GetBalance() const
{
int64_t nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (pcoin->IsTrusted())
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
int64_t CWallet::GetUnconfirmedBalance() const
{
int64_t nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
if (!IsFinalTx(*pcoin) || (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0))
nTotal += pcoin->GetAvailableCredit();
}
}
return nTotal;
}
int64_t CWallet::GetImmatureBalance() const
{
int64_t nTotal = 0;
{
LOCK2(cs_main, cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const CWalletTx* pcoin = &(*it).second;
nTotal += pcoin->GetImmatureCredit();
}
}
return nTotal;
}
// populate vCoins with vector of spendable COutputs
void CWallet::AvailableCoins(vector<COutput>& vCoins, bool fOnlyConfirmed, const CCoinControl *coinControl) const
{
vCoins.clear();
{
LOCK(cs_wallet);
for (map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); ++it)
{
const uint256& wtxid = it->first;
const CWalletTx* pcoin = &(*it).second;
if (!IsFinalTx(*pcoin))
continue;
if (fOnlyConfirmed && !pcoin->IsTrusted())
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < 0)
continue;
for (unsigned int i = 0; i < pcoin->vout.size(); i++) {
if (!(IsSpent(wtxid, i)) && IsMine(pcoin->vout[i]) &&
!IsLockedCoin((*it).first, i) && pcoin->vout[i].nValue > 0 &&
(!coinControl || !coinControl->HasSelected() || coinControl->IsSelected((*it).first, i)))
vCoins.push_back(COutput(pcoin, i, nDepth));
}
}
}
}
static void ApproximateBestSubset(vector<pair<int64_t, pair<const CWalletTx*,unsigned int> > >vValue, int64_t nTotalLower, int64_t nTargetValue,
vector<char>& vfBest, int64_t& nBest, int iterations = 1000)
{
vector<char> vfIncluded;
vfBest.assign(vValue.size(), true);
nBest = nTotalLower;
seed_insecure_rand();
for (int nRep = 0; nRep < iterations && nBest != nTargetValue; nRep++)
{
vfIncluded.assign(vValue.size(), false);
int64_t nTotal = 0;
bool fReachedTarget = false;
for (int nPass = 0; nPass < 2 && !fReachedTarget; nPass++)
{
for (unsigned int i = 0; i < vValue.size(); i++)
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if (nPass == 0 ? insecure_rand()&1 : !vfIncluded[i])
{
nTotal += vValue[i].first;
vfIncluded[i] = true;
if (nTotal >= nTargetValue)
{
fReachedTarget = true;
if (nTotal < nBest)
{
nBest = nTotal;
vfBest = vfIncluded;
}
nTotal -= vValue[i].first;
vfIncluded[i] = false;
}
}
}
}
}
}
bool CWallet::SelectCoinsMinConf(int64_t nTargetValue, int nConfMine, int nConfTheirs, vector<COutput> vCoins,
set<pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64_t& nValueRet) const
{
setCoinsRet.clear();
nValueRet = 0;
// List of values less than target
pair<int64_t, pair<const CWalletTx*,unsigned int> > coinLowestLarger;
coinLowestLarger.first = std::numeric_limits<int64_t>::max();
coinLowestLarger.second.first = NULL;
vector<pair<int64_t, pair<const CWalletTx*,unsigned int> > > vValue;
int64_t nTotalLower = 0;
random_shuffle(vCoins.begin(), vCoins.end(), GetRandInt);
BOOST_FOREACH(COutput output, vCoins)
{
const CWalletTx *pcoin = output.tx;
if (output.nDepth < (pcoin->IsFromMe() ? nConfMine : nConfTheirs))
continue;
int i = output.i;
int64_t n = pcoin->vout[i].nValue;
pair<int64_t,pair<const CWalletTx*,unsigned int> > coin = make_pair(n,make_pair(pcoin, i));
if (n == nTargetValue)
{
setCoinsRet.insert(coin.second);
nValueRet += coin.first;
return true;
}
else if (n < nTargetValue + DUST_SOFT_LIMIT)
{
// This coin is not sufficient to cover the target plus change above the dust
// limit. The dust limit is important here, as we don't want to leave change
// which cannot be spent (is below the network transaction fee).
// Push the coin into an array for potential matching later, but keep trying to find
// an exact match
vValue.push_back(coin);
nTotalLower += n;
}
else if (n < coinLowestLarger.first)
{
coinLowestLarger = coin;
}
}
if (nTotalLower == nTargetValue)
{
for (unsigned int i = 0; i < vValue.size(); ++i)
{
setCoinsRet.insert(vValue[i].second);
nValueRet += vValue[i].first;
}
return true;
}
if (nTotalLower < nTargetValue)
{
if (coinLowestLarger.second.first == NULL)
return false;
setCoinsRet.insert(coinLowestLarger.second);
nValueRet += coinLowestLarger.first;
return true;
}
// Solve subset sum by stochastic approximation
sort(vValue.rbegin(), vValue.rend(), CompareValueOnly());
vector<char> vfBest;
int64_t nBest;
ApproximateBestSubset(vValue, nTotalLower, nTargetValue, vfBest, nBest, 1000);
if (nBest != nTargetValue && nTotalLower >= nTargetValue + DUST_SOFT_LIMIT)
ApproximateBestSubset(vValue, nTotalLower, nTargetValue + DUST_SOFT_LIMIT, vfBest, nBest, 1000);
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
if (coinLowestLarger.second.first &&
((nBest != nTargetValue && nBest < nTargetValue + DUST_SOFT_LIMIT) || coinLowestLarger.first <= nBest))
{
setCoinsRet.insert(coinLowestLarger.second);
nValueRet += coinLowestLarger.first;
}
else {
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
{
setCoinsRet.insert(vValue[i].second);
nValueRet += vValue[i].first;
}
LogPrint("selectcoins", "SelectCoins() best subset: ");
for (unsigned int i = 0; i < vValue.size(); i++)
if (vfBest[i])
LogPrint("selectcoins", "%s ", FormatMoney(vValue[i].first));
LogPrint("selectcoins", "total %s\n", FormatMoney(nBest));
}
return true;
}
bool CWallet::SelectCoins(int64_t nTargetValue, set<pair<const CWalletTx*,unsigned int> >& setCoinsRet, int64_t& nValueRet, const CCoinControl* coinControl) const
{
vector<COutput> vCoins;
AvailableCoins(vCoins, true, coinControl);
// coin control -> return all selected outputs (we want all selected to go into the transaction for sure)
if (coinControl && coinControl->HasSelected())
{
BOOST_FOREACH(const COutput& out, vCoins)
{
nValueRet += out.tx->vout[out.i].nValue;
setCoinsRet.insert(make_pair(out.tx, out.i));
}
return (nValueRet >= nTargetValue);
}
return (SelectCoinsMinConf(nTargetValue, 1, 6, vCoins, setCoinsRet, nValueRet) ||
SelectCoinsMinConf(nTargetValue, 1, 1, vCoins, setCoinsRet, nValueRet) ||
(bSpendZeroConfChange && SelectCoinsMinConf(nTargetValue, 0, 1, vCoins, setCoinsRet, nValueRet)));
}
bool CWallet::CreateTransaction(const vector<pair<CScript, int64_t> >& vecSend,
CWalletTx& wtxNew, CReserveKey& reservekey, int64_t& nFeeRet, std::string& strFailReason, const CCoinControl* coinControl)
{
int64_t nValue = 0;
BOOST_FOREACH (const PAIRTYPE(CScript, int64_t)& s, vecSend)
{
if (nValue < 0)
{
strFailReason = _("Transaction amounts must be positive");
return false;
}
nValue += s.second;
}
if (vecSend.empty() || nValue < 0)
{
strFailReason = _("Transaction amounts must be positive");
return false;
}
wtxNew.BindWallet(this);
{
LOCK2(cs_main, cs_wallet);
{
nFeeRet = nTransactionFee;
while (true)
{
wtxNew.vin.clear();
wtxNew.vout.clear();
wtxNew.fFromMe = true;
int64_t nTotalValue = nValue + nFeeRet;
double dPriority = 0;
// vouts to the payees
BOOST_FOREACH (const PAIRTYPE(CScript, int64_t)& s, vecSend)
{
CTxOut txout(s.second, s.first);
if (txout.IsDust(CTransaction::nMinRelayTxFee))
{
strFailReason = _("Transaction amount too small");
return false;
}
wtxNew.vout.push_back(txout);
}
// Choose coins to use
set<pair<const CWalletTx*,unsigned int> > setCoins;
int64_t nValueIn = 0;
if (!SelectCoins(nTotalValue, setCoins, nValueIn, coinControl))
{
strFailReason = _("Insufficient funds");
return false;
}
BOOST_FOREACH(PAIRTYPE(const CWalletTx*, unsigned int) pcoin, setCoins)
{
int64_t nCredit = pcoin.first->vout[pcoin.second].nValue;
//The priority after the next block (depth+1) is used instead of the current,
//reflecting an assumption the user would accept a bit more delay for
//a chance at a free transaction.
dPriority += (double)nCredit * (pcoin.first->GetDepthInMainChain()+1);
}
int64_t nChange = nValueIn - nValue - nFeeRet;
// The following if statement should be removed once enough miners
// have upgraded to the 0.9 GetMinFee() rules. Until then, this avoids
// creating free transactions that have change outputs less than
// COIN dogecoins.
if (nFeeRet < CTransaction::nMinTxFee && nChange > 0 && nChange < COIN)
{
int64_t nMoveToFee = min(nChange, CTransaction::nMinTxFee - nFeeRet);
nChange -= nMoveToFee;
nFeeRet += nMoveToFee;
}
if (nChange > 0)
{
// Fill a vout to ourself
// TODO: pass in scriptChange instead of reservekey so
// change transaction isn't always pay-to-dogecoin-address
CScript scriptChange;
// coin control: send change to custom address
if (coinControl && !boost::get<CNoDestination>(&coinControl->destChange))
scriptChange.SetDestination(coinControl->destChange);
// send change to one of the specified change addresses, if specified at init
else if (vChangeAddresses.size())
{
CKeyID keyID = vChangeAddresses[GetRandInt(vChangeAddresses.size())];
scriptChange.SetDestination(keyID);
}
// send change to newly generated address
else
{
// Note: We use a new key here to keep it from being obvious which side is the change.
// The drawback is that by not reusing a previous key, the change may be lost if a
// backup is restored, if the backup doesn't have the new private key for the change.
// If we reused the old key, it would be possible to add code to look for and
// rediscover unknown transactions that were written with keys of ours to recover
// post-backup change.
// Reserve a new key pair from key pool
CPubKey vchPubKey;
bool ret;
ret = reservekey.GetReservedKey(vchPubKey);
assert(ret); // should never fail, as we just unlocked
scriptChange.SetDestination(vchPubKey.GetID());
}
CTxOut newTxOut(nChange, scriptChange);
// Never create dust outputs; if we would, just
// add the dust to the fee.
if (newTxOut.IsDust(CTransaction::nMinRelayTxFee))
{
nFeeRet += nChange;
reservekey.ReturnKey();
}
else
{
// Insert change txn at random position:
vector<CTxOut>::iterator position = wtxNew.vout.begin()+GetRandInt(wtxNew.vout.size()+1);
wtxNew.vout.insert(position, newTxOut);
}
}
else
reservekey.ReturnKey();
// Fill vin
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
wtxNew.vin.push_back(CTxIn(coin.first->GetHash(),coin.second));
// Sign
int nIn = 0;
BOOST_FOREACH(const PAIRTYPE(const CWalletTx*,unsigned int)& coin, setCoins)
if (!SignSignature(*this, *coin.first, wtxNew, nIn++))
{
strFailReason = _("Signing transaction failed");
return false;
}
// Limit size
unsigned int nBytes = ::GetSerializeSize(*(CTransaction*)&wtxNew, SER_NETWORK, PROTOCOL_VERSION);
if (nBytes >= MAX_STANDARD_TX_SIZE)
{
strFailReason = _("Transaction too large");
return false;
}
dPriority = wtxNew.ComputePriority(dPriority, nBytes);
// Check that enough fee is included
int64_t nPayFee = nTransactionFee * (1 + (int64_t)nBytes / 1000);
bool fAllowFree = AllowFree(dPriority);
int64_t nMinFee = GetMinFee(wtxNew, nBytes, fAllowFree, GMF_SEND);
if (nFeeRet < max(nPayFee, nMinFee))
{
nFeeRet = max(nPayFee, nMinFee);
continue;
}
wtxNew.fTimeReceivedIsTxTime = true;
break;
}
}
}
return true;
}
bool CWallet::CreateTransaction(CScript scriptPubKey, int64_t nValue,
CWalletTx& wtxNew, CReserveKey& reservekey, int64_t& nFeeRet, std::string& strFailReason, const CCoinControl* coinControl)
{
vector< pair<CScript, int64_t> > vecSend;
vecSend.push_back(make_pair(scriptPubKey, nValue));
return CreateTransaction(vecSend, wtxNew, reservekey, nFeeRet, strFailReason, coinControl);
}
// Call after CreateTransaction unless you want to abort
bool CWallet::CommitTransaction(CWalletTx& wtxNew, CReserveKey& reservekey)
{
{
LOCK2(cs_main, cs_wallet);
LogPrintf("CommitTransaction:\n%s", wtxNew.ToString());
{
// This is only to keep the database open to defeat the auto-flush for the
// duration of this scope. This is the only place where this optimization
// maybe makes sense; please don't do it anywhere else.
CWalletDB* pwalletdb = fFileBacked ? new CWalletDB(strWalletFile,"r") : NULL;
// Take key pair from key pool so it won't be used again
reservekey.KeepKey();
// Add tx to wallet, because if it has change it's also ours,
// otherwise just for transaction history.
AddToWallet(wtxNew);
// Notify that old coins are spent
set<CWalletTx*> setCoins;
BOOST_FOREACH(const CTxIn& txin, wtxNew.vin)
{
CWalletTx &coin = mapWallet[txin.prevout.hash];
coin.BindWallet(this);
NotifyTransactionChanged(this, coin.GetHash(), CT_UPDATED);
}
if (fFileBacked)
delete pwalletdb;
}
// Track how many getdata requests our transaction gets
mapRequestCount[wtxNew.GetHash()] = 0;
// Broadcast
if (!wtxNew.AcceptToMemoryPool(false))
{
// This must not fail. The transaction has already been signed and recorded.
LogPrintf("CommitTransaction() : Error: Transaction not valid");
return false;
}
wtxNew.RelayWalletTransaction();
}
return true;
}
string CWallet::SendMoney(CScript scriptPubKey, int64_t nValue, CWalletTx& wtxNew)
{
CReserveKey reservekey(this);
int64_t nFeeRequired;
if (IsLocked())
{
string strError = _("Error: Wallet locked, unable to create transaction!");
LogPrintf("SendMoney() : %s", strError);
return strError;
}
string strError;
if (!CreateTransaction(scriptPubKey, nValue, wtxNew, reservekey, nFeeRequired, strError))
{
if (nValue + nFeeRequired > GetBalance())
strError = strprintf(_("Error: This transaction requires a transaction fee of at least %s because of its amount, complexity, or use of recently received funds!"), FormatMoney(nFeeRequired));
LogPrintf("SendMoney() : %s\n", strError);
return strError;
}
if (!CommitTransaction(wtxNew, reservekey))
return _("Error: The transaction was rejected! This might happen if some of the coins in your wallet were already spent, such as if you used a copy of wallet.dat and coins were spent in the copy but not marked as spent here.");
return "";
}
string CWallet::SendMoneyToDestination(const CTxDestination& address, int64_t nValue, CWalletTx& wtxNew)
{
// Check amount
if (nValue <= 0)
return _("Invalid amount");
if (nValue + nTransactionFee > GetBalance())
return _("Insufficient funds");
// Parse Bitcoin address
CScript scriptPubKey;
scriptPubKey.SetDestination(address);
return SendMoney(scriptPubKey, nValue, wtxNew);
}
DBErrors CWallet::LoadWallet(bool& fFirstRunRet)
{
if (!fFileBacked)
return DB_LOAD_OK;
fFirstRunRet = false;
DBErrors nLoadWalletRet = CWalletDB(strWalletFile,"cr+").LoadWallet(this);
if (nLoadWalletRet == DB_NEED_REWRITE)
{
if (CDB::Rewrite(strWalletFile, "\x04pool"))
{
LOCK(cs_wallet);
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// the requires a new key.
}
}
if (nLoadWalletRet != DB_LOAD_OK)
return nLoadWalletRet;
fFirstRunRet = !vchDefaultKey.IsValid();
uiInterface.LoadWallet(this);
return DB_LOAD_OK;
}
DBErrors CWallet::ZapWalletTx()
{
if (!fFileBacked)
return DB_LOAD_OK;
DBErrors nZapWalletTxRet = CWalletDB(strWalletFile,"cr+").ZapWalletTx(this);
if (nZapWalletTxRet == DB_NEED_REWRITE)
{
if (CDB::Rewrite(strWalletFile, "\x04pool"))
{
LOCK(cs_wallet);
setKeyPool.clear();
// Note: can't top-up keypool here, because wallet is locked.
// User will be prompted to unlock wallet the next operation
// the requires a new key.
}
}
if (nZapWalletTxRet != DB_LOAD_OK)
return nZapWalletTxRet;
return DB_LOAD_OK;
}
bool CWallet::SetAddressBook(const CTxDestination& address, const string& strName, const string& strPurpose)
{
bool fUpdated = false;
{
LOCK(cs_wallet); // mapAddressBook
std::map<CTxDestination, CAddressBookData>::iterator mi = mapAddressBook.find(address);
fUpdated = mi != mapAddressBook.end();
mapAddressBook[address].name = strName;
if (!strPurpose.empty()) /* update purpose only if requested */
mapAddressBook[address].purpose = strPurpose;
}
NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address),
strPurpose, (fUpdated ? CT_UPDATED : CT_NEW) );
if (!fFileBacked)
return false;
if (!strPurpose.empty() && !CWalletDB(strWalletFile).WritePurpose(CBitcoinAddress(address).ToString(), strPurpose))
return false;
return CWalletDB(strWalletFile).WriteName(CBitcoinAddress(address).ToString(), strName);
}
bool CWallet::DelAddressBook(const CTxDestination& address)
{
{
LOCK(cs_wallet); // mapAddressBook
if(fFileBacked)
{
// Delete destdata tuples associated with address
std::string strAddress = CBitcoinAddress(address).ToString();
BOOST_FOREACH(const PAIRTYPE(string, string) &item, mapAddressBook[address].destdata)
{
CWalletDB(strWalletFile).EraseDestData(strAddress, item.first);
}
}
mapAddressBook.erase(address);
}
NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address), "", CT_DELETED);
if (!fFileBacked)
return false;
CWalletDB(strWalletFile).ErasePurpose(CBitcoinAddress(address).ToString());
return CWalletDB(strWalletFile).EraseName(CBitcoinAddress(address).ToString());
}
bool CWallet::SetDefaultKey(const CPubKey &vchPubKey)
{
if (fFileBacked)
{
if (!CWalletDB(strWalletFile).WriteDefaultKey(vchPubKey))
return false;
}
vchDefaultKey = vchPubKey;
return true;
}
//
// Mark old keypool keys as used,
// and generate all new keys
//
bool CWallet::NewKeyPool()
{
{
LOCK(cs_wallet);
CWalletDB walletdb(strWalletFile);
BOOST_FOREACH(int64_t nIndex, setKeyPool)
walletdb.ErasePool(nIndex);
setKeyPool.clear();
if (IsLocked())
return false;
int64_t nKeys = max(GetArg("-keypool", 100), (int64_t)0);
for (int i = 0; i < nKeys; i++)
{
int64_t nIndex = i+1;
walletdb.WritePool(nIndex, CKeyPool(GenerateNewKey()));
setKeyPool.insert(nIndex);
}
LogPrintf("CWallet::NewKeyPool wrote %d new keys\n", nKeys);
}
return true;
}
bool CWallet::TopUpKeyPool(unsigned int kpSize)
{
{
LOCK(cs_wallet);
if (IsLocked())
return false;
CWalletDB walletdb(strWalletFile);
// Top up key pool
unsigned int nTargetSize;
if (kpSize > 0)
nTargetSize = kpSize;
else
nTargetSize = max(GetArg("-keypool", 100), (int64_t) 0);
while (setKeyPool.size() < (nTargetSize + 1))
{
int64_t nEnd = 1;
if (!setKeyPool.empty())
nEnd = *(--setKeyPool.end()) + 1;
if (!walletdb.WritePool(nEnd, CKeyPool(GenerateNewKey())))
throw runtime_error("TopUpKeyPool() : writing generated key failed");
setKeyPool.insert(nEnd);
LogPrintf("keypool added key %d, size=%" PRIszu"\n", nEnd, setKeyPool.size());
}
}
return true;
}
void CWallet::ReserveKeyFromKeyPool(int64_t& nIndex, CKeyPool& keypool)
{
nIndex = -1;
keypool.vchPubKey = CPubKey();
{
LOCK(cs_wallet);
if (!IsLocked())
TopUpKeyPool();
// Get the oldest key
if(setKeyPool.empty())
return;
CWalletDB walletdb(strWalletFile);
nIndex = *(setKeyPool.begin());
setKeyPool.erase(setKeyPool.begin());
if (!walletdb.ReadPool(nIndex, keypool))
throw runtime_error("ReserveKeyFromKeyPool() : read failed");
if (!HaveKey(keypool.vchPubKey.GetID()))
throw runtime_error("ReserveKeyFromKeyPool() : unknown key in key pool");
assert(keypool.vchPubKey.IsValid());
LogPrintf("keypool reserve %d\n", nIndex);
}
}
int64_t CWallet::AddReserveKey(const CKeyPool& keypool)
{
{
LOCK2(cs_main, cs_wallet);
CWalletDB walletdb(strWalletFile);
int64_t nIndex = 1 + *(--setKeyPool.end());
if (!walletdb.WritePool(nIndex, keypool))
throw runtime_error("AddReserveKey() : writing added key failed");
setKeyPool.insert(nIndex);
return nIndex;
}
return -1;
}
void CWallet::KeepKey(int64_t nIndex)
{
// Remove from key pool
if (fFileBacked)
{
CWalletDB walletdb(strWalletFile);
walletdb.ErasePool(nIndex);
}
LogPrintf("keypool keep %d\n", nIndex);
}
void CWallet::ReturnKey(int64_t nIndex)
{
// Return to key pool
{
LOCK(cs_wallet);
setKeyPool.insert(nIndex);
}
LogPrintf("keypool return %d\n", nIndex);
}
bool CWallet::GetKeyFromPool(CPubKey& result)
{
int64_t nIndex = 0;
CKeyPool keypool;
{
LOCK(cs_wallet);
ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex == -1)
{
if (IsLocked()) return false;
result = GenerateNewKey();
return true;
}
KeepKey(nIndex);
result = keypool.vchPubKey;
}
return true;
}
int64_t CWallet::GetOldestKeyPoolTime()
{
int64_t nIndex = 0;
CKeyPool keypool;
ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex == -1)
return GetTime();
ReturnKey(nIndex);
return keypool.nTime;
}
std::map<CTxDestination, int64_t> CWallet::GetAddressBalances()
{
map<CTxDestination, int64_t> balances;
{
LOCK(cs_wallet);
BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet)
{
CWalletTx *pcoin = &walletEntry.second;
if (!IsFinalTx(*pcoin) || !pcoin->IsTrusted())
continue;
if (pcoin->IsCoinBase() && pcoin->GetBlocksToMaturity() > 0)
continue;
int nDepth = pcoin->GetDepthInMainChain();
if (nDepth < (pcoin->IsFromMe() ? 0 : 1))
continue;
for (unsigned int i = 0; i < pcoin->vout.size(); i++)
{
CTxDestination addr;
if (!IsMine(pcoin->vout[i]))
continue;
if(!ExtractDestination(pcoin->vout[i].scriptPubKey, addr))
continue;
int64_t n = IsSpent(walletEntry.first, i) ? 0 : pcoin->vout[i].nValue;
if (!balances.count(addr))
balances[addr] = 0;
balances[addr] += n;
}
}
}
return balances;
}
set< set<CTxDestination> > CWallet::GetAddressGroupings()
{
AssertLockHeld(cs_wallet); // mapWallet
set< set<CTxDestination> > groupings;
set<CTxDestination> grouping;
BOOST_FOREACH(PAIRTYPE(uint256, CWalletTx) walletEntry, mapWallet)
{
CWalletTx *pcoin = &walletEntry.second;
if (pcoin->vin.size() > 0)
{
bool any_mine = false;
// group all input addresses with each other
BOOST_FOREACH(CTxIn txin, pcoin->vin)
{
CTxDestination address;
if(!IsMine(txin)) /* If this input isn't mine, ignore it */
continue;
if(!ExtractDestination(mapWallet[txin.prevout.hash].vout[txin.prevout.n].scriptPubKey, address))
continue;
grouping.insert(address);
any_mine = true;
}
// group change with input addresses
if (any_mine)
{
BOOST_FOREACH(CTxOut txout, pcoin->vout)
if (IsChange(txout))
{
CTxDestination txoutAddr;
if(!ExtractDestination(txout.scriptPubKey, txoutAddr))
continue;
grouping.insert(txoutAddr);
}
}
if (grouping.size() > 0)
{
groupings.insert(grouping);
grouping.clear();
}
}
// group lone addrs by themselves
for (unsigned int i = 0; i < pcoin->vout.size(); i++)
if (IsMine(pcoin->vout[i]))
{
CTxDestination address;
if(!ExtractDestination(pcoin->vout[i].scriptPubKey, address))
continue;
grouping.insert(address);
groupings.insert(grouping);
grouping.clear();
}
}
set< set<CTxDestination>* > uniqueGroupings; // a set of pointers to groups of addresses
map< CTxDestination, set<CTxDestination>* > setmap; // map addresses to the unique group containing it
BOOST_FOREACH(set<CTxDestination> grouping, groupings)
{
// make a set of all the groups hit by this new group
set< set<CTxDestination>* > hits;
map< CTxDestination, set<CTxDestination>* >::iterator it;
BOOST_FOREACH(CTxDestination address, grouping)
if ((it = setmap.find(address)) != setmap.end())
hits.insert((*it).second);
// merge all hit groups into a new single group and delete old groups
set<CTxDestination>* merged = new set<CTxDestination>(grouping);
BOOST_FOREACH(set<CTxDestination>* hit, hits)
{
merged->insert(hit->begin(), hit->end());
uniqueGroupings.erase(hit);
delete hit;
}
uniqueGroupings.insert(merged);
// update setmap
BOOST_FOREACH(CTxDestination element, *merged)
setmap[element] = merged;
}
set< set<CTxDestination> > ret;
BOOST_FOREACH(set<CTxDestination>* uniqueGrouping, uniqueGroupings)
{
ret.insert(*uniqueGrouping);
delete uniqueGrouping;
}
return ret;
}
set<CTxDestination> CWallet::GetAccountAddresses(string strAccount) const
{
AssertLockHeld(cs_wallet); // mapWallet
set<CTxDestination> result;
BOOST_FOREACH(const PAIRTYPE(CTxDestination, CAddressBookData)& item, mapAddressBook)
{
const CTxDestination& address = item.first;
const string& strName = item.second.name;
if (strName == strAccount)
result.insert(address);
}
return result;
}
bool CReserveKey::GetReservedKey(CPubKey& pubkey)
{
if (nIndex == -1)
{
CKeyPool keypool;
pwallet->ReserveKeyFromKeyPool(nIndex, keypool);
if (nIndex != -1)
vchPubKey = keypool.vchPubKey;
else {
if (pwallet->vchDefaultKey.IsValid()) {
LogPrintf("CReserveKey::GetReservedKey(): Warning: Using default key instead of a new key, top up your keypool!");
vchPubKey = pwallet->vchDefaultKey;
} else
return false;
}
}
assert(vchPubKey.IsValid());
pubkey = vchPubKey;
return true;
}
void CReserveKey::KeepKey()
{
if (nIndex != -1)
pwallet->KeepKey(nIndex);
nIndex = -1;
vchPubKey = CPubKey();
}
void CReserveKey::ReturnKey()
{
if (nIndex != -1)
pwallet->ReturnKey(nIndex);
nIndex = -1;
vchPubKey = CPubKey();
}
void CWallet::GetAllReserveKeys(set<CKeyID>& setAddress) const
{
setAddress.clear();
CWalletDB walletdb(strWalletFile);
LOCK2(cs_main, cs_wallet);
BOOST_FOREACH(const int64_t& id, setKeyPool)
{
CKeyPool keypool;
if (!walletdb.ReadPool(id, keypool))
throw runtime_error("GetAllReserveKeyHashes() : read failed");
assert(keypool.vchPubKey.IsValid());
CKeyID keyID = keypool.vchPubKey.GetID();
if (!HaveKey(keyID))
throw runtime_error("GetAllReserveKeyHashes() : unknown key in key pool");
setAddress.insert(keyID);
}
}
void CWallet::UpdatedTransaction(const uint256 &hashTx)
{
{
LOCK(cs_wallet);
// Only notify UI if this transaction is in this wallet
map<uint256, CWalletTx>::const_iterator mi = mapWallet.find(hashTx);
if (mi != mapWallet.end())
NotifyTransactionChanged(this, hashTx, CT_UPDATED);
}
}
void CWallet::LockCoin(COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.insert(output);
}
void CWallet::UnlockCoin(COutPoint& output)
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.erase(output);
}
void CWallet::UnlockAllCoins()
{
AssertLockHeld(cs_wallet); // setLockedCoins
setLockedCoins.clear();
}
bool CWallet::IsLockedCoin(uint256 hash, unsigned int n) const
{
AssertLockHeld(cs_wallet); // setLockedCoins
COutPoint outpt(hash, n);
return (setLockedCoins.count(outpt) > 0);
}
void CWallet::ListLockedCoins(std::vector<COutPoint>& vOutpts)
{
AssertLockHeld(cs_wallet); // setLockedCoins
for (std::set<COutPoint>::iterator it = setLockedCoins.begin();
it != setLockedCoins.end(); it++) {
COutPoint outpt = (*it);
vOutpts.push_back(outpt);
}
}
void CWallet::GetKeyBirthTimes(std::map<CKeyID, int64_t> &mapKeyBirth) const {
AssertLockHeld(cs_wallet); // mapKeyMetadata
mapKeyBirth.clear();
// get birth times for keys with metadata
for (std::map<CKeyID, CKeyMetadata>::const_iterator it = mapKeyMetadata.begin(); it != mapKeyMetadata.end(); it++)
if (it->second.nCreateTime)
mapKeyBirth[it->first] = it->second.nCreateTime;
// map in which we'll infer heights of other keys
CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; // the tip can be reorganised; use a 144-block safety margin
std::map<CKeyID, CBlockIndex*> mapKeyFirstBlock;
std::set<CKeyID> setKeys;
GetKeys(setKeys);
BOOST_FOREACH(const CKeyID &keyid, setKeys) {
if (mapKeyBirth.count(keyid) == 0)
mapKeyFirstBlock[keyid] = pindexMax;
}
setKeys.clear();
// if there are no such keys, we're done
if (mapKeyFirstBlock.empty())
return;
// find first block that affects those keys, if there are any left
std::vector<CKeyID> vAffected;
for (std::map<uint256, CWalletTx>::const_iterator it = mapWallet.begin(); it != mapWallet.end(); it++) {
// iterate over all wallet transactions...
const CWalletTx &wtx = (*it).second;
std::map<uint256, CBlockIndex*>::const_iterator blit = mapBlockIndex.find(wtx.hashBlock);
if (blit != mapBlockIndex.end() && chainActive.Contains(blit->second)) {
// ... which are already in a block
int nHeight = blit->second->nHeight;
BOOST_FOREACH(const CTxOut &txout, wtx.vout) {
// iterate over all their outputs
::ExtractAffectedKeys(*this, txout.scriptPubKey, vAffected);
BOOST_FOREACH(const CKeyID &keyid, vAffected) {
// ... and all their affected keys
std::map<CKeyID, CBlockIndex*>::iterator rit = mapKeyFirstBlock.find(keyid);
if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight)
rit->second = blit->second;
}
vAffected.clear();
}
}
}
// Extract block timestamps for those keys
for (std::map<CKeyID, CBlockIndex*>::const_iterator it = mapKeyFirstBlock.begin(); it != mapKeyFirstBlock.end(); it++)
mapKeyBirth[it->first] = it->second->nTime - 7200; // block times can be 2h off
}
bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
if (boost::get<CNoDestination>(&dest))
return false;
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
if (!fFileBacked)
return true;
return CWalletDB(strWalletFile).WriteDestData(CBitcoinAddress(dest).ToString(), key, value);
}
bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key)
{
if (!mapAddressBook[dest].destdata.erase(key))
return false;
if (!fFileBacked)
return true;
return CWalletDB(strWalletFile).EraseDestData(CBitcoinAddress(dest).ToString(), key);
}
bool CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value)
{
mapAddressBook[dest].destdata.insert(std::make_pair(key, value));
return true;
}
bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const
{
std::map<CTxDestination, CAddressBookData>::const_iterator i = mapAddressBook.find(dest);
if(i != mapAddressBook.end())
{
CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key);
if(j != i->second.destdata.end())
{
if(value)
*value = j->second;
return true;
}
}
return false;
}
// Add an address to the list of fixed change addresses to use. Fixed
// addresses can be used to reduce the pace at which wallets expand
// due to number of change addresses
void AddFixedChangeAddress(const CKeyID &changeAddress)
{
vChangeAddresses.push_back(changeAddress);
}