dogecoin/qa/rpc-tests/test_framework/mininode.py
Patrick Lodder caf26b77ab
fixup p2p-acceptblock and mininode to test disconnects
without partially backporting a new testframework.

- Adds a condition to NodeConn that when asyncore calls handle_read
  without any data, this must be a disconnect and closes the socket
- Adds a little loop in the p2p-acceptblock client that waits for
  the socket to be in a closed state
- Makes expected disconnects non-optional in p2p-acceptblock
- Syncs the test descriptions and outputs with reality
2021-08-17 20:15:30 +02:00

1818 lines
54 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2010 ArtForz -- public domain half-a-node
# Copyright (c) 2012 Jeff Garzik
# Copyright (c) 2010-2016 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
#
# mininode.py - Bitcoin P2P network half-a-node
#
# This python code was modified from ArtForz' public domain half-a-node, as
# found in the mini-node branch of http://github.com/jgarzik/pynode.
#
# NodeConn: an object which manages p2p connectivity to a bitcoin node
# NodeConnCB: a base class that describes the interface for receiving
# callbacks with network messages from a NodeConn
# CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....:
# data structures that should map to corresponding structures in
# bitcoin/primitives
# msg_block, msg_tx, msg_headers, etc.:
# data structures that represent network messages
# ser_*, deser_*: functions that handle serialization/deserialization
import struct
import socket
import asyncore
import time
import sys
import random
from .util import hex_str_to_bytes, bytes_to_hex_str
from io import BytesIO
from codecs import encode
import hashlib
from threading import RLock
from threading import Thread
import logging
import copy
import ltc_scrypt
from test_framework.siphash import siphash256
BIP0031_VERSION = 60000
MY_VERSION = 70014 # past bip-31 for ping/pong
MY_SUBVERSION = b"/python-mininode-tester:0.0.3/"
MY_RELAY = 1 # from version 70001 onwards, fRelay should be appended to version messages (BIP37)
MAX_INV_SZ = 50000
MAX_BLOCK_BASE_SIZE = 1000000
COIN = 100000000 # mlumin 5/2021: In terms of Dogecoin, 1 dogecoin or 100,000,000 koinu.
NODE_NETWORK = (1 << 0)
NODE_GETUTXO = (1 << 1)
NODE_BLOOM = (1 << 2)
NODE_WITNESS = (1 << 3)
# Keep our own socket map for asyncore, so that we can track disconnects
# ourselves (to workaround an issue with closing an asyncore socket when
# using select)
mininode_socket_map = dict()
# One lock for synchronizing all data access between the networking thread (see
# NetworkThread below) and the thread running the test logic. For simplicity,
# NodeConn acquires this lock whenever delivering a message to to a NodeConnCB,
# and whenever adding anything to the send buffer (in send_message()). This
# lock should be acquired in the thread running the test logic to synchronize
# access to any data shared with the NodeConnCB or NodeConn.
mininode_lock = RLock()
# Serialization/deserialization tools
def sha256(s):
return hashlib.new('sha256', s).digest()
def ripemd160(s):
return hashlib.new('ripemd160', s).digest()
def hash256(s):
return sha256(sha256(s))
def ser_compact_size(l):
r = b""
if l < 253:
r = struct.pack("B", l)
elif l < 0x10000:
r = struct.pack("<BH", 253, l)
elif l < 0x100000000:
r = struct.pack("<BI", 254, l)
else:
r = struct.pack("<BQ", 255, l)
return r
def deser_compact_size(f):
nit = struct.unpack("<B", f.read(1))[0]
if nit == 253:
nit = struct.unpack("<H", f.read(2))[0]
elif nit == 254:
nit = struct.unpack("<I", f.read(4))[0]
elif nit == 255:
nit = struct.unpack("<Q", f.read(8))[0]
return nit
def deser_string(f):
nit = deser_compact_size(f)
return f.read(nit)
def ser_string(s):
return ser_compact_size(len(s)) + s
def deser_uint256(f):
r = 0
for i in range(8):
t = struct.unpack("<I", f.read(4))[0]
r += t << (i * 32)
return r
def ser_uint256(u):
rs = b""
for i in range(8):
rs += struct.pack("<I", u & 0xFFFFFFFF)
u >>= 32
return rs
def uint256_from_str(s):
r = 0
t = struct.unpack("<IIIIIIII", s[:32])
for i in range(8):
r += t[i] << (i * 32)
return r
def uint256_from_compact(c):
nbytes = (c >> 24) & 0xFF
v = (c & 0xFFFFFF) << (8 * (nbytes - 3))
return v
def deser_vector(f, c):
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = c()
t.deserialize(f)
r.append(t)
return r
# ser_function_name: Allow for an alternate serialization function on the
# entries in the vector (we use this for serializing the vector of transactions
# for a witness block).
def ser_vector(l, ser_function_name=None):
r = ser_compact_size(len(l))
for i in l:
if ser_function_name:
r += getattr(i, ser_function_name)()
else:
r += i.serialize()
return r
def deser_uint256_vector(f):
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = deser_uint256(f)
r.append(t)
return r
def ser_uint256_vector(l):
r = ser_compact_size(len(l))
for i in l:
r += ser_uint256(i)
return r
def deser_string_vector(f):
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = deser_string(f)
r.append(t)
return r
def ser_string_vector(l):
r = ser_compact_size(len(l))
for sv in l:
r += ser_string(sv)
return r
def deser_int_vector(f):
nit = deser_compact_size(f)
r = []
for i in range(nit):
t = struct.unpack("<i", f.read(4))[0]
r.append(t)
return r
def ser_int_vector(l):
r = ser_compact_size(len(l))
for i in l:
r += struct.pack("<i", i)
return r
# Deserialize from a hex string representation (eg from RPC)
def FromHex(obj, hex_string):
obj.deserialize(BytesIO(hex_str_to_bytes(hex_string)))
return obj
# Convert a binary-serializable object to hex (eg for submission via RPC)
def ToHex(obj):
return bytes_to_hex_str(obj.serialize())
# Objects that map to bitcoind objects, which can be serialized/deserialized
class CAddress(object):
def __init__(self):
self.nServices = 1
self.pchReserved = b"\x00" * 10 + b"\xff" * 2
self.ip = "0.0.0.0"
self.port = 0
def deserialize(self, f):
self.nServices = struct.unpack("<Q", f.read(8))[0]
self.pchReserved = f.read(12)
self.ip = socket.inet_ntoa(f.read(4))
self.port = struct.unpack(">H", f.read(2))[0]
def serialize(self):
r = b""
r += struct.pack("<Q", self.nServices)
r += self.pchReserved
r += socket.inet_aton(self.ip)
r += struct.pack(">H", self.port)
return r
def __repr__(self):
return "CAddress(nServices=%i ip=%s port=%i)" % (self.nServices,
self.ip, self.port)
MSG_WITNESS_FLAG = 1<<30
class CInv(object):
typemap = {
0: "Error",
1: "TX",
2: "Block",
1|MSG_WITNESS_FLAG: "WitnessTx",
2|MSG_WITNESS_FLAG : "WitnessBlock",
4: "CompactBlock"
}
def __init__(self, t=0, h=0):
self.type = t
self.hash = h
def deserialize(self, f):
self.type = struct.unpack("<i", f.read(4))[0]
self.hash = deser_uint256(f)
def serialize(self):
r = b""
r += struct.pack("<i", self.type)
r += ser_uint256(self.hash)
return r
def __repr__(self):
return "CInv(type=%s hash=%064x)" \
% (self.typemap[self.type], self.hash)
class CBlockLocator(object):
def __init__(self):
self.nVersion = MY_VERSION
self.vHave = []
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.vHave = deser_uint256_vector(f)
def serialize(self):
r = b""
r += struct.pack("<i", self.nVersion)
r += ser_uint256_vector(self.vHave)
return r
def __repr__(self):
return "CBlockLocator(nVersion=%i vHave=%s)" \
% (self.nVersion, repr(self.vHave))
class COutPoint(object):
def __init__(self, hash=0, n=0):
self.hash = hash
self.n = n
def deserialize(self, f):
self.hash = deser_uint256(f)
self.n = struct.unpack("<I", f.read(4))[0]
def serialize(self):
r = b""
r += ser_uint256(self.hash)
r += struct.pack("<I", self.n)
return r
def __repr__(self):
return "COutPoint(hash=%064x n=%i)" % (self.hash, self.n)
class CTxIn(object):
def __init__(self, outpoint=None, scriptSig=b"", nSequence=0):
if outpoint is None:
self.prevout = COutPoint()
else:
self.prevout = outpoint
self.scriptSig = scriptSig
self.nSequence = nSequence
def deserialize(self, f):
self.prevout = COutPoint()
self.prevout.deserialize(f)
self.scriptSig = deser_string(f)
self.nSequence = struct.unpack("<I", f.read(4))[0]
def serialize(self):
r = b""
r += self.prevout.serialize()
r += ser_string(self.scriptSig)
r += struct.pack("<I", self.nSequence)
return r
def __repr__(self):
return "CTxIn(prevout=%s scriptSig=%s nSequence=%i)" \
% (repr(self.prevout), bytes_to_hex_str(self.scriptSig),
self.nSequence)
class CTxOut(object):
def __init__(self, nValue=0, scriptPubKey=b""):
self.nValue = nValue
self.scriptPubKey = scriptPubKey
def deserialize(self, f):
self.nValue = struct.unpack("<q", f.read(8))[0]
self.scriptPubKey = deser_string(f)
def serialize(self):
r = b""
r += struct.pack("<q", self.nValue)
r += ser_string(self.scriptPubKey)
return r
def __repr__(self):
return "CTxOut(nValue=%i.%08i scriptPubKey=%s)" \
% (self.nValue // COIN, self.nValue % COIN,
bytes_to_hex_str(self.scriptPubKey))
class CScriptWitness(object):
def __init__(self):
# stack is a vector of strings
self.stack = []
def __repr__(self):
return "CScriptWitness(%s)" % \
(",".join([bytes_to_hex_str(x) for x in self.stack]))
def is_null(self):
if self.stack:
return False
return True
class CTxInWitness(object):
def __init__(self):
self.scriptWitness = CScriptWitness()
def deserialize(self, f):
self.scriptWitness.stack = deser_string_vector(f)
def serialize(self):
return ser_string_vector(self.scriptWitness.stack)
def __repr__(self):
return repr(self.scriptWitness)
def is_null(self):
return self.scriptWitness.is_null()
class CTxWitness(object):
def __init__(self):
self.vtxinwit = []
def deserialize(self, f):
for i in range(len(self.vtxinwit)):
self.vtxinwit[i].deserialize(f)
def serialize(self):
r = b""
# This is different than the usual vector serialization --
# we omit the length of the vector, which is required to be
# the same length as the transaction's vin vector.
for x in self.vtxinwit:
r += x.serialize()
return r
def __repr__(self):
return "CTxWitness(%s)" % \
(';'.join([repr(x) for x in self.vtxinwit]))
def is_null(self):
for x in self.vtxinwit:
if not x.is_null():
return False
return True
class CTransaction(object):
def __init__(self, tx=None):
if tx is None:
self.nVersion = 1
self.vin = []
self.vout = []
self.wit = CTxWitness()
self.nLockTime = 0
self.sha256 = None
self.hash = None
else:
self.nVersion = tx.nVersion
self.vin = copy.deepcopy(tx.vin)
self.vout = copy.deepcopy(tx.vout)
self.nLockTime = tx.nLockTime
self.sha256 = tx.sha256
self.hash = tx.hash
self.wit = copy.deepcopy(tx.wit)
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.vin = deser_vector(f, CTxIn)
flags = 0
if len(self.vin) == 0:
flags = struct.unpack("<B", f.read(1))[0]
# Not sure why flags can't be zero, but this
# matches the implementation in bitcoind
if (flags != 0):
self.vin = deser_vector(f, CTxIn)
self.vout = deser_vector(f, CTxOut)
else:
self.vout = deser_vector(f, CTxOut)
if flags != 0:
self.wit.vtxinwit = [CTxInWitness() for i in range(len(self.vin))]
self.wit.deserialize(f)
self.nLockTime = struct.unpack("<I", f.read(4))[0]
self.sha256 = None
self.hash = None
def serialize_without_witness(self):
r = b""
r += struct.pack("<i", self.nVersion)
r += ser_vector(self.vin)
r += ser_vector(self.vout)
r += struct.pack("<I", self.nLockTime)
return r
# Only serialize with witness when explicitly called for
def serialize_with_witness(self):
flags = 0
if not self.wit.is_null():
flags |= 1
r = b""
r += struct.pack("<i", self.nVersion)
if flags:
dummy = []
r += ser_vector(dummy)
r += struct.pack("<B", flags)
r += ser_vector(self.vin)
r += ser_vector(self.vout)
if flags & 1:
if (len(self.wit.vtxinwit) != len(self.vin)):
# vtxinwit must have the same length as vin
self.wit.vtxinwit = self.wit.vtxinwit[:len(self.vin)]
for i in range(len(self.wit.vtxinwit), len(self.vin)):
self.wit.vtxinwit.append(CTxInWitness())
r += self.wit.serialize()
r += struct.pack("<I", self.nLockTime)
return r
# Regular serialization is without witness -- must explicitly
# call serialize_with_witness to include witness data.
def serialize(self):
return self.serialize_without_witness()
# Recalculate the txid (transaction hash without witness)
def rehash(self):
self.sha256 = None
self.calc_sha256()
# We will only cache the serialization without witness in
# self.sha256 and self.hash -- those are expected to be the txid.
def calc_sha256(self, with_witness=False):
if with_witness:
# Don't cache the result, just return it
return uint256_from_str(hash256(self.serialize_with_witness()))
if self.sha256 is None:
self.sha256 = uint256_from_str(hash256(self.serialize_without_witness()))
self.hash = encode(hash256(self.serialize())[::-1], 'hex_codec').decode('ascii')
def is_valid(self):
self.calc_sha256()
for tout in self.vout:
if tout.nValue < 0 or tout.nValue > 21000000 * COIN:
return False
return True
def __repr__(self):
return "CTransaction(nVersion=%i vin=%s vout=%s wit=%s nLockTime=%i)" \
% (self.nVersion, repr(self.vin), repr(self.vout), repr(self.wit), self.nLockTime)
class CBlockHeader(object):
def __init__(self, header=None):
if header is None:
self.set_null()
else:
self.nVersion = header.nVersion
self.hashPrevBlock = header.hashPrevBlock
self.hashMerkleRoot = header.hashMerkleRoot
self.nTime = header.nTime
self.nBits = header.nBits
self.nNonce = header.nNonce
self.sha256 = header.sha256
self.hash = header.hash
self.scrypt256 = header.scrypt256
self.calc_sha256()
def set_null(self):
self.nVersion = 1
self.hashPrevBlock = 0
self.hashMerkleRoot = 0
self.nTime = 0
self.nBits = 0
self.nNonce = 0
self.sha256 = None
self.hash = None
self.scrypt256 = None
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.hashPrevBlock = deser_uint256(f)
self.hashMerkleRoot = deser_uint256(f)
self.nTime = struct.unpack("<I", f.read(4))[0]
self.nBits = struct.unpack("<I", f.read(4))[0]
self.nNonce = struct.unpack("<I", f.read(4))[0]
self.sha256 = None
self.hash = None
self.scrypt256 = None
def serialize(self):
r = b""
r += struct.pack("<i", self.nVersion)
r += ser_uint256(self.hashPrevBlock)
r += ser_uint256(self.hashMerkleRoot)
r += struct.pack("<I", self.nTime)
r += struct.pack("<I", self.nBits)
r += struct.pack("<I", self.nNonce)
return r
def calc_sha256(self):
if self.sha256 is None:
r = b""
r += struct.pack("<i", self.nVersion)
r += ser_uint256(self.hashPrevBlock)
r += ser_uint256(self.hashMerkleRoot)
r += struct.pack("<I", self.nTime)
r += struct.pack("<I", self.nBits)
r += struct.pack("<I", self.nNonce)
self.sha256 = uint256_from_str(hash256(r))
self.hash = encode(hash256(r)[::-1], 'hex_codec').decode('ascii')
self.scrypt256 = uint256_from_str(ltc_scrypt.getPoWHash(r))
def rehash(self):
self.sha256 = None
self.scrypt256 = None
self.calc_sha256()
return self.sha256
def __repr__(self):
return "CBlockHeader(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x)" \
% (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot,
time.ctime(self.nTime), self.nBits, self.nNonce)
class CBlock(CBlockHeader):
def __init__(self, header=None):
super(CBlock, self).__init__(header)
self.vtx = []
def deserialize(self, f):
super(CBlock, self).deserialize(f)
self.vtx = deser_vector(f, CTransaction)
def serialize(self, with_witness=False):
r = b""
r += super(CBlock, self).serialize()
if with_witness:
r += ser_vector(self.vtx, "serialize_with_witness")
else:
r += ser_vector(self.vtx)
return r
# Calculate the merkle root given a vector of transaction hashes
def get_merkle_root(self, hashes):
while len(hashes) > 1:
newhashes = []
for i in range(0, len(hashes), 2):
i2 = min(i+1, len(hashes)-1)
newhashes.append(hash256(hashes[i] + hashes[i2]))
hashes = newhashes
return uint256_from_str(hashes[0])
def calc_merkle_root(self):
hashes = []
for tx in self.vtx:
tx.calc_sha256()
hashes.append(ser_uint256(tx.sha256))
return self.get_merkle_root(hashes)
def calc_witness_merkle_root(self):
# For witness root purposes, the hash of the
# coinbase, with witness, is defined to be 0...0
hashes = [ser_uint256(0)]
for tx in self.vtx[1:]:
# Calculate the hashes with witness data
hashes.append(ser_uint256(tx.calc_sha256(True)))
return self.get_merkle_root(hashes)
def is_valid(self):
self.calc_sha256()
target = uint256_from_compact(self.nBits)
if self.scrypt256 > target:
return False
for tx in self.vtx:
if not tx.is_valid():
return False
if self.calc_merkle_root() != self.hashMerkleRoot:
return False
return True
def solve(self):
self.rehash()
target = uint256_from_compact(self.nBits)
while self.scrypt256 > target:
self.nNonce += 1
self.rehash()
def __repr__(self):
return "CBlock(nVersion=%i hashPrevBlock=%064x hashMerkleRoot=%064x nTime=%s nBits=%08x nNonce=%08x vtx=%s)" \
% (self.nVersion, self.hashPrevBlock, self.hashMerkleRoot,
time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx))
class CUnsignedAlert(object):
def __init__(self):
self.nVersion = 1
self.nRelayUntil = 0
self.nExpiration = 0
self.nID = 0
self.nCancel = 0
self.setCancel = []
self.nMinVer = 0
self.nMaxVer = 0
self.setSubVer = []
self.nPriority = 0
self.strComment = b""
self.strStatusBar = b""
self.strReserved = b""
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
self.nRelayUntil = struct.unpack("<q", f.read(8))[0]
self.nExpiration = struct.unpack("<q", f.read(8))[0]
self.nID = struct.unpack("<i", f.read(4))[0]
self.nCancel = struct.unpack("<i", f.read(4))[0]
self.setCancel = deser_int_vector(f)
self.nMinVer = struct.unpack("<i", f.read(4))[0]
self.nMaxVer = struct.unpack("<i", f.read(4))[0]
self.setSubVer = deser_string_vector(f)
self.nPriority = struct.unpack("<i", f.read(4))[0]
self.strComment = deser_string(f)
self.strStatusBar = deser_string(f)
self.strReserved = deser_string(f)
def serialize(self):
r = b""
r += struct.pack("<i", self.nVersion)
r += struct.pack("<q", self.nRelayUntil)
r += struct.pack("<q", self.nExpiration)
r += struct.pack("<i", self.nID)
r += struct.pack("<i", self.nCancel)
r += ser_int_vector(self.setCancel)
r += struct.pack("<i", self.nMinVer)
r += struct.pack("<i", self.nMaxVer)
r += ser_string_vector(self.setSubVer)
r += struct.pack("<i", self.nPriority)
r += ser_string(self.strComment)
r += ser_string(self.strStatusBar)
r += ser_string(self.strReserved)
return r
def __repr__(self):
return "CUnsignedAlert(nVersion %d, nRelayUntil %d, nExpiration %d, nID %d, nCancel %d, nMinVer %d, nMaxVer %d, nPriority %d, strComment %s, strStatusBar %s, strReserved %s)" \
% (self.nVersion, self.nRelayUntil, self.nExpiration, self.nID,
self.nCancel, self.nMinVer, self.nMaxVer, self.nPriority,
self.strComment, self.strStatusBar, self.strReserved)
class CAlert(object):
def __init__(self):
self.vchMsg = b""
self.vchSig = b""
def deserialize(self, f):
self.vchMsg = deser_string(f)
self.vchSig = deser_string(f)
def serialize(self):
r = b""
r += ser_string(self.vchMsg)
r += ser_string(self.vchSig)
return r
def __repr__(self):
return "CAlert(vchMsg.sz %d, vchSig.sz %d)" \
% (len(self.vchMsg), len(self.vchSig))
class PrefilledTransaction(object):
def __init__(self, index=0, tx = None):
self.index = index
self.tx = tx
def deserialize(self, f):
self.index = deser_compact_size(f)
self.tx = CTransaction()
self.tx.deserialize(f)
def serialize(self, with_witness=False):
r = b""
r += ser_compact_size(self.index)
if with_witness:
r += self.tx.serialize_with_witness()
else:
r += self.tx.serialize_without_witness()
return r
def serialize_with_witness(self):
return self.serialize(with_witness=True)
def __repr__(self):
return "PrefilledTransaction(index=%d, tx=%s)" % (self.index, repr(self.tx))
# This is what we send on the wire, in a cmpctblock message.
class P2PHeaderAndShortIDs(object):
def __init__(self):
self.header = CBlockHeader()
self.nonce = 0
self.shortids_length = 0
self.shortids = []
self.prefilled_txn_length = 0
self.prefilled_txn = []
def deserialize(self, f):
self.header.deserialize(f)
self.nonce = struct.unpack("<Q", f.read(8))[0]
self.shortids_length = deser_compact_size(f)
for i in range(self.shortids_length):
# shortids are defined to be 6 bytes in the spec, so append
# two zero bytes and read it in as an 8-byte number
self.shortids.append(struct.unpack("<Q", f.read(6) + b'\x00\x00')[0])
self.prefilled_txn = deser_vector(f, PrefilledTransaction)
self.prefilled_txn_length = len(self.prefilled_txn)
# When using version 2 compact blocks, we must serialize with_witness.
def serialize(self, with_witness=False):
r = b""
r += self.header.serialize()
r += struct.pack("<Q", self.nonce)
r += ser_compact_size(self.shortids_length)
for x in self.shortids:
# We only want the first 6 bytes
r += struct.pack("<Q", x)[0:6]
if with_witness:
r += ser_vector(self.prefilled_txn, "serialize_with_witness")
else:
r += ser_vector(self.prefilled_txn)
return r
def __repr__(self):
return "P2PHeaderAndShortIDs(header=%s, nonce=%d, shortids_length=%d, shortids=%s, prefilled_txn_length=%d, prefilledtxn=%s" % (repr(self.header), self.nonce, self.shortids_length, repr(self.shortids), self.prefilled_txn_length, repr(self.prefilled_txn))
# P2P version of the above that will use witness serialization (for compact
# block version 2)
class P2PHeaderAndShortWitnessIDs(P2PHeaderAndShortIDs):
def serialize(self):
return super(P2PHeaderAndShortWitnessIDs, self).serialize(with_witness=True)
# Calculate the BIP 152-compact blocks shortid for a given transaction hash
def calculate_shortid(k0, k1, tx_hash):
expected_shortid = siphash256(k0, k1, tx_hash)
expected_shortid &= 0x0000ffffffffffff
return expected_shortid
# This version gets rid of the array lengths, and reinterprets the differential
# encoding into indices that can be used for lookup.
class HeaderAndShortIDs(object):
def __init__(self, p2pheaders_and_shortids = None):
self.header = CBlockHeader()
self.nonce = 0
self.shortids = []
self.prefilled_txn = []
self.use_witness = False
if p2pheaders_and_shortids != None:
self.header = p2pheaders_and_shortids.header
self.nonce = p2pheaders_and_shortids.nonce
self.shortids = p2pheaders_and_shortids.shortids
last_index = -1
for x in p2pheaders_and_shortids.prefilled_txn:
self.prefilled_txn.append(PrefilledTransaction(x.index + last_index + 1, x.tx))
last_index = self.prefilled_txn[-1].index
def to_p2p(self):
if self.use_witness:
ret = P2PHeaderAndShortWitnessIDs()
else:
ret = P2PHeaderAndShortIDs()
ret.header = self.header
ret.nonce = self.nonce
ret.shortids_length = len(self.shortids)
ret.shortids = self.shortids
ret.prefilled_txn_length = len(self.prefilled_txn)
ret.prefilled_txn = []
last_index = -1
for x in self.prefilled_txn:
ret.prefilled_txn.append(PrefilledTransaction(x.index - last_index - 1, x.tx))
last_index = x.index
return ret
def get_siphash_keys(self):
header_nonce = self.header.serialize()
header_nonce += struct.pack("<Q", self.nonce)
hash_header_nonce_as_str = sha256(header_nonce)
key0 = struct.unpack("<Q", hash_header_nonce_as_str[0:8])[0]
key1 = struct.unpack("<Q", hash_header_nonce_as_str[8:16])[0]
return [ key0, key1 ]
# Version 2 compact blocks use wtxid in shortids (rather than txid)
def initialize_from_block(self, block, nonce=0, prefill_list = [0], use_witness = False):
self.header = CBlockHeader(block)
self.nonce = nonce
self.prefilled_txn = [ PrefilledTransaction(i, block.vtx[i]) for i in prefill_list ]
self.shortids = []
self.use_witness = use_witness
[k0, k1] = self.get_siphash_keys()
for i in range(len(block.vtx)):
if i not in prefill_list:
tx_hash = block.vtx[i].sha256
if use_witness:
tx_hash = block.vtx[i].calc_sha256(with_witness=True)
self.shortids.append(calculate_shortid(k0, k1, tx_hash))
def __repr__(self):
return "HeaderAndShortIDs(header=%s, nonce=%d, shortids=%s, prefilledtxn=%s" % (repr(self.header), self.nonce, repr(self.shortids), repr(self.prefilled_txn))
class BlockTransactionsRequest(object):
def __init__(self, blockhash=0, indexes = None):
self.blockhash = blockhash
self.indexes = indexes if indexes != None else []
def deserialize(self, f):
self.blockhash = deser_uint256(f)
indexes_length = deser_compact_size(f)
for i in range(indexes_length):
self.indexes.append(deser_compact_size(f))
def serialize(self):
r = b""
r += ser_uint256(self.blockhash)
r += ser_compact_size(len(self.indexes))
for x in self.indexes:
r += ser_compact_size(x)
return r
# helper to set the differentially encoded indexes from absolute ones
def from_absolute(self, absolute_indexes):
self.indexes = []
last_index = -1
for x in absolute_indexes:
self.indexes.append(x-last_index-1)
last_index = x
def to_absolute(self):
absolute_indexes = []
last_index = -1
for x in self.indexes:
absolute_indexes.append(x+last_index+1)
last_index = absolute_indexes[-1]
return absolute_indexes
def __repr__(self):
return "BlockTransactionsRequest(hash=%064x indexes=%s)" % (self.blockhash, repr(self.indexes))
class BlockTransactions(object):
def __init__(self, blockhash=0, transactions = None):
self.blockhash = blockhash
self.transactions = transactions if transactions != None else []
def deserialize(self, f):
self.blockhash = deser_uint256(f)
self.transactions = deser_vector(f, CTransaction)
def serialize(self, with_witness=False):
r = b""
r += ser_uint256(self.blockhash)
if with_witness:
r += ser_vector(self.transactions, "serialize_with_witness")
else:
r += ser_vector(self.transactions)
return r
def __repr__(self):
return "BlockTransactions(hash=%064x transactions=%s)" % (self.blockhash, repr(self.transactions))
# Objects that correspond to messages on the wire
class msg_version(object):
command = b"version"
def __init__(self):
self.nVersion = MY_VERSION
self.nServices = 1
self.nTime = int(time.time())
self.addrTo = CAddress()
self.addrFrom = CAddress()
self.nNonce = random.getrandbits(64)
self.strSubVer = MY_SUBVERSION
self.nStartingHeight = -1
self.nRelay = MY_RELAY
def deserialize(self, f):
self.nVersion = struct.unpack("<i", f.read(4))[0]
if self.nVersion == 10300:
self.nVersion = 300
self.nServices = struct.unpack("<Q", f.read(8))[0]
self.nTime = struct.unpack("<q", f.read(8))[0]
self.addrTo = CAddress()
self.addrTo.deserialize(f)
if self.nVersion >= 106:
self.addrFrom = CAddress()
self.addrFrom.deserialize(f)
self.nNonce = struct.unpack("<Q", f.read(8))[0]
self.strSubVer = deser_string(f)
else:
self.addrFrom = None
self.nNonce = None
self.strSubVer = None
self.nStartingHeight = None
if self.nVersion >= 209:
self.nStartingHeight = struct.unpack("<i", f.read(4))[0]
else:
self.nStartingHeight = None
if self.nVersion >= 70001:
# Relay field is optional for version 70001 onwards
try:
self.nRelay = struct.unpack("<b", f.read(1))[0]
except:
self.nRelay = 0
else:
self.nRelay = 0
def serialize(self):
r = b""
r += struct.pack("<i", self.nVersion)
r += struct.pack("<Q", self.nServices)
r += struct.pack("<q", self.nTime)
r += self.addrTo.serialize()
r += self.addrFrom.serialize()
r += struct.pack("<Q", self.nNonce)
r += ser_string(self.strSubVer)
r += struct.pack("<i", self.nStartingHeight)
r += struct.pack("<b", self.nRelay)
return r
def __repr__(self):
return 'msg_version(nVersion=%i nServices=%i nTime=%s addrTo=%s addrFrom=%s nNonce=0x%016X strSubVer=%s nStartingHeight=%i nRelay=%i)' \
% (self.nVersion, self.nServices, time.ctime(self.nTime),
repr(self.addrTo), repr(self.addrFrom), self.nNonce,
self.strSubVer, self.nStartingHeight, self.nRelay)
class msg_verack(object):
command = b"verack"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return b""
def __repr__(self):
return "msg_verack()"
class msg_addr(object):
command = b"addr"
def __init__(self):
self.addrs = []
def deserialize(self, f):
self.addrs = deser_vector(f, CAddress)
def serialize(self):
return ser_vector(self.addrs)
def __repr__(self):
return "msg_addr(addrs=%s)" % (repr(self.addrs))
class msg_alert(object):
command = b"alert"
def __init__(self):
self.alert = CAlert()
def deserialize(self, f):
self.alert = CAlert()
self.alert.deserialize(f)
def serialize(self):
r = b""
r += self.alert.serialize()
return r
def __repr__(self):
return "msg_alert(alert=%s)" % (repr(self.alert), )
class msg_inv(object):
command = b"inv"
def __init__(self, inv=None):
if inv is None:
self.inv = []
else:
self.inv = inv
def deserialize(self, f):
self.inv = deser_vector(f, CInv)
def serialize(self):
return ser_vector(self.inv)
def __repr__(self):
return "msg_inv(inv=%s)" % (repr(self.inv))
class msg_getdata(object):
command = b"getdata"
def __init__(self, inv=None):
self.inv = inv if inv != None else []
def deserialize(self, f):
self.inv = deser_vector(f, CInv)
def serialize(self):
return ser_vector(self.inv)
def __repr__(self):
return "msg_getdata(inv=%s)" % (repr(self.inv))
class msg_getblocks(object):
command = b"getblocks"
def __init__(self):
self.locator = CBlockLocator()
self.hashstop = 0
def deserialize(self, f):
self.locator = CBlockLocator()
self.locator.deserialize(f)
self.hashstop = deser_uint256(f)
def serialize(self):
r = b""
r += self.locator.serialize()
r += ser_uint256(self.hashstop)
return r
def __repr__(self):
return "msg_getblocks(locator=%s hashstop=%064x)" \
% (repr(self.locator), self.hashstop)
class msg_tx(object):
command = b"tx"
def __init__(self, tx=CTransaction()):
self.tx = tx
def deserialize(self, f):
self.tx.deserialize(f)
def serialize(self):
return self.tx.serialize_without_witness()
def __repr__(self):
return "msg_tx(tx=%s)" % (repr(self.tx))
class msg_witness_tx(msg_tx):
def serialize(self):
return self.tx.serialize_with_witness()
class msg_block(object):
command = b"block"
def __init__(self, block=None):
if block is None:
self.block = CBlock()
else:
self.block = block
def deserialize(self, f):
self.block.deserialize(f)
def serialize(self):
return self.block.serialize()
def __repr__(self):
return "msg_block(block=%s)" % (repr(self.block))
# for cases where a user needs tighter control over what is sent over the wire
# note that the user must supply the name of the command, and the data
class msg_generic(object):
def __init__(self, command, data=None):
self.command = command
self.data = data
def serialize(self):
return self.data
def __repr__(self):
return "msg_generic()"
class msg_witness_block(msg_block):
def serialize(self):
r = self.block.serialize(with_witness=True)
return r
class msg_getaddr(object):
command = b"getaddr"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return b""
def __repr__(self):
return "msg_getaddr()"
class msg_ping_prebip31(object):
command = b"ping"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return b""
def __repr__(self):
return "msg_ping() (pre-bip31)"
class msg_ping(object):
command = b"ping"
def __init__(self, nonce=0):
self.nonce = nonce
def deserialize(self, f):
self.nonce = struct.unpack("<Q", f.read(8))[0]
def serialize(self):
r = b""
r += struct.pack("<Q", self.nonce)
return r
def __repr__(self):
return "msg_ping(nonce=%08x)" % self.nonce
class msg_pong(object):
command = b"pong"
def __init__(self, nonce=0):
self.nonce = nonce
def deserialize(self, f):
self.nonce = struct.unpack("<Q", f.read(8))[0]
def serialize(self):
r = b""
r += struct.pack("<Q", self.nonce)
return r
def __repr__(self):
return "msg_pong(nonce=%08x)" % self.nonce
class msg_mempool(object):
command = b"mempool"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return b""
def __repr__(self):
return "msg_mempool()"
class msg_sendheaders(object):
command = b"sendheaders"
def __init__(self):
pass
def deserialize(self, f):
pass
def serialize(self):
return b""
def __repr__(self):
return "msg_sendheaders()"
# getheaders message has
# number of entries
# vector of hashes
# hash_stop (hash of last desired block header, 0 to get as many as possible)
class msg_getheaders(object):
command = b"getheaders"
def __init__(self):
self.locator = CBlockLocator()
self.hashstop = 0
def deserialize(self, f):
self.locator = CBlockLocator()
self.locator.deserialize(f)
self.hashstop = deser_uint256(f)
def serialize(self):
r = b""
r += self.locator.serialize()
r += ser_uint256(self.hashstop)
return r
def __repr__(self):
return "msg_getheaders(locator=%s, stop=%064x)" \
% (repr(self.locator), self.hashstop)
# headers message has
# <count> <vector of block headers>
class msg_headers(object):
command = b"headers"
def __init__(self):
self.headers = []
def deserialize(self, f):
# comment in bitcoind indicates these should be deserialized as blocks
blocks = deser_vector(f, CBlock)
for x in blocks:
self.headers.append(CBlockHeader(x))
def serialize(self):
blocks = [CBlock(x) for x in self.headers]
return ser_vector(blocks)
def __repr__(self):
return "msg_headers(headers=%s)" % repr(self.headers)
class msg_reject(object):
command = b"reject"
REJECT_MALFORMED = 1
def __init__(self):
self.message = b""
self.code = 0
self.reason = b""
self.data = 0
def deserialize(self, f):
self.message = deser_string(f)
self.code = struct.unpack("<B", f.read(1))[0]
self.reason = deser_string(f)
if (self.code != self.REJECT_MALFORMED and
(self.message == b"block" or self.message == b"tx")):
self.data = deser_uint256(f)
def serialize(self):
r = ser_string(self.message)
r += struct.pack("<B", self.code)
r += ser_string(self.reason)
if (self.code != self.REJECT_MALFORMED and
(self.message == b"block" or self.message == b"tx")):
r += ser_uint256(self.data)
return r
def __repr__(self):
return "msg_reject: %s %d %s [%064x]" \
% (self.message, self.code, self.reason, self.data)
# Helper function
def wait_until(predicate, *, attempts=float('inf'), timeout=float('inf')):
attempt = 0
elapsed = 0
while attempt < attempts and elapsed < timeout:
with mininode_lock:
if predicate():
return True
attempt += 1
elapsed += 0.05
time.sleep(0.05)
return False
class msg_feefilter(object):
command = b"feefilter"
def __init__(self, feerate=0):
self.feerate = feerate
def deserialize(self, f):
self.feerate = struct.unpack("<Q", f.read(8))[0]
def serialize(self):
r = b""
r += struct.pack("<Q", self.feerate)
return r
def __repr__(self):
return "msg_feefilter(feerate=%08x)" % self.feerate
class msg_sendcmpct(object):
command = b"sendcmpct"
def __init__(self):
self.announce = False
self.version = 1
def deserialize(self, f):
self.announce = struct.unpack("<?", f.read(1))[0]
self.version = struct.unpack("<Q", f.read(8))[0]
def serialize(self):
r = b""
r += struct.pack("<?", self.announce)
r += struct.pack("<Q", self.version)
return r
def __repr__(self):
return "msg_sendcmpct(announce=%s, version=%lu)" % (self.announce, self.version)
class msg_cmpctblock(object):
command = b"cmpctblock"
def __init__(self, header_and_shortids = None):
self.header_and_shortids = header_and_shortids
def deserialize(self, f):
self.header_and_shortids = P2PHeaderAndShortIDs()
self.header_and_shortids.deserialize(f)
def serialize(self):
r = b""
r += self.header_and_shortids.serialize()
return r
def __repr__(self):
return "msg_cmpctblock(HeaderAndShortIDs=%s)" % repr(self.header_and_shortids)
class msg_getblocktxn(object):
command = b"getblocktxn"
def __init__(self):
self.block_txn_request = None
def deserialize(self, f):
self.block_txn_request = BlockTransactionsRequest()
self.block_txn_request.deserialize(f)
def serialize(self):
r = b""
r += self.block_txn_request.serialize()
return r
def __repr__(self):
return "msg_getblocktxn(block_txn_request=%s)" % (repr(self.block_txn_request))
class msg_blocktxn(object):
command = b"blocktxn"
def __init__(self):
self.block_transactions = BlockTransactions()
def deserialize(self, f):
self.block_transactions.deserialize(f)
def serialize(self):
r = b""
r += self.block_transactions.serialize()
return r
def __repr__(self):
return "msg_blocktxn(block_transactions=%s)" % (repr(self.block_transactions))
class msg_witness_blocktxn(msg_blocktxn):
def serialize(self):
r = b""
r += self.block_transactions.serialize(with_witness=True)
return r
# This is what a callback should look like for NodeConn
# Reimplement the on_* functions to provide handling for events
class NodeConnCB(object):
def __init__(self):
self.verack_received = False
# deliver_sleep_time is helpful for debugging race conditions in p2p
# tests; it causes message delivery to sleep for the specified time
# before acquiring the global lock and delivering the next message.
self.deliver_sleep_time = None
# Remember the services our peer has advertised
self.peer_services = None
def set_deliver_sleep_time(self, value):
with mininode_lock:
self.deliver_sleep_time = value
def get_deliver_sleep_time(self):
with mininode_lock:
return self.deliver_sleep_time
# Spin until verack message is received from the node.
# Tests may want to use this as a signal that the test can begin.
# This can be called from the testing thread, so it needs to acquire the
# global lock.
def wait_for_verack(self):
while True:
with mininode_lock:
if self.verack_received:
return
time.sleep(0.05)
def deliver(self, conn, message):
deliver_sleep = self.get_deliver_sleep_time()
if deliver_sleep is not None:
time.sleep(deliver_sleep)
with mininode_lock:
try:
getattr(self, 'on_' + message.command.decode('ascii'))(conn, message)
except:
print("ERROR delivering %s (%s)" % (repr(message),
sys.exc_info()[0]))
def on_version(self, conn, message):
if message.nVersion >= 209:
conn.send_message(msg_verack())
conn.ver_send = min(MY_VERSION, message.nVersion)
if message.nVersion < 209:
conn.ver_recv = conn.ver_send
conn.nServices = message.nServices
def on_verack(self, conn, message):
conn.ver_recv = conn.ver_send
self.verack_received = True
def on_inv(self, conn, message):
want = msg_getdata()
for i in message.inv:
if i.type != 0:
want.inv.append(i)
if len(want.inv):
conn.send_message(want)
def on_addr(self, conn, message): pass
def on_alert(self, conn, message): pass
def on_getdata(self, conn, message): pass
def on_getblocks(self, conn, message): pass
def on_tx(self, conn, message): pass
def on_block(self, conn, message): pass
def on_getaddr(self, conn, message): pass
def on_headers(self, conn, message): pass
def on_getheaders(self, conn, message): pass
def on_ping(self, conn, message):
if conn.ver_send > BIP0031_VERSION:
conn.send_message(msg_pong(message.nonce))
def on_reject(self, conn, message): pass
def on_open(self, conn): pass
def on_close(self, conn): pass
def on_mempool(self, conn): pass
def on_pong(self, conn, message): pass
def on_feefilter(self, conn, message): pass
def on_sendheaders(self, conn, message): pass
def on_sendcmpct(self, conn, message): pass
def on_cmpctblock(self, conn, message): pass
def on_getblocktxn(self, conn, message): pass
def on_blocktxn(self, conn, message): pass
# More useful callbacks and functions for NodeConnCB's which have a single NodeConn
class SingleNodeConnCB(NodeConnCB):
def __init__(self):
NodeConnCB.__init__(self)
self.connection = None
self.ping_counter = 1
self.last_pong = msg_pong()
def add_connection(self, conn):
self.connection = conn
# Wrapper for the NodeConn's send_message function
def send_message(self, message):
self.connection.send_message(message)
def send_and_ping(self, message):
self.send_message(message)
self.sync_with_ping()
def on_pong(self, conn, message):
self.last_pong = message
# Sync up with the node
def sync_with_ping(self, timeout=30):
def received_pong():
return (self.last_pong.nonce == self.ping_counter)
self.send_message(msg_ping(nonce=self.ping_counter))
success = wait_until(received_pong, timeout=timeout)
self.ping_counter += 1
return success
# The actual NodeConn class
# This class provides an interface for a p2p connection to a specified node
class NodeConn(asyncore.dispatcher):
messagemap = {
b"version": msg_version,
b"verack": msg_verack,
b"addr": msg_addr,
b"alert": msg_alert,
b"inv": msg_inv,
b"getdata": msg_getdata,
b"getblocks": msg_getblocks,
b"tx": msg_tx,
b"block": msg_block,
b"getaddr": msg_getaddr,
b"ping": msg_ping,
b"pong": msg_pong,
b"headers": msg_headers,
b"getheaders": msg_getheaders,
b"reject": msg_reject,
b"mempool": msg_mempool,
b"feefilter": msg_feefilter,
b"sendheaders": msg_sendheaders,
b"sendcmpct": msg_sendcmpct,
b"cmpctblock": msg_cmpctblock,
b"getblocktxn": msg_getblocktxn,
b"blocktxn": msg_blocktxn
}
MAGIC_BYTES = {
"mainnet": b"\xc0\xc0\xc0\xc0", # mainnet
"testnet3": b"\xfc\xc1\xb7\xdc", # testnet3
"regtest": b"\xfa\xbf\xb5\xda", # regtest
}
def __init__(self, dstaddr, dstport, rpc, callback, net="regtest", services=NODE_NETWORK, send_version=True):
asyncore.dispatcher.__init__(self, map=mininode_socket_map)
self.log = logging.getLogger("NodeConn(%s:%d)" % (dstaddr, dstport))
self.dstaddr = dstaddr
self.dstport = dstport
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.sendbuf = b""
self.recvbuf = b""
self.ver_send = 209
self.ver_recv = 209
self.last_sent = 0
self.state = "connecting"
self.network = net
self.cb = callback
self.disconnect = False
self.nServices = 0
if send_version:
# stuff version msg into sendbuf
vt = msg_version()
vt.nServices = services
vt.addrTo.ip = self.dstaddr
vt.addrTo.port = self.dstport
vt.addrFrom.ip = "0.0.0.0"
vt.addrFrom.port = 0
self.send_message(vt, True)
print('MiniNode: Connecting to Bitcoin Node IP # ' + dstaddr + ':' \
+ str(dstport))
try:
self.connect((dstaddr, dstport))
except:
self.handle_close()
self.rpc = rpc
def show_debug_msg(self, msg):
self.log.debug(msg)
def handle_connect(self):
if self.state != "connected":
self.show_debug_msg("MiniNode: Connected & Listening: \n")
self.state = "connected"
self.cb.on_open(self)
def handle_close(self):
self.show_debug_msg("MiniNode: Closing Connection to %s:%d... "
% (self.dstaddr, self.dstport))
self.state = "closed"
self.recvbuf = b""
self.sendbuf = b""
try:
self.close()
except:
pass
self.cb.on_close(self)
def handle_read(self):
try:
t = self.recv(8192)
if len(t) > 0:
self.recvbuf += t
self.got_data()
else:
self.show_debug_msg("MiniNode: Closing connection to %s:%d after peer disconnect..."
% (self.dstaddr, self.dstport))
self.handle_close()
except:
pass
def readable(self):
return True
def writable(self):
with mininode_lock:
pre_connection = self.state == "connecting"
length = len(self.sendbuf)
return (length > 0 or pre_connection)
def handle_write(self):
with mininode_lock:
# asyncore does not expose socket connection, only the first read/write
# event, thus we must check connection manually here to know when we
# actually connect
if self.state == "connecting":
self.handle_connect()
if not self.writable():
return
try:
sent = self.send(self.sendbuf)
except:
self.handle_close()
return
self.sendbuf = self.sendbuf[sent:]
def got_data(self):
try:
while True:
if len(self.recvbuf) < 4:
return
if self.recvbuf[:4] != self.MAGIC_BYTES[self.network]:
raise ValueError("got garbage %s" % repr(self.recvbuf))
if self.ver_recv < 209:
if len(self.recvbuf) < 4 + 12 + 4:
return
command = self.recvbuf[4:4+12].split(b"\x00", 1)[0]
msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0]
checksum = None
if len(self.recvbuf) < 4 + 12 + 4 + msglen:
return
msg = self.recvbuf[4+12+4:4+12+4+msglen]
self.recvbuf = self.recvbuf[4+12+4+msglen:]
else:
if len(self.recvbuf) < 4 + 12 + 4 + 4:
return
command = self.recvbuf[4:4+12].split(b"\x00", 1)[0]
msglen = struct.unpack("<i", self.recvbuf[4+12:4+12+4])[0]
checksum = self.recvbuf[4+12+4:4+12+4+4]
if len(self.recvbuf) < 4 + 12 + 4 + 4 + msglen:
return
msg = self.recvbuf[4+12+4+4:4+12+4+4+msglen]
th = sha256(msg)
h = sha256(th)
if checksum != h[:4]:
raise ValueError("got bad checksum " + repr(self.recvbuf))
self.recvbuf = self.recvbuf[4+12+4+4+msglen:]
if command in self.messagemap:
f = BytesIO(msg)
t = self.messagemap[command]()
t.deserialize(f)
self.got_message(t)
else:
self.show_debug_msg("Unknown command: '" + command + "' " +
repr(msg))
except Exception as e:
print('got_data:', repr(e))
# import traceback
# traceback.print_tb(sys.exc_info()[2])
def send_message(self, message, pushbuf=False):
if self.state != "connected" and not pushbuf:
raise IOError('Not connected, no pushbuf')
self.show_debug_msg("Send %s" % repr(message))
command = message.command
data = message.serialize()
tmsg = self.MAGIC_BYTES[self.network]
tmsg += command
tmsg += b"\x00" * (12 - len(command))
tmsg += struct.pack("<I", len(data))
if self.ver_send >= 209:
th = sha256(data)
h = sha256(th)
tmsg += h[:4]
tmsg += data
with mininode_lock:
self.sendbuf += tmsg
self.last_sent = time.time()
def got_message(self, message):
if message.command == b"version":
if message.nVersion <= BIP0031_VERSION:
self.messagemap[b'ping'] = msg_ping_prebip31
if self.last_sent + 30 * 60 < time.time():
self.send_message(self.messagemap[b'ping']())
self.show_debug_msg("Recv %s" % repr(message))
self.cb.deliver(self, message)
def disconnect_node(self):
self.disconnect = True
class NetworkThread(Thread):
def run(self):
while mininode_socket_map:
# We check for whether to disconnect outside of the asyncore
# loop to workaround the behavior of asyncore when using
# select
disconnected = []
for fd, obj in mininode_socket_map.items():
if obj.disconnect:
disconnected.append(obj)
[ obj.handle_close() for obj in disconnected ]
asyncore.loop(0.1, use_poll=True, map=mininode_socket_map, count=1)
# An exception we can raise if we detect a potential disconnect
# (p2p or rpc) before the test is complete
class EarlyDisconnectError(Exception):
def __init__(self, value):
self.value = value
def __str__(self):
return repr(self.value)