dogecoin/src/netbase.cpp
Wladimir J. van der Laan 5eaaa83ac1 Kill insecure_random and associated global state
There are only a few uses of `insecure_random` outside the tests.
This PR replaces uses of insecure_random (and its accompanying global
state) in the core code with an FastRandomContext that is automatically
seeded on creation.

This is meant to be used for inner loops. The FastRandomContext
can be in the outer scope, or the class itself, then rand32() is used
inside the loop. Useful e.g. for pushing addresses in CNode or the fee
rounding, or randomization for coin selection.

As a context is created per purpose, thus it gets rid of
cross-thread unprotected shared usage of a single set of globals, this
should also get rid of the potential race conditions.

- I'd say TxMempool::check is not called enough to warrant using a special
  fast random context, this is switched to GetRand() (open for
  discussion...)

- The use of `insecure_rand` in ConnectThroughProxy has been replaced by
  an atomic integer counter. The only goal here is to have a different
  credentials pair for each connection to go on a different Tor circuit,
  it does not need to be random nor unpredictable.

- To avoid having a FastRandomContext on every CNode, the context is
  passed into PushAddress as appropriate.

There remains an insecure_random for test usage in `test_random.h`.
2016-10-17 13:08:35 +02:00

764 lines
24 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifdef HAVE_CONFIG_H
#include "config/bitcoin-config.h"
#endif
#include "netbase.h"
#include "hash.h"
#include "sync.h"
#include "uint256.h"
#include "random.h"
#include "util.h"
#include "utilstrencodings.h"
#ifdef HAVE_GETADDRINFO_A
#include <netdb.h>
#endif
#ifndef WIN32
#if HAVE_INET_PTON
#include <arpa/inet.h>
#endif
#include <fcntl.h>
#endif
#include <boost/algorithm/string/case_conv.hpp> // for to_lower()
#include <boost/algorithm/string/predicate.hpp> // for startswith() and endswith()
#include <boost/thread.hpp>
#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif
// Settings
static proxyType proxyInfo[NET_MAX];
static proxyType nameProxy;
static CCriticalSection cs_proxyInfos;
int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT;
bool fNameLookup = DEFAULT_NAME_LOOKUP;
// Need ample time for negotiation for very slow proxies such as Tor (milliseconds)
static const int SOCKS5_RECV_TIMEOUT = 20 * 1000;
enum Network ParseNetwork(std::string net) {
boost::to_lower(net);
if (net == "ipv4") return NET_IPV4;
if (net == "ipv6") return NET_IPV6;
if (net == "tor" || net == "onion") return NET_TOR;
return NET_UNROUTABLE;
}
std::string GetNetworkName(enum Network net) {
switch(net)
{
case NET_IPV4: return "ipv4";
case NET_IPV6: return "ipv6";
case NET_TOR: return "onion";
default: return "";
}
}
void SplitHostPort(std::string in, int &portOut, std::string &hostOut) {
size_t colon = in.find_last_of(':');
// if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator
bool fHaveColon = colon != in.npos;
bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe
bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos);
if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) {
int32_t n;
if (ParseInt32(in.substr(colon + 1), &n) && n > 0 && n < 0x10000) {
in = in.substr(0, colon);
portOut = n;
}
}
if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']')
hostOut = in.substr(1, in.size()-2);
else
hostOut = in;
}
bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
vIP.clear();
{
CNetAddr addr;
if (addr.SetSpecial(std::string(pszName))) {
vIP.push_back(addr);
return true;
}
}
#ifdef HAVE_GETADDRINFO_A
struct in_addr ipv4_addr;
#ifdef HAVE_INET_PTON
if (inet_pton(AF_INET, pszName, &ipv4_addr) > 0) {
vIP.push_back(CNetAddr(ipv4_addr));
return true;
}
struct in6_addr ipv6_addr;
if (inet_pton(AF_INET6, pszName, &ipv6_addr) > 0) {
vIP.push_back(CNetAddr(ipv6_addr));
return true;
}
#else
ipv4_addr.s_addr = inet_addr(pszName);
if (ipv4_addr.s_addr != INADDR_NONE) {
vIP.push_back(CNetAddr(ipv4_addr));
return true;
}
#endif
#endif
struct addrinfo aiHint;
memset(&aiHint, 0, sizeof(struct addrinfo));
aiHint.ai_socktype = SOCK_STREAM;
aiHint.ai_protocol = IPPROTO_TCP;
aiHint.ai_family = AF_UNSPEC;
#ifdef WIN32
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
#else
aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST;
#endif
struct addrinfo *aiRes = NULL;
#ifdef HAVE_GETADDRINFO_A
struct gaicb gcb, *query = &gcb;
memset(query, 0, sizeof(struct gaicb));
gcb.ar_name = pszName;
gcb.ar_request = &aiHint;
int nErr = getaddrinfo_a(GAI_NOWAIT, &query, 1, NULL);
if (nErr)
return false;
do {
// Should set the timeout limit to a reasonable value to avoid
// generating unnecessary checking call during the polling loop,
// while it can still response to stop request quick enough.
// 2 seconds looks fine in our situation.
struct timespec ts = { 2, 0 };
gai_suspend(&query, 1, &ts);
boost::this_thread::interruption_point();
nErr = gai_error(query);
if (0 == nErr)
aiRes = query->ar_result;
} while (nErr == EAI_INPROGRESS);
#else
int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
#endif
if (nErr)
return false;
struct addrinfo *aiTrav = aiRes;
while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
{
if (aiTrav->ai_family == AF_INET)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
}
if (aiTrav->ai_family == AF_INET6)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
struct sockaddr_in6* s6 = (struct sockaddr_in6*) aiTrav->ai_addr;
vIP.push_back(CNetAddr(s6->sin6_addr, s6->sin6_scope_id));
}
aiTrav = aiTrav->ai_next;
}
freeaddrinfo(aiRes);
return (vIP.size() > 0);
}
bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
std::string strHost(pszName);
if (strHost.empty())
return false;
if (boost::algorithm::starts_with(strHost, "[") && boost::algorithm::ends_with(strHost, "]"))
{
strHost = strHost.substr(1, strHost.size() - 2);
}
return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup);
}
bool LookupHost(const char *pszName, CNetAddr& addr, bool fAllowLookup)
{
std::vector<CNetAddr> vIP;
LookupHost(pszName, vIP, 1, fAllowLookup);
if(vIP.empty())
return false;
addr = vIP.front();
return true;
}
bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions)
{
if (pszName[0] == 0)
return false;
int port = portDefault;
std::string hostname = "";
SplitHostPort(std::string(pszName), port, hostname);
std::vector<CNetAddr> vIP;
bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup);
if (!fRet)
return false;
vAddr.resize(vIP.size());
for (unsigned int i = 0; i < vIP.size(); i++)
vAddr[i] = CService(vIP[i], port);
return true;
}
bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup)
{
std::vector<CService> vService;
bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1);
if (!fRet)
return false;
addr = vService[0];
return true;
}
CService LookupNumeric(const char *pszName, int portDefault)
{
CService addr;
// "1.2:345" will fail to resolve the ip, but will still set the port.
// If the ip fails to resolve, re-init the result.
if(!Lookup(pszName, addr, portDefault, false))
addr = CService();
return addr;
}
struct timeval MillisToTimeval(int64_t nTimeout)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
return timeout;
}
/**
* Read bytes from socket. This will either read the full number of bytes requested
* or return False on error or timeout.
* This function can be interrupted by boost thread interrupt.
*
* @param data Buffer to receive into
* @param len Length of data to receive
* @param timeout Timeout in milliseconds for receive operation
*
* @note This function requires that hSocket is in non-blocking mode.
*/
bool static InterruptibleRecv(char* data, size_t len, int timeout, SOCKET& hSocket)
{
int64_t curTime = GetTimeMillis();
int64_t endTime = curTime + timeout;
// Maximum time to wait in one select call. It will take up until this time (in millis)
// to break off in case of an interruption.
const int64_t maxWait = 1000;
while (len > 0 && curTime < endTime) {
ssize_t ret = recv(hSocket, data, len, 0); // Optimistically try the recv first
if (ret > 0) {
len -= ret;
data += ret;
} else if (ret == 0) { // Unexpected disconnection
return false;
} else { // Other error or blocking
int nErr = WSAGetLastError();
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) {
if (!IsSelectableSocket(hSocket)) {
return false;
}
struct timeval tval = MillisToTimeval(std::min(endTime - curTime, maxWait));
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, &fdset, NULL, NULL, &tval);
if (nRet == SOCKET_ERROR) {
return false;
}
} else {
return false;
}
}
boost::this_thread::interruption_point();
curTime = GetTimeMillis();
}
return len == 0;
}
struct ProxyCredentials
{
std::string username;
std::string password;
};
std::string Socks5ErrorString(int err)
{
switch(err) {
case 0x01: return "general failure";
case 0x02: return "connection not allowed";
case 0x03: return "network unreachable";
case 0x04: return "host unreachable";
case 0x05: return "connection refused";
case 0x06: return "TTL expired";
case 0x07: return "protocol error";
case 0x08: return "address type not supported";
default: return "unknown";
}
}
/** Connect using SOCKS5 (as described in RFC1928) */
static bool Socks5(const std::string& strDest, int port, const ProxyCredentials *auth, SOCKET& hSocket)
{
LogPrint("net", "SOCKS5 connecting %s\n", strDest);
if (strDest.size() > 255) {
CloseSocket(hSocket);
return error("Hostname too long");
}
// Accepted authentication methods
std::vector<uint8_t> vSocks5Init;
vSocks5Init.push_back(0x05);
if (auth) {
vSocks5Init.push_back(0x02); // # METHODS
vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED
vSocks5Init.push_back(0x02); // X'02' USERNAME/PASSWORD (RFC1929)
} else {
vSocks5Init.push_back(0x01); // # METHODS
vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED
}
ssize_t ret = send(hSocket, (const char*)begin_ptr(vSocks5Init), vSocks5Init.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5Init.size()) {
CloseSocket(hSocket);
return error("Error sending to proxy");
}
char pchRet1[2];
if (!InterruptibleRecv(pchRet1, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
LogPrintf("Socks5() connect to %s:%d failed: InterruptibleRecv() timeout or other failure\n", strDest, port);
return false;
}
if (pchRet1[0] != 0x05) {
CloseSocket(hSocket);
return error("Proxy failed to initialize");
}
if (pchRet1[1] == 0x02 && auth) {
// Perform username/password authentication (as described in RFC1929)
std::vector<uint8_t> vAuth;
vAuth.push_back(0x01);
if (auth->username.size() > 255 || auth->password.size() > 255)
return error("Proxy username or password too long");
vAuth.push_back(auth->username.size());
vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end());
vAuth.push_back(auth->password.size());
vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end());
ret = send(hSocket, (const char*)begin_ptr(vAuth), vAuth.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vAuth.size()) {
CloseSocket(hSocket);
return error("Error sending authentication to proxy");
}
LogPrint("proxy", "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password);
char pchRetA[2];
if (!InterruptibleRecv(pchRetA, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
return error("Error reading proxy authentication response");
}
if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) {
CloseSocket(hSocket);
return error("Proxy authentication unsuccessful");
}
} else if (pchRet1[1] == 0x00) {
// Perform no authentication
} else {
CloseSocket(hSocket);
return error("Proxy requested wrong authentication method %02x", pchRet1[1]);
}
std::vector<uint8_t> vSocks5;
vSocks5.push_back(0x05); // VER protocol version
vSocks5.push_back(0x01); // CMD CONNECT
vSocks5.push_back(0x00); // RSV Reserved
vSocks5.push_back(0x03); // ATYP DOMAINNAME
vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function
vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end());
vSocks5.push_back((port >> 8) & 0xFF);
vSocks5.push_back((port >> 0) & 0xFF);
ret = send(hSocket, (const char*)begin_ptr(vSocks5), vSocks5.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5.size()) {
CloseSocket(hSocket);
return error("Error sending to proxy");
}
char pchRet2[4];
if (!InterruptibleRecv(pchRet2, 4, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet2[0] != 0x05) {
CloseSocket(hSocket);
return error("Proxy failed to accept request");
}
if (pchRet2[1] != 0x00) {
// Failures to connect to a peer that are not proxy errors
CloseSocket(hSocket);
LogPrintf("Socks5() connect to %s:%d failed: %s\n", strDest, port, Socks5ErrorString(pchRet2[1]));
return false;
}
if (pchRet2[2] != 0x00) {
CloseSocket(hSocket);
return error("Error: malformed proxy response");
}
char pchRet3[256];
switch (pchRet2[3])
{
case 0x01: ret = InterruptibleRecv(pchRet3, 4, SOCKS5_RECV_TIMEOUT, hSocket); break;
case 0x04: ret = InterruptibleRecv(pchRet3, 16, SOCKS5_RECV_TIMEOUT, hSocket); break;
case 0x03:
{
ret = InterruptibleRecv(pchRet3, 1, SOCKS5_RECV_TIMEOUT, hSocket);
if (!ret) {
CloseSocket(hSocket);
return error("Error reading from proxy");
}
int nRecv = pchRet3[0];
ret = InterruptibleRecv(pchRet3, nRecv, SOCKS5_RECV_TIMEOUT, hSocket);
break;
}
default: CloseSocket(hSocket); return error("Error: malformed proxy response");
}
if (!ret) {
CloseSocket(hSocket);
return error("Error reading from proxy");
}
if (!InterruptibleRecv(pchRet3, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
CloseSocket(hSocket);
return error("Error reading from proxy");
}
LogPrint("net", "SOCKS5 connected %s\n", strDest);
return true;
}
bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout)
{
hSocketRet = INVALID_SOCKET;
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString());
return false;
}
SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET)
return false;
int set = 1;
#ifdef SO_NOSIGPIPE
// Different way of disabling SIGPIPE on BSD
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
//Disable Nagle's algorithm
#ifdef WIN32
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
#else
setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int));
#endif
// Set to non-blocking
if (!SetSocketNonBlocking(hSocket, true))
return error("ConnectSocketDirectly: Setting socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
{
int nErr = WSAGetLastError();
// WSAEINVAL is here because some legacy version of winsock uses it
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL)
{
struct timeval timeout = MillisToTimeval(nTimeout);
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
if (nRet == 0)
{
LogPrint("net", "connection to %s timeout\n", addrConnect.ToString());
CloseSocket(hSocket);
return false;
}
if (nRet == SOCKET_ERROR)
{
LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
{
LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
if (nRet != 0)
{
LogPrintf("connect() to %s failed after select(): %s\n", addrConnect.ToString(), NetworkErrorString(nRet));
CloseSocket(hSocket);
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
LogPrintf("connect() to %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
CloseSocket(hSocket);
return false;
}
}
hSocketRet = hSocket;
return true;
}
bool SetProxy(enum Network net, const proxyType &addrProxy) {
assert(net >= 0 && net < NET_MAX);
if (!addrProxy.IsValid())
return false;
LOCK(cs_proxyInfos);
proxyInfo[net] = addrProxy;
return true;
}
bool GetProxy(enum Network net, proxyType &proxyInfoOut) {
assert(net >= 0 && net < NET_MAX);
LOCK(cs_proxyInfos);
if (!proxyInfo[net].IsValid())
return false;
proxyInfoOut = proxyInfo[net];
return true;
}
bool SetNameProxy(const proxyType &addrProxy) {
if (!addrProxy.IsValid())
return false;
LOCK(cs_proxyInfos);
nameProxy = addrProxy;
return true;
}
bool GetNameProxy(proxyType &nameProxyOut) {
LOCK(cs_proxyInfos);
if(!nameProxy.IsValid())
return false;
nameProxyOut = nameProxy;
return true;
}
bool HaveNameProxy() {
LOCK(cs_proxyInfos);
return nameProxy.IsValid();
}
bool IsProxy(const CNetAddr &addr) {
LOCK(cs_proxyInfos);
for (int i = 0; i < NET_MAX; i++) {
if (addr == (CNetAddr)proxyInfo[i].proxy)
return true;
}
return false;
}
static bool ConnectThroughProxy(const proxyType &proxy, const std::string& strDest, int port, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed)
{
SOCKET hSocket = INVALID_SOCKET;
// first connect to proxy server
if (!ConnectSocketDirectly(proxy.proxy, hSocket, nTimeout)) {
if (outProxyConnectionFailed)
*outProxyConnectionFailed = true;
return false;
}
// do socks negotiation
if (proxy.randomize_credentials) {
ProxyCredentials random_auth;
static std::atomic_int counter;
random_auth.username = random_auth.password = strprintf("%i", counter++);
if (!Socks5(strDest, (unsigned short)port, &random_auth, hSocket))
return false;
} else {
if (!Socks5(strDest, (unsigned short)port, 0, hSocket))
return false;
}
hSocketRet = hSocket;
return true;
}
bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed)
{
proxyType proxy;
if (outProxyConnectionFailed)
*outProxyConnectionFailed = false;
if (GetProxy(addrDest.GetNetwork(), proxy))
return ConnectThroughProxy(proxy, addrDest.ToStringIP(), addrDest.GetPort(), hSocketRet, nTimeout, outProxyConnectionFailed);
else // no proxy needed (none set for target network)
return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout);
}
bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout, bool *outProxyConnectionFailed)
{
std::string strDest;
int port = portDefault;
if (outProxyConnectionFailed)
*outProxyConnectionFailed = false;
SplitHostPort(std::string(pszDest), port, strDest);
proxyType proxy;
GetNameProxy(proxy);
std::vector<CService> addrResolved;
if (Lookup(strDest.c_str(), addrResolved, port, fNameLookup && !HaveNameProxy(), 256)) {
if (addrResolved.size() > 0) {
addr = addrResolved[GetRand(addrResolved.size())];
return ConnectSocket(addr, hSocketRet, nTimeout);
}
}
addr = CService();
if (!HaveNameProxy())
return false;
return ConnectThroughProxy(proxy, strDest, port, hSocketRet, nTimeout, outProxyConnectionFailed);
}
bool LookupSubNet(const char* pszName, CSubNet& ret)
{
std::string strSubnet(pszName);
size_t slash = strSubnet.find_last_of('/');
std::vector<CNetAddr> vIP;
std::string strAddress = strSubnet.substr(0, slash);
if (LookupHost(strAddress.c_str(), vIP, 1, false))
{
CNetAddr network = vIP[0];
if (slash != strSubnet.npos)
{
std::string strNetmask = strSubnet.substr(slash + 1);
int32_t n;
// IPv4 addresses start at offset 12, and first 12 bytes must match, so just offset n
if (ParseInt32(strNetmask, &n)) { // If valid number, assume /24 syntax
ret = CSubNet(network, n);
return ret.IsValid();
}
else // If not a valid number, try full netmask syntax
{
// Never allow lookup for netmask
if (LookupHost(strNetmask.c_str(), vIP, 1, false)) {
ret = CSubNet(network, vIP[0]);
return ret.IsValid();
}
}
}
else
{
ret = CSubNet(network);
return ret.IsValid();
}
}
return false;
}
#ifdef WIN32
std::string NetworkErrorString(int err)
{
char buf[256];
buf[0] = 0;
if(FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
buf, sizeof(buf), NULL))
{
return strprintf("%s (%d)", buf, err);
}
else
{
return strprintf("Unknown error (%d)", err);
}
}
#else
std::string NetworkErrorString(int err)
{
char buf[256];
const char *s = buf;
buf[0] = 0;
/* Too bad there are two incompatible implementations of the
* thread-safe strerror. */
#ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */
s = strerror_r(err, buf, sizeof(buf));
#else /* POSIX variant always returns message in buffer */
if (strerror_r(err, buf, sizeof(buf)))
buf[0] = 0;
#endif
return strprintf("%s (%d)", s, err);
}
#endif
bool CloseSocket(SOCKET& hSocket)
{
if (hSocket == INVALID_SOCKET)
return false;
#ifdef WIN32
int ret = closesocket(hSocket);
#else
int ret = close(hSocket);
#endif
hSocket = INVALID_SOCKET;
return ret != SOCKET_ERROR;
}
bool SetSocketNonBlocking(SOCKET& hSocket, bool fNonBlocking)
{
if (fNonBlocking) {
#ifdef WIN32
u_long nOne = 1;
if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) {
#endif
CloseSocket(hSocket);
return false;
}
} else {
#ifdef WIN32
u_long nZero = 0;
if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) {
#endif
CloseSocket(hSocket);
return false;
}
}
return true;
}