dogecoin/src/crypto/scrypt.cpp

260 lines
7.6 KiB
C++

/*
* Copyright 2009 Colin Percival, 2011 ArtForz, 2012-2013 pooler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "crypto/scrypt.h"
#include "crypto/hmac_sha256.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <openssl/sha.h>
#if defined(USE_SSE2) && !defined(USE_SSE2_ALWAYS)
#ifdef _MSC_VER
// MSVC 64bit is unable to use inline asm
#include <intrin.h>
#else
// GCC Linux or i686-w64-mingw32
#include <cpuid.h>
#endif
#endif
static inline uint32_t be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void be32enc(void *pp, uint32_t x)
{
uint8_t *p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
*/
void
PBKDF2_SHA256(const uint8_t *passwd, size_t passwdlen, const uint8_t *salt,
size_t saltlen, uint64_t c, uint8_t *buf, size_t dkLen)
{
CHMAC_SHA256 baseCtx = CHMAC_SHA256(passwd, passwdlen);
CHMAC_SHA256 PShctx = CHMAC_SHA256(passwd, passwdlen);
CHMAC_SHA256 hctx = CHMAC_SHA256(passwd, passwdlen);
size_t i;
uint8_t ivec[4];
uint8_t U[CHMAC_SHA256::OUTPUT_SIZE];
uint8_t T[CHMAC_SHA256::OUTPUT_SIZE];
uint64_t j;
unsigned int k;
size_t clen;
/* Compute HMAC state after processing P and S. */
PShctx.Write(salt, saltlen);
/* Iterate through the blocks. */
for (i = 0; i * 32 < dkLen; i++) {
/* Generate INT(i + 1). */
be32enc(ivec, (uint32_t)(i + 1));
/* Compute U_1 = PRF(P, S || INT(i)). */
PShctx.Copy(&hctx);
hctx.Write(ivec, 4);
hctx.Finalize(U);
/* T_i = U_1 ... */
memcpy(T, U, CHMAC_SHA256::OUTPUT_SIZE);
for (j = 2; j <= c; j++) {
/* Compute U_j. */
baseCtx.Copy(&hctx);
hctx.Write(U, CHMAC_SHA256::OUTPUT_SIZE);
hctx.Finalize(U);
/* ... xor U_j ... */
for (k = 0; k < CHMAC_SHA256::OUTPUT_SIZE; k++)
T[k] ^= U[k];
}
/* Copy as many bytes as necessary into buf. */
clen = dkLen - i * CHMAC_SHA256::OUTPUT_SIZE;
if (clen > CHMAC_SHA256::OUTPUT_SIZE)
clen = CHMAC_SHA256::OUTPUT_SIZE;
memcpy(&buf[i * CHMAC_SHA256::OUTPUT_SIZE], T, clen);
}
}
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
static inline void xor_salsa8(uint32_t B[16], const uint32_t Bx[16])
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
int i;
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
/* Operate on columns. */
x04 ^= ROTL(x00 + x12, 7); x09 ^= ROTL(x05 + x01, 7);
x14 ^= ROTL(x10 + x06, 7); x03 ^= ROTL(x15 + x11, 7);
x08 ^= ROTL(x04 + x00, 9); x13 ^= ROTL(x09 + x05, 9);
x02 ^= ROTL(x14 + x10, 9); x07 ^= ROTL(x03 + x15, 9);
x12 ^= ROTL(x08 + x04, 13); x01 ^= ROTL(x13 + x09, 13);
x06 ^= ROTL(x02 + x14, 13); x11 ^= ROTL(x07 + x03, 13);
x00 ^= ROTL(x12 + x08, 18); x05 ^= ROTL(x01 + x13, 18);
x10 ^= ROTL(x06 + x02, 18); x15 ^= ROTL(x11 + x07, 18);
/* Operate on rows. */
x01 ^= ROTL(x00 + x03, 7); x06 ^= ROTL(x05 + x04, 7);
x11 ^= ROTL(x10 + x09, 7); x12 ^= ROTL(x15 + x14, 7);
x02 ^= ROTL(x01 + x00, 9); x07 ^= ROTL(x06 + x05, 9);
x08 ^= ROTL(x11 + x10, 9); x13 ^= ROTL(x12 + x15, 9);
x03 ^= ROTL(x02 + x01, 13); x04 ^= ROTL(x07 + x06, 13);
x09 ^= ROTL(x08 + x11, 13); x14 ^= ROTL(x13 + x12, 13);
x00 ^= ROTL(x03 + x02, 18); x05 ^= ROTL(x04 + x07, 18);
x10 ^= ROTL(x09 + x08, 18); x15 ^= ROTL(x14 + x13, 18);
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
void scrypt_1024_1_1_256_sp_generic(const char *input, char *output, char *scratchpad)
{
uint8_t B[128];
uint32_t X[32];
uint32_t *V;
uint32_t i, j, k;
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256((const uint8_t *)input, 80, (const uint8_t *)input, 80, 1, B, 128);
for (k = 0; k < 32; k++)
X[k] = le32dec(&B[4 * k]);
for (i = 0; i < 1024; i++) {
memcpy(&V[i * 32], X, 128);
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (i = 0; i < 1024; i++) {
j = 32 * (X[16] & 1023);
for (k = 0; k < 32; k++)
X[k] ^= V[j + k];
xor_salsa8(&X[0], &X[16]);
xor_salsa8(&X[16], &X[0]);
}
for (k = 0; k < 32; k++)
le32enc(&B[4 * k], X[k]);
PBKDF2_SHA256((const uint8_t *)input, 80, B, 128, 1, (uint8_t *)output, 32);
}
#if defined(USE_SSE2)
// By default, set to generic scrypt function. This will prevent crash in case when scrypt_detect_sse2() wasn't called
void (*scrypt_1024_1_1_256_sp_detected)(const char *input, char *output, char *scratchpad) = &scrypt_1024_1_1_256_sp_generic;
void scrypt_detect_sse2()
{
#if defined(USE_SSE2_ALWAYS)
printf("scrypt: using scrypt-sse2 as built.\n");
#else // USE_SSE2_ALWAYS
// 32bit x86 Linux or Windows, detect cpuid features
unsigned int cpuid_edx=0;
#if defined(_MSC_VER)
// MSVC
int x86cpuid[4];
__cpuid(x86cpuid, 1);
cpuid_edx = (unsigned int)buffer[3];
#else // _MSC_VER
// Linux or i686-w64-mingw32 (gcc-4.6.3)
unsigned int eax, ebx, ecx;
__get_cpuid(1, &eax, &ebx, &ecx, &cpuid_edx);
#endif // _MSC_VER
if (cpuid_edx & 1<<26)
{
scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_sse2;
printf("scrypt: using scrypt-sse2 as detected.\n");
}
else
{
scrypt_1024_1_1_256_sp_detected = &scrypt_1024_1_1_256_sp_generic;
printf("scrypt: using scrypt-generic, SSE2 unavailable.\n");
}
#endif // USE_SSE2_ALWAYS
}
#endif
void scrypt_1024_1_1_256(const char *input, char *output)
{
char scratchpad[SCRYPT_SCRATCHPAD_SIZE];
scrypt_1024_1_1_256_sp(input, output, scratchpad);
}