dogecoin/src/chain.cpp
Shibe ef9242b9ec Don't re-check AuxPoW when sending data to peers
Checking scrypt PoW is expensive and needless in this case. All block
headers are already checked when they are accepted, and they will be
checked again on the receiving end.
2021-02-08 16:52:55 +04:00

180 lines
5.7 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "chain.h"
#include "validation.h"
using namespace std;
/* Moved here from the header, because we need auxpow and the logic
becomes more involved. */
CBlockHeader CBlockIndex::GetBlockHeader(const Consensus::Params& consensusParams, bool fCheckPOW) const
{
CBlockHeader block;
block.nVersion = nVersion;
/* The CBlockIndex object's block header is missing the auxpow.
So if this is an auxpow block, read it from disk instead. We only
have to read the actual *header*, not the full block. */
if (block.IsAuxpow())
{
ReadBlockHeaderFromDisk(block, this, consensusParams, fCheckPOW);
return block;
}
if (pprev)
block.hashPrevBlock = pprev->GetBlockHash();
block.hashMerkleRoot = hashMerkleRoot;
block.nTime = nTime;
block.nBits = nBits;
block.nNonce = nNonce;
return block;
}
/**
* CChain implementation
*/
void CChain::SetTip(CBlockIndex *pindex) {
if (pindex == NULL) {
vChain.clear();
return;
}
vChain.resize(pindex->nHeight + 1);
while (pindex && vChain[pindex->nHeight] != pindex) {
vChain[pindex->nHeight] = pindex;
pindex = pindex->pprev;
}
}
CBlockLocator CChain::GetLocator(const CBlockIndex *pindex) const {
int nStep = 1;
std::vector<uint256> vHave;
vHave.reserve(32);
if (!pindex)
pindex = Tip();
while (pindex) {
vHave.push_back(pindex->GetBlockHash());
// Stop when we have added the genesis block.
if (pindex->nHeight == 0)
break;
// Exponentially larger steps back, plus the genesis block.
int nHeight = std::max(pindex->nHeight - nStep, 0);
if (Contains(pindex)) {
// Use O(1) CChain index if possible.
pindex = (*this)[nHeight];
} else {
// Otherwise, use O(log n) skiplist.
pindex = pindex->GetAncestor(nHeight);
}
if (vHave.size() > 10)
nStep *= 2;
}
return CBlockLocator(vHave);
}
const CBlockIndex *CChain::FindFork(const CBlockIndex *pindex) const {
if (pindex == NULL) {
return NULL;
}
if (pindex->nHeight > Height())
pindex = pindex->GetAncestor(Height());
while (pindex && !Contains(pindex))
pindex = pindex->pprev;
return pindex;
}
CBlockIndex* CChain::FindEarliestAtLeast(int64_t nTime) const
{
std::vector<CBlockIndex*>::const_iterator lower = std::lower_bound(vChain.begin(), vChain.end(), nTime,
[](CBlockIndex* pBlock, const int64_t& time) -> bool { return pBlock->GetBlockTimeMax() < time; });
return (lower == vChain.end() ? NULL : *lower);
}
/** Turn the lowest '1' bit in the binary representation of a number into a '0'. */
int static inline InvertLowestOne(int n) { return n & (n - 1); }
/** Compute what height to jump back to with the CBlockIndex::pskip pointer. */
int static inline GetSkipHeight(int height) {
if (height < 2)
return 0;
// Determine which height to jump back to. Any number strictly lower than height is acceptable,
// but the following expression seems to perform well in simulations (max 110 steps to go back
// up to 2**18 blocks).
return (height & 1) ? InvertLowestOne(InvertLowestOne(height - 1)) + 1 : InvertLowestOne(height);
}
CBlockIndex* CBlockIndex::GetAncestor(int height)
{
if (height > nHeight || height < 0)
return NULL;
CBlockIndex* pindexWalk = this;
int heightWalk = nHeight;
while (heightWalk > height) {
int heightSkip = GetSkipHeight(heightWalk);
int heightSkipPrev = GetSkipHeight(heightWalk - 1);
if (pindexWalk->pskip != NULL &&
(heightSkip == height ||
(heightSkip > height && !(heightSkipPrev < heightSkip - 2 &&
heightSkipPrev >= height)))) {
// Only follow pskip if pprev->pskip isn't better than pskip->pprev.
pindexWalk = pindexWalk->pskip;
heightWalk = heightSkip;
} else {
assert(pindexWalk->pprev);
pindexWalk = pindexWalk->pprev;
heightWalk--;
}
}
return pindexWalk;
}
const CBlockIndex* CBlockIndex::GetAncestor(int height) const
{
return const_cast<CBlockIndex*>(this)->GetAncestor(height);
}
void CBlockIndex::BuildSkip()
{
if (pprev)
pskip = pprev->GetAncestor(GetSkipHeight(nHeight));
}
arith_uint256 GetBlockProof(const CBlockIndex& block)
{
arith_uint256 bnTarget;
bool fNegative;
bool fOverflow;
bnTarget.SetCompact(block.nBits, &fNegative, &fOverflow);
if (fNegative || fOverflow || bnTarget == 0)
return 0;
// We need to compute 2**256 / (bnTarget+1), but we can't represent 2**256
// as it's too large for a arith_uint256. However, as 2**256 is at least as large
// as bnTarget+1, it is equal to ((2**256 - bnTarget - 1) / (bnTarget+1)) + 1,
// or ~bnTarget / (nTarget+1) + 1.
return (~bnTarget / (bnTarget + 1)) + 1;
}
int64_t GetBlockProofEquivalentTime(const CBlockIndex& to, const CBlockIndex& from, const CBlockIndex& tip, const Consensus::Params& params)
{
arith_uint256 r;
int sign = 1;
if (to.nChainWork > from.nChainWork) {
r = to.nChainWork - from.nChainWork;
} else {
r = from.nChainWork - to.nChainWork;
sign = -1;
}
r = r * arith_uint256(params.nPowTargetSpacing) / GetBlockProof(tip);
if (r.bits() > 63) {
return sign * std::numeric_limits<int64_t>::max();
}
return sign * r.GetLow64();
}