/*************************************************************************/ /* marshalls.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "marshalls.h" #include "os/keyboard.h" #include "print_string.h" #include #include #define _S(a) ((int32_t)a) #define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(_S(b) < 0 || _S(a) < 0 || _S(a) > INT_MAX - _S(b), err) #define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(_S(a) < 0 || _S(b) <= 0 || _S(a) > INT_MAX / _S(b), err) static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t strlen = decode_uint32(buf); int32_t pad = 0; // Handle padding if (strlen % 4) { pad = 4 - strlen % 4; } buf += 4; len -= 4; // Ensure buffer is big enough ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF); ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF); String str; ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen), ERR_INVALID_DATA); r_string = str; // Add padding strlen += pad; // Update buffer pos, left data count, and return size buf += strlen; len -= strlen; if (r_len) { (*r_len) += 4 + strlen; } return OK; } Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len) { const uint8_t *buf = p_buffer; int len = p_len; if (len < 4) { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); } uint32_t type = decode_uint32(buf); ERR_FAIL_COND_V(type >= Variant::VARIANT_MAX, ERR_INVALID_DATA); buf += 4; len -= 4; if (r_len) *r_len = 4; switch (type) { case Variant::NIL: { r_variant = Variant(); } break; case Variant::BOOL: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); bool val = decode_uint32(buf); r_variant = val; if (r_len) (*r_len) += 4; } break; case Variant::INT: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t val = decode_uint32(buf); r_variant = val; if (r_len) (*r_len) += 4; } break; case Variant::REAL: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); float val = decode_float(buf); r_variant = val; if (r_len) (*r_len) += 4; } break; case Variant::STRING: { String str; Error err = _decode_string(buf, len, r_len, str); if (err) return err; r_variant = str; } break; // math types case Variant::VECTOR2: { ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA); Vector2 val; val.x = decode_float(&buf[0]); val.y = decode_float(&buf[4]); r_variant = val; if (r_len) (*r_len) += 4 * 2; } break; // 5 case Variant::RECT2: { ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA); Rect2 val; val.pos.x = decode_float(&buf[0]); val.pos.y = decode_float(&buf[4]); val.size.x = decode_float(&buf[8]); val.size.y = decode_float(&buf[12]); r_variant = val; if (r_len) (*r_len) += 4 * 4; } break; case Variant::VECTOR3: { ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA); Vector3 val; val.x = decode_float(&buf[0]); val.y = decode_float(&buf[4]); val.z = decode_float(&buf[8]); r_variant = val; if (r_len) (*r_len) += 4 * 3; } break; case Variant::MATRIX32: { ERR_FAIL_COND_V(len < 4 * 6, ERR_INVALID_DATA); Matrix32 val; for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { val.elements[i][j] = decode_float(&buf[(i * 2 + j) * 4]); } } r_variant = val; if (r_len) (*r_len) += 4 * 6; } break; case Variant::PLANE: { ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA); Plane val; val.normal.x = decode_float(&buf[0]); val.normal.y = decode_float(&buf[4]); val.normal.z = decode_float(&buf[8]); val.d = decode_float(&buf[12]); r_variant = val; if (r_len) (*r_len) += 4 * 4; } break; case Variant::QUAT: { ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA); Quat val; val.x = decode_float(&buf[0]); val.y = decode_float(&buf[4]); val.z = decode_float(&buf[8]); val.w = decode_float(&buf[12]); r_variant = val; if (r_len) (*r_len) += 4 * 4; } break; case Variant::_AABB: { ERR_FAIL_COND_V(len < 4 * 6, ERR_INVALID_DATA); AABB val; val.pos.x = decode_float(&buf[0]); val.pos.y = decode_float(&buf[4]); val.pos.z = decode_float(&buf[8]); val.size.x = decode_float(&buf[12]); val.size.y = decode_float(&buf[16]); val.size.z = decode_float(&buf[20]); r_variant = val; if (r_len) (*r_len) += 4 * 6; } break; case Variant::MATRIX3: { ERR_FAIL_COND_V(len < 4 * 9, ERR_INVALID_DATA); Matrix3 val; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { val.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]); } } r_variant = val; if (r_len) (*r_len) += 4 * 9; } break; case Variant::TRANSFORM: { ERR_FAIL_COND_V(len < 4 * 12, ERR_INVALID_DATA); Transform val; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { val.basis.elements[i][j] = decode_float(&buf[(i * 3 + j) * 4]); } } val.origin[0] = decode_float(&buf[36]); val.origin[1] = decode_float(&buf[40]); val.origin[2] = decode_float(&buf[44]); r_variant = val; if (r_len) (*r_len) += 4 * 12; } break; // misc types case Variant::COLOR: { ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA); Color val; val.r = decode_float(&buf[0]); val.g = decode_float(&buf[4]); val.b = decode_float(&buf[8]); val.a = decode_float(&buf[12]); r_variant = val; if (r_len) (*r_len) += 4 * 4; } break; case Variant::IMAGE: { ERR_FAIL_COND_V(len < 5 * 4, ERR_INVALID_DATA); Image::Format fmt = (Image::Format)decode_uint32(&buf[0]); ERR_FAIL_INDEX_V(fmt, Image::FORMAT_MAX, ERR_INVALID_DATA); uint32_t mipmaps = decode_uint32(&buf[4]); uint32_t w = decode_uint32(&buf[8]); uint32_t h = decode_uint32(&buf[12]); int32_t datalen = decode_uint32(&buf[16]); Image img; if (datalen > 0) { len -= 5 * 4; ERR_FAIL_COND_V(len < datalen, ERR_INVALID_DATA); DVector data; data.resize(datalen); DVector::Write wr = data.write(); copymem(&wr[0], &buf[20], datalen); wr = DVector::Write(); img = Image(w, h, mipmaps, fmt, data); } r_variant = img; if (r_len) { if (datalen % 4) (*r_len) += 4 - datalen % 4; (*r_len) += 4 * 5 + datalen; } } break; case Variant::NODE_PATH: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t strlen = decode_uint32(buf); if (strlen & 0x80000000) { //new format ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA); Vector names; Vector subnames; StringName prop; uint32_t namecount = strlen &= 0x7FFFFFFF; uint32_t subnamecount = decode_uint32(buf + 4); uint32_t flags = decode_uint32(buf + 8); len -= 12; buf += 12; int total = namecount + subnamecount; if (flags & 2) total++; if (r_len) (*r_len) += 12; for (uint32_t i = 0; i < total; i++) { String str; Error err = _decode_string(buf, len, r_len, str); if (err) return err; if (i < namecount) names.push_back(str); else if (i < namecount + subnamecount) subnames.push_back(str); else prop = str; } r_variant = NodePath(names, subnames, flags & 1, prop); } else { //old format, just a string ERR_FAIL_V(ERR_INVALID_DATA); } } break; /*case Variant::RESOURCE: { ERR_EXPLAIN("Can't marshallize resources"); ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go } break;*/ case Variant::_RID: { r_variant = RID(); } break; case Variant::OBJECT: { r_variant = (Object *)NULL; } break; case Variant::INPUT_EVENT: { ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA); InputEvent ie; ie.type = decode_uint32(&buf[0]); ie.device = decode_uint32(&buf[4]); if (r_len) (*r_len) += 12; switch (ie.type) { case InputEvent::KEY: { ERR_FAIL_COND_V(len < 20, ERR_INVALID_DATA); uint32_t mods = decode_uint32(&buf[12]); if (mods & KEY_MASK_SHIFT) ie.key.mod.shift = true; if (mods & KEY_MASK_CTRL) ie.key.mod.control = true; if (mods & KEY_MASK_ALT) ie.key.mod.alt = true; if (mods & KEY_MASK_META) ie.key.mod.meta = true; ie.key.scancode = decode_uint32(&buf[16]); if (r_len) (*r_len) += 8; } break; case InputEvent::MOUSE_BUTTON: { ERR_FAIL_COND_V(len < 16, ERR_INVALID_DATA); ie.mouse_button.button_index = decode_uint32(&buf[12]); if (r_len) (*r_len) += 4; } break; case InputEvent::JOYSTICK_BUTTON: { ERR_FAIL_COND_V(len < 16, ERR_INVALID_DATA); ie.joy_button.button_index = decode_uint32(&buf[12]); if (r_len) (*r_len) += 4; } break; case InputEvent::SCREEN_TOUCH: { ERR_FAIL_COND_V(len < 16, ERR_INVALID_DATA); ie.screen_touch.index = decode_uint32(&buf[12]); if (r_len) (*r_len) += 4; } break; case InputEvent::JOYSTICK_MOTION: { ERR_FAIL_COND_V(len < 20, ERR_INVALID_DATA); ie.joy_motion.axis = decode_uint32(&buf[12]); ie.joy_motion.axis_value = decode_float(&buf[16]); if (r_len) (*r_len) += 8; } break; } r_variant = ie; } break; case Variant::DICTIONARY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); bool shared = count & 0x80000000; count &= 0x7FFFFFFF; buf += 4; len -= 4; if (r_len) { (*r_len) += 4; } Dictionary d(shared); for (int i = 0; i < count; i++) { Variant key, value; int used; Error err = decode_variant(key, buf, len, &used); ERR_FAIL_COND_V(err, err); buf += used; len -= used; if (r_len) { (*r_len) += used; } err = decode_variant(value, buf, len, &used); ERR_FAIL_COND_V(err, err); buf += used; len -= used; if (r_len) { (*r_len) += used; } d[key] = value; } r_variant = d; } break; case Variant::ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); bool shared = count & 0x80000000; count &= 0x7FFFFFFF; buf += 4; len -= 4; if (r_len) { (*r_len) += 4; } Array varr(shared); for (int i = 0; i < count; i++) { int used = 0; Variant v; Error err = decode_variant(v, buf, len, &used); ERR_FAIL_COND_V(err, err); buf += used; len -= used; varr.push_back(v); if (r_len) { (*r_len) += used; } } r_variant = varr; } break; // arrays case Variant::RAW_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA); DVector data; if (count) { data.resize(count); DVector::Write w = data.write(); for (int32_t i = 0; i < count; i++) { w[i] = buf[i]; } w = DVector::Write(); } r_variant = data; if (r_len) { if (count % 4) (*r_len) += 4 - count % 4; (*r_len) += 4 + count; } } break; case Variant::INT_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA); DVector data; if (count) { //const int*rbuf=(const int*)buf; data.resize(count); DVector::Write w = data.write(); for (int32_t i = 0; i < count; i++) { w[i] = decode_uint32(&buf[i * 4]); } w = DVector::Write(); } r_variant = Variant(data); if (r_len) { (*r_len) += 4 + count * sizeof(int); } } break; case Variant::REAL_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA); DVector data; if (count) { //const float*rbuf=(const float*)buf; data.resize(count); DVector::Write w = data.write(); for (int32_t i = 0; i < count; i++) { w[i] = decode_float(&buf[i * 4]); } w = DVector::Write(); } r_variant = data; if (r_len) { (*r_len) += 4 + count * sizeof(float); } } break; case Variant::STRING_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); DVector strings; buf += 4; len -= 4; if (r_len) (*r_len) += 4; //printf("string count: %i\n",count); for (int32_t i = 0; i < count; i++) { String str; Error err = _decode_string(buf, len, r_len, str); if (err) return err; strings.push_back(str); } r_variant = strings; } break; case Variant::VECTOR2_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4 * 2, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 * 2 > len, ERR_INVALID_DATA); DVector varray; if (r_len) { (*r_len) += 4; } if (count) { varray.resize(count); DVector::Write w = varray.write(); for (int32_t i = 0; i < count; i++) { w[i].x = decode_float(buf + i * 4 * 2 + 4 * 0); w[i].y = decode_float(buf + i * 4 * 2 + 4 * 1); } int adv = 4 * 2 * count; if (r_len) (*r_len) += adv; len -= adv; buf += adv; } r_variant = varray; } break; case Variant::VECTOR3_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4 * 3, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 * 3 > len, ERR_INVALID_DATA); DVector varray; if (r_len) { (*r_len) += 4; } if (count) { varray.resize(count); DVector::Write w = varray.write(); for (int32_t i = 0; i < count; i++) { w[i].x = decode_float(buf + i * 4 * 3 + 4 * 0); w[i].y = decode_float(buf + i * 4 * 3 + 4 * 1); w[i].z = decode_float(buf + i * 4 * 3 + 4 * 2); } int adv = 4 * 3 * count; if (r_len) (*r_len) += adv; len -= adv; buf += adv; } r_variant = varray; } break; case Variant::COLOR_ARRAY: { ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA); int32_t count = decode_uint32(buf); buf += 4; len -= 4; ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA); ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA); DVector carray; if (r_len) { (*r_len) += 4; } if (count) { carray.resize(count); DVector::Write w = carray.write(); for (int32_t i = 0; i < count; i++) { w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0); w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1); w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2); w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3); } int adv = 4 * 4 * count; if (r_len) (*r_len) += adv; len -= adv; buf += adv; } r_variant = carray; } break; default: { ERR_FAIL_V(ERR_BUG); } } return OK; } Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len) { uint8_t *buf = r_buffer; r_len = 0; if (buf) { encode_uint32(p_variant.get_type(), buf); buf += 4; } r_len += 4; switch (p_variant.get_type()) { case Variant::NIL: { //nothing to do } break; case Variant::BOOL: { if (buf) { encode_uint32(p_variant.operator bool(), buf); } r_len += 4; } break; case Variant::INT: { if (buf) { encode_uint32(p_variant.operator int(), buf); } r_len += 4; } break; case Variant::REAL: { if (buf) { encode_float(p_variant.operator float(), buf); } r_len += 4; } break; case Variant::NODE_PATH: { NodePath np = p_variant; if (buf) { encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format encode_uint32(np.get_subname_count(), buf + 4); uint32_t flags = 0; if (np.is_absolute()) flags |= 1; if (np.get_property() != StringName()) flags |= 2; encode_uint32(flags, buf + 8); buf += 12; } r_len += 12; int total = np.get_name_count() + np.get_subname_count(); if (np.get_property() != StringName()) total++; for (int i = 0; i < total; i++) { String str; if (i < np.get_name_count()) str = np.get_name(i); else if (i < np.get_name_count() + np.get_subname_count()) str = np.get_subname(i - np.get_subname_count()); else str = np.get_property(); CharString utf8 = str.utf8(); int pad = 0; if (utf8.length() % 4) pad = 4 - utf8.length() % 4; if (buf) { encode_uint32(utf8.length(), buf); buf += 4; copymem(buf, utf8.get_data(), utf8.length()); buf += pad + utf8.length(); } r_len += 4 + utf8.length() + pad; } } break; case Variant::STRING: { CharString utf8 = p_variant.operator String().utf8(); if (buf) { encode_uint32(utf8.length(), buf); buf += 4; copymem(buf, utf8.get_data(), utf8.length()); } r_len += 4 + utf8.length(); while (r_len % 4) r_len++; //pad } break; // math types case Variant::VECTOR2: { if (buf) { Vector2 v2 = p_variant; encode_float(v2.x, &buf[0]); encode_float(v2.y, &buf[4]); } r_len += 2 * 4; } break; // 5 case Variant::RECT2: { if (buf) { Rect2 r2 = p_variant; encode_float(r2.pos.x, &buf[0]); encode_float(r2.pos.y, &buf[4]); encode_float(r2.size.x, &buf[8]); encode_float(r2.size.y, &buf[12]); } r_len += 4 * 4; } break; case Variant::VECTOR3: { if (buf) { Vector3 v3 = p_variant; encode_float(v3.x, &buf[0]); encode_float(v3.y, &buf[4]); encode_float(v3.z, &buf[8]); } r_len += 3 * 4; } break; case Variant::MATRIX32: { if (buf) { Matrix32 val = p_variant; for (int i = 0; i < 3; i++) { for (int j = 0; j < 2; j++) { copymem(&buf[(i * 2 + j) * 4], &val.elements[i][j], sizeof(float)); } } } r_len += 6 * 4; } break; case Variant::PLANE: { if (buf) { Plane p = p_variant; encode_float(p.normal.x, &buf[0]); encode_float(p.normal.y, &buf[4]); encode_float(p.normal.z, &buf[8]); encode_float(p.d, &buf[12]); } r_len += 4 * 4; } break; case Variant::QUAT: { if (buf) { Quat q = p_variant; encode_float(q.x, &buf[0]); encode_float(q.y, &buf[4]); encode_float(q.z, &buf[8]); encode_float(q.w, &buf[12]); } r_len += 4 * 4; } break; case Variant::_AABB: { if (buf) { AABB aabb = p_variant; encode_float(aabb.pos.x, &buf[0]); encode_float(aabb.pos.y, &buf[4]); encode_float(aabb.pos.z, &buf[8]); encode_float(aabb.size.x, &buf[12]); encode_float(aabb.size.y, &buf[16]); encode_float(aabb.size.z, &buf[20]); } r_len += 6 * 4; } break; case Variant::MATRIX3: { if (buf) { Matrix3 val = p_variant; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { copymem(&buf[(i * 3 + j) * 4], &val.elements[i][j], sizeof(float)); } } } r_len += 9 * 4; } break; case Variant::TRANSFORM: { if (buf) { Transform val = p_variant; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { copymem(&buf[(i * 3 + j) * 4], &val.basis.elements[i][j], sizeof(float)); } } encode_float(val.origin.x, &buf[36]); encode_float(val.origin.y, &buf[40]); encode_float(val.origin.z, &buf[44]); } r_len += 12 * 4; } break; // misc types case Variant::COLOR: { if (buf) { Color c = p_variant; encode_float(c.r, &buf[0]); encode_float(c.g, &buf[4]); encode_float(c.b, &buf[8]); encode_float(c.a, &buf[12]); } r_len += 4 * 4; } break; case Variant::IMAGE: { Image image = p_variant; DVector data = image.get_data(); if (buf) { encode_uint32(image.get_format(), &buf[0]); encode_uint32(image.get_mipmaps(), &buf[4]); encode_uint32(image.get_width(), &buf[8]); encode_uint32(image.get_height(), &buf[12]); int ds = data.size(); encode_uint32(ds, &buf[16]); DVector::Read r = data.read(); copymem(&buf[20], &r[0], ds); } int pad = 0; if (data.size() % 4) pad = 4 - data.size() % 4; r_len += data.size() + 5 * 4 + pad; } break; /*case Variant::RESOURCE: { ERR_EXPLAIN("Can't marshallize resources"); ERR_FAIL_V(ERR_INVALID_DATA); //no, i'm sorry, no go } break;*/ case Variant::_RID: case Variant::OBJECT: { } break; case Variant::INPUT_EVENT: { InputEvent ie = p_variant; if (buf) { encode_uint32(ie.type, &buf[0]); encode_uint32(ie.device, &buf[4]); encode_uint32(0, &buf[8]); } int llen = 12; switch (ie.type) { case InputEvent::KEY: { if (buf) { uint32_t mods = 0; if (ie.key.mod.shift) mods |= KEY_MASK_SHIFT; if (ie.key.mod.control) mods |= KEY_MASK_CTRL; if (ie.key.mod.alt) mods |= KEY_MASK_ALT; if (ie.key.mod.meta) mods |= KEY_MASK_META; encode_uint32(mods, &buf[llen]); encode_uint32(ie.key.scancode, &buf[llen + 4]); } llen += 8; } break; case InputEvent::MOUSE_BUTTON: { if (buf) { encode_uint32(ie.mouse_button.button_index, &buf[llen]); } llen += 4; } break; case InputEvent::JOYSTICK_BUTTON: { if (buf) { encode_uint32(ie.joy_button.button_index, &buf[llen]); } llen += 4; } break; case InputEvent::SCREEN_TOUCH: { if (buf) { encode_uint32(ie.screen_touch.index, &buf[llen]); } llen += 4; } break; case InputEvent::JOYSTICK_MOTION: { if (buf) { int axis = ie.joy_motion.axis; encode_uint32(axis, &buf[llen]); encode_float(ie.joy_motion.axis_value, &buf[llen + 4]); } llen += 8; } break; } if (buf) encode_uint32(llen, &buf[8]); r_len += llen; // not supported } break; case Variant::DICTIONARY: { Dictionary d = p_variant; if (buf) { encode_uint32(uint32_t(d.size()) | (d.is_shared() ? 0x80000000 : 0), buf); buf += 4; } r_len += 4; List keys; d.get_key_list(&keys); for (List::Element *E = keys.front(); E; E = E->next()) { /* CharString utf8 = E->->utf8(); if (buf) { encode_uint32(utf8.length()+1,buf); buf+=4; copymem(buf,utf8.get_data(),utf8.length()+1); } r_len+=4+utf8.length()+1; while (r_len%4) r_len++; //pad */ int len; encode_variant(E->get(), buf, len); ERR_FAIL_COND_V(len % 4, ERR_BUG); r_len += len; if (buf) buf += len; encode_variant(d[E->get()], buf, len); ERR_FAIL_COND_V(len % 4, ERR_BUG); r_len += len; if (buf) buf += len; } } break; case Variant::ARRAY: { Array v = p_variant; if (buf) { encode_uint32(uint32_t(v.size()) | (v.is_shared() ? 0x80000000 : 0), buf); buf += 4; } r_len += 4; for (int i = 0; i < v.size(); i++) { int len; encode_variant(v.get(i), buf, len); ERR_FAIL_COND_V(len % 4, ERR_BUG); r_len += len; if (buf) buf += len; } } break; // arrays case Variant::RAW_ARRAY: { DVector data = p_variant; int datalen = data.size(); int datasize = sizeof(uint8_t); if (buf) { encode_uint32(datalen, buf); buf += 4; DVector::Read r = data.read(); copymem(buf, &r[0], datalen * datasize); } r_len += 4 + datalen * datasize; while (r_len % 4) r_len++; } break; case Variant::INT_ARRAY: { DVector data = p_variant; int datalen = data.size(); int datasize = sizeof(int32_t); if (buf) { encode_uint32(datalen, buf); buf += 4; DVector::Read r = data.read(); for (int i = 0; i < datalen; i++) encode_uint32(r[i], &buf[i * datasize]); } r_len += 4 + datalen * datasize; } break; case Variant::REAL_ARRAY: { DVector data = p_variant; int datalen = data.size(); int datasize = sizeof(real_t); if (buf) { encode_uint32(datalen, buf); buf += 4; DVector::Read r = data.read(); for (int i = 0; i < datalen; i++) encode_float(r[i], &buf[i * datasize]); } r_len += 4 + datalen * datasize; } break; case Variant::STRING_ARRAY: { DVector data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; for (int i = 0; i < len; i++) { CharString utf8 = data.get(i).utf8(); if (buf) { encode_uint32(utf8.length() + 1, buf); buf += 4; copymem(buf, utf8.get_data(), utf8.length() + 1); buf += utf8.length() + 1; } r_len += 4 + utf8.length() + 1; while (r_len % 4) { r_len++; //pad if (buf) *(buf++) = 0; } } } break; case Variant::VECTOR2_ARRAY: { DVector data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; if (buf) { for (int i = 0; i < len; i++) { Vector2 v = data.get(i); encode_float(v.x, &buf[0]); encode_float(v.y, &buf[4]); buf += 4 * 2; } } r_len += 4 * 2 * len; } break; case Variant::VECTOR3_ARRAY: { DVector data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; if (buf) { for (int i = 0; i < len; i++) { Vector3 v = data.get(i); encode_float(v.x, &buf[0]); encode_float(v.y, &buf[4]); encode_float(v.z, &buf[8]); buf += 4 * 3; } } r_len += 4 * 3 * len; } break; case Variant::COLOR_ARRAY: { DVector data = p_variant; int len = data.size(); if (buf) { encode_uint32(len, buf); buf += 4; } r_len += 4; if (buf) { for (int i = 0; i < len; i++) { Color c = data.get(i); encode_float(c.r, &buf[0]); encode_float(c.g, &buf[4]); encode_float(c.b, &buf[8]); encode_float(c.a, &buf[12]); buf += 4 * 4; } } r_len += 4 * 4 * len; } break; default: { ERR_FAIL_V(ERR_BUG); } } return OK; }