/*************************************************************************/ /* ordered_hash_map.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef ORDERED_HASH_MAP_H #define ORDERED_HASH_MAP_H #include "core/templates/hash_map.h" #include "core/templates/list.h" #include "core/templates/pair.h" /** * A hash map which allows to iterate elements in insertion order. * Insertion, lookup, deletion have O(1) complexity. * The API aims to be consistent with Map rather than HashMap, because the * former is more frequently used and is more coherent with the rest of the * codebase. * Deletion during iteration is safe and will preserve the order. */ template , uint8_t MIN_HASH_TABLE_POWER = 3, uint8_t RELATIONSHIP = 8> class OrderedHashMap { typedef List> InternalList; typedef HashMap InternalMap; InternalList list; InternalMap map; public: class Element { friend class OrderedHashMap; typename InternalList::Element *list_element = nullptr; typename InternalList::Element *prev_element = nullptr; typename InternalList::Element *next_element = nullptr; Element(typename InternalList::Element *p_element) { list_element = p_element; if (list_element) { next_element = list_element->next(); prev_element = list_element->prev(); } } public: _FORCE_INLINE_ Element() {} Element next() const { return Element(next_element); } Element prev() const { return Element(prev_element); } Element(const Element &other) : list_element(other.list_element), prev_element(other.prev_element), next_element(other.next_element) { } Element &operator=(const Element &other) { list_element = other.list_element; next_element = other.next_element; prev_element = other.prev_element; return *this; } _FORCE_INLINE_ bool operator==(const Element &p_other) const { return this->list_element == p_other.list_element; } _FORCE_INLINE_ bool operator!=(const Element &p_other) const { return this->list_element != p_other.list_element; } operator bool() const { return (list_element != nullptr); } const K &key() const { CRASH_COND(!list_element); return *(list_element->get().first); } V &value() { CRASH_COND(!list_element); return list_element->get().second; } const V &value() const { CRASH_COND(!list_element); return list_element->get().second; } V &get() { CRASH_COND(!list_element); return list_element->get().second; } const V &get() const { CRASH_COND(!list_element); return list_element->get().second; } }; class ConstElement { friend class OrderedHashMap; const typename InternalList::Element *list_element = nullptr; ConstElement(const typename InternalList::Element *p_element) : list_element(p_element) { } public: _FORCE_INLINE_ ConstElement() {} ConstElement(const ConstElement &other) : list_element(other.list_element) { } ConstElement &operator=(const ConstElement &other) { list_element = other.list_element; return *this; } ConstElement next() const { return ConstElement(list_element ? list_element->next() : nullptr); } ConstElement prev() const { return ConstElement(list_element ? list_element->prev() : nullptr); } _FORCE_INLINE_ bool operator==(const ConstElement &p_other) const { return this->list_element == p_other.list_element; } _FORCE_INLINE_ bool operator!=(const ConstElement &p_other) const { return this->list_element != p_other.list_element; } operator bool() const { return (list_element != nullptr); } const K &key() const { CRASH_COND(!list_element); return *(list_element->get().first); } const V &value() const { CRASH_COND(!list_element); return list_element->get().second; } const V &get() const { CRASH_COND(!list_element); return list_element->get().second; } }; ConstElement find(const K &p_key) const { typename InternalList::Element *const *list_element = map.getptr(p_key); if (list_element) { return ConstElement(*list_element); } return ConstElement(nullptr); } Element find(const K &p_key) { typename InternalList::Element **list_element = map.getptr(p_key); if (list_element) { return Element(*list_element); } return Element(nullptr); } Element insert(const K &p_key, const V &p_value) { typename InternalList::Element **list_element = map.getptr(p_key); if (list_element) { (*list_element)->get().second = p_value; return Element(*list_element); } // Incorrectly set the first value of the pair with a value that will // be invalid as soon as we leave this function... typename InternalList::Element *new_element = list.push_back(Pair(&p_key, p_value)); // ...this is needed here in case the hashmap recursively reference itself... typename InternalMap::Element *e = map.set(p_key, new_element); // ...now we can set the right value ! new_element->get().first = &e->key(); return Element(new_element); } void erase(Element &p_element) { map.erase(p_element.key()); list.erase(p_element.list_element); p_element.list_element = nullptr; } bool erase(const K &p_key) { typename InternalList::Element **list_element = map.getptr(p_key); if (list_element) { list.erase(*list_element); map.erase(p_key); return true; } return false; } inline bool has(const K &p_key) const { return map.has(p_key); } const V &operator[](const K &p_key) const { ConstElement e = find(p_key); CRASH_COND(!e); return e.value(); } V &operator[](const K &p_key) { Element e = find(p_key); if (!e) { // consistent with Map behaviour e = insert(p_key, V()); } return e.value(); } inline Element front() { return Element(list.front()); } inline Element back() { return Element(list.back()); } inline ConstElement front() const { return ConstElement(list.front()); } inline ConstElement back() const { return ConstElement(list.back()); } inline bool is_empty() const { return list.is_empty(); } inline int size() const { return list.size(); } const void *id() const { return list.id(); } void clear() { map.clear(); list.clear(); } private: void _copy_from(const OrderedHashMap &p_map) { for (ConstElement E = p_map.front(); E; E = E.next()) { insert(E.key(), E.value()); } } public: void operator=(const OrderedHashMap &p_map) { _copy_from(p_map); } OrderedHashMap(const OrderedHashMap &p_map) { _copy_from(p_map); } _FORCE_INLINE_ OrderedHashMap() {} }; #endif // ORDERED_HASH_MAP_H