/*************************************************************************/ /* main_timer_sync.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "main_timer_sync.h" void MainFrameTime::clamp_process_step(double min_process_step, double max_process_step) { if (process_step < min_process_step) { process_step = min_process_step; } else if (process_step > max_process_step) { process_step = max_process_step; } } ///////////////////////////////// // returns the fraction of p_physics_step required for the timer to overshoot // before advance_core considers changing the physics_steps return from // the typical values as defined by typical_physics_steps double MainTimerSync::get_physics_jitter_fix() { return Engine::get_singleton()->get_physics_jitter_fix(); } // gets our best bet for the average number of physics steps per render frame // return value: number of frames back this data is consistent int MainTimerSync::get_average_physics_steps(double &p_min, double &p_max) { p_min = typical_physics_steps[0]; p_max = p_min + 1; for (int i = 1; i < CONTROL_STEPS; ++i) { const double typical_lower = typical_physics_steps[i]; const double current_min = typical_lower / (i + 1); if (current_min > p_max) { return i; // bail out if further restrictions would void the interval } else if (current_min > p_min) { p_min = current_min; } const double current_max = (typical_lower + 1) / (i + 1); if (current_max < p_min) { return i; } else if (current_max < p_max) { p_max = current_max; } } return CONTROL_STEPS; } // advance physics clock by p_process_step, return appropriate number of steps to simulate MainFrameTime MainTimerSync::advance_core(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) { MainFrameTime ret; ret.process_step = p_process_step; // simple determination of number of physics iteration time_accum += ret.process_step; ret.physics_steps = floor(time_accum * p_physics_ticks_per_second); int min_typical_steps = typical_physics_steps[0]; int max_typical_steps = min_typical_steps + 1; // given the past recorded steps and typical steps to match, calculate bounds for this // step to be typical bool update_typical = false; for (int i = 0; i < CONTROL_STEPS - 1; ++i) { int steps_left_to_match_typical = typical_physics_steps[i + 1] - accumulated_physics_steps[i]; if (steps_left_to_match_typical > max_typical_steps || steps_left_to_match_typical + 1 < min_typical_steps) { update_typical = true; break; } if (steps_left_to_match_typical > min_typical_steps) { min_typical_steps = steps_left_to_match_typical; } if (steps_left_to_match_typical + 1 < max_typical_steps) { max_typical_steps = steps_left_to_match_typical + 1; } } #ifdef DEBUG_ENABLED if (max_typical_steps < 0) { WARN_PRINT_ONCE("`max_typical_steps` is negative. This could hint at an engine bug or system timer misconfiguration."); } #endif // try to keep it consistent with previous iterations if (ret.physics_steps < min_typical_steps) { const int max_possible_steps = floor((time_accum)*p_physics_ticks_per_second + get_physics_jitter_fix()); if (max_possible_steps < min_typical_steps) { ret.physics_steps = max_possible_steps; update_typical = true; } else { ret.physics_steps = min_typical_steps; } } else if (ret.physics_steps > max_typical_steps) { const int min_possible_steps = floor((time_accum)*p_physics_ticks_per_second - get_physics_jitter_fix()); if (min_possible_steps > max_typical_steps) { ret.physics_steps = min_possible_steps; update_typical = true; } else { ret.physics_steps = max_typical_steps; } } if (ret.physics_steps < 0) { ret.physics_steps = 0; } time_accum -= ret.physics_steps * p_physics_step; // keep track of accumulated step counts for (int i = CONTROL_STEPS - 2; i >= 0; --i) { accumulated_physics_steps[i + 1] = accumulated_physics_steps[i] + ret.physics_steps; } accumulated_physics_steps[0] = ret.physics_steps; if (update_typical) { for (int i = CONTROL_STEPS - 1; i >= 0; --i) { if (typical_physics_steps[i] > accumulated_physics_steps[i]) { typical_physics_steps[i] = accumulated_physics_steps[i]; } else if (typical_physics_steps[i] < accumulated_physics_steps[i] - 1) { typical_physics_steps[i] = accumulated_physics_steps[i] - 1; } } } return ret; } // calls advance_core, keeps track of deficit it adds to animaption_step, make sure the deficit sum stays close to zero MainFrameTime MainTimerSync::advance_checked(double p_physics_step, int p_physics_ticks_per_second, double p_process_step) { if (fixed_fps != -1) { p_process_step = 1.0 / fixed_fps; } float min_output_step = p_process_step / 8; min_output_step = MAX(min_output_step, 1E-6); // compensate for last deficit p_process_step += time_deficit; MainFrameTime ret = advance_core(p_physics_step, p_physics_ticks_per_second, p_process_step); // we will do some clamping on ret.process_step and need to sync those changes to time_accum, // that's easiest if we just remember their fixed difference now const double process_minus_accum = ret.process_step - time_accum; // first, least important clamping: keep ret.process_step consistent with typical_physics_steps. // this smoothes out the process steps and culls small but quick variations. { double min_average_physics_steps, max_average_physics_steps; int consistent_steps = get_average_physics_steps(min_average_physics_steps, max_average_physics_steps); if (consistent_steps > 3) { ret.clamp_process_step(min_average_physics_steps * p_physics_step, max_average_physics_steps * p_physics_step); } } // second clamping: keep abs(time_deficit) < jitter_fix * frame_slise double max_clock_deviation = get_physics_jitter_fix() * p_physics_step; ret.clamp_process_step(p_process_step - max_clock_deviation, p_process_step + max_clock_deviation); // last clamping: make sure time_accum is between 0 and p_physics_step for consistency between physics and process ret.clamp_process_step(process_minus_accum, process_minus_accum + p_physics_step); // all the operations above may have turned ret.p_process_step negative or zero, keep a minimal value if (ret.process_step < min_output_step) { ret.process_step = min_output_step; } // restore time_accum time_accum = ret.process_step - process_minus_accum; // forcing ret.process_step to be positive may trigger a violation of the // promise that time_accum is between 0 and p_physics_step #ifdef DEBUG_ENABLED if (time_accum < -1E-7) { WARN_PRINT_ONCE("Intermediate value of `time_accum` is negative. This could hint at an engine bug or system timer misconfiguration."); } #endif if (time_accum > p_physics_step) { const int extra_physics_steps = floor(time_accum * p_physics_ticks_per_second); time_accum -= extra_physics_steps * p_physics_step; ret.physics_steps += extra_physics_steps; } #ifdef DEBUG_ENABLED if (time_accum < -1E-7) { WARN_PRINT_ONCE("Final value of `time_accum` is negative. It should always be between 0 and `p_physics_step`. This hints at an engine bug."); } if (time_accum > p_physics_step + 1E-7) { WARN_PRINT_ONCE("Final value of `time_accum` is larger than `p_physics_step`. It should always be between 0 and `p_physics_step`. This hints at an engine bug."); } #endif // track deficit time_deficit = p_process_step - ret.process_step; // p_physics_step is 1.0 / iterations_per_sec // i.e. the time in seconds taken by a physics tick ret.interpolation_fraction = time_accum / p_physics_step; return ret; } // determine wall clock step since last iteration double MainTimerSync::get_cpu_process_step() { uint64_t cpu_ticks_elapsed = current_cpu_ticks_usec - last_cpu_ticks_usec; last_cpu_ticks_usec = current_cpu_ticks_usec; return cpu_ticks_elapsed / 1000000.0; } MainTimerSync::MainTimerSync() { for (int i = CONTROL_STEPS - 1; i >= 0; --i) { typical_physics_steps[i] = i; accumulated_physics_steps[i] = i; } } // start the clock void MainTimerSync::init(uint64_t p_cpu_ticks_usec) { current_cpu_ticks_usec = last_cpu_ticks_usec = p_cpu_ticks_usec; } // set measured wall clock time void MainTimerSync::set_cpu_ticks_usec(uint64_t p_cpu_ticks_usec) { current_cpu_ticks_usec = p_cpu_ticks_usec; } void MainTimerSync::set_fixed_fps(int p_fixed_fps) { fixed_fps = p_fixed_fps; } // advance one physics frame, return timesteps to take MainFrameTime MainTimerSync::advance(double p_physics_step, int p_physics_ticks_per_second) { double cpu_process_step = get_cpu_process_step(); return advance_checked(p_physics_step, p_physics_ticks_per_second, cpu_process_step); }