/*************************************************************************/ /* renderer_scene_render_rd.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef RENDERING_SERVER_SCENE_RENDER_RD_H #define RENDERING_SERVER_SCENE_RENDER_RD_H #include "core/templates/local_vector.h" #include "core/templates/rid_owner.h" #include "servers/rendering/renderer_compositor.h" #include "servers/rendering/renderer_rd/cluster_builder_rd.h" #include "servers/rendering/renderer_rd/renderer_scene_environment_rd.h" #include "servers/rendering/renderer_rd/renderer_scene_gi_rd.h" #include "servers/rendering/renderer_rd/renderer_scene_sky_rd.h" #include "servers/rendering/renderer_rd/renderer_storage_rd.h" #include "servers/rendering/renderer_rd/shaders/volumetric_fog.glsl.gen.h" #include "servers/rendering/renderer_rd/shaders/volumetric_fog_process.glsl.gen.h" #include "servers/rendering/renderer_scene.h" #include "servers/rendering/renderer_scene_render.h" #include "servers/rendering/rendering_device.h" struct RenderDataRD { RID render_buffers = RID(); Transform3D cam_transform = Transform3D(); CameraMatrix cam_projection = CameraMatrix(); bool cam_ortogonal = false; // For stereo rendering uint32_t view_count = 1; CameraMatrix view_projection[RendererSceneRender::MAX_RENDER_VIEWS]; float z_near = 0.0; float z_far = 0.0; const PagedArray *instances = nullptr; const PagedArray *lights = nullptr; const PagedArray *reflection_probes = nullptr; const PagedArray *voxel_gi_instances = nullptr; const PagedArray *decals = nullptr; const PagedArray *lightmaps = nullptr; const PagedArray *fog_volumes = nullptr; RID environment = RID(); RID camera_effects = RID(); RID shadow_atlas = RID(); RID reflection_atlas = RID(); RID reflection_probe = RID(); int reflection_probe_pass = 0; float lod_distance_multiplier = 0.0; Plane lod_camera_plane = Plane(); float screen_lod_threshold = 0.0; RID cluster_buffer = RID(); uint32_t cluster_size = 0; uint32_t cluster_max_elements = 0; uint32_t directional_light_count = 0; bool directional_light_soft_shadows = false; RendererScene::RenderInfo *render_info = nullptr; }; class RendererSceneRenderRD : public RendererSceneRender { friend RendererSceneSkyRD; friend RendererSceneGIRD; protected: RendererStorageRD *storage; double time; double time_step = 0; struct RenderBufferData { virtual void configure(RID p_color_buffer, RID p_depth_buffer, RID p_target_buffer, int p_width, int p_height, RS::ViewportMSAA p_msaa, uint32_t p_view_count) = 0; virtual ~RenderBufferData() {} }; virtual RenderBufferData *_create_render_buffer_data() = 0; void _setup_lights(const PagedArray &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows); void _setup_decals(const PagedArray &p_decals, const Transform3D &p_camera_inverse_xform); void _setup_reflections(const PagedArray &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment); virtual void _render_scene(RenderDataRD *p_render_data, const Color &p_default_color) = 0; virtual void _render_shadow_begin() = 0; virtual void _render_shadow_append(RID p_framebuffer, const PagedArray &p_instances, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool p_use_dp_flip, bool p_use_pancake, const Plane &p_camera_plane = Plane(), float p_lod_distance_multiplier = 0.0, float p_screen_lod_threshold = 0.0, const Rect2i &p_rect = Rect2i(), bool p_flip_y = false, bool p_clear_region = true, bool p_begin = true, bool p_end = true, RendererScene::RenderInfo *p_render_info = nullptr) = 0; virtual void _render_shadow_process() = 0; virtual void _render_shadow_end(uint32_t p_barrier = RD::BARRIER_MASK_ALL) = 0; virtual void _render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) = 0; virtual void _render_uv2(const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) = 0; virtual void _render_sdfgi(RID p_render_buffers, const Vector3i &p_from, const Vector3i &p_size, const AABB &p_bounds, const PagedArray &p_instances, const RID &p_albedo_texture, const RID &p_emission_texture, const RID &p_emission_aniso_texture, const RID &p_geom_facing_texture) = 0; virtual void _render_particle_collider_heightfield(RID p_fb, const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, const PagedArray &p_instances) = 0; void _debug_sdfgi_probes(RID p_render_buffers, RD::DrawListID p_draw_list, RID p_framebuffer, const CameraMatrix &p_camera_with_transform); void _debug_draw_cluster(RID p_render_buffers); RenderBufferData *render_buffers_get_data(RID p_render_buffers); virtual void _base_uniforms_changed() = 0; virtual RID _render_buffers_get_normal_texture(RID p_render_buffers) = 0; void _process_ssao(RID p_render_buffers, RID p_environment, RID p_normal_buffer, const CameraMatrix &p_projection); void _process_ssr(RID p_render_buffers, RID p_dest_framebuffer, RID p_normal_buffer, RID p_specular_buffer, RID p_metallic, const Color &p_metallic_mask, RID p_environment, const CameraMatrix &p_projection, bool p_use_additive); void _process_sss(RID p_render_buffers, const CameraMatrix &p_camera); bool _needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi); void _post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi); void _pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi); void _pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_gi, RID p_normal_roughness_buffer, RID p_voxel_gi_buffer); void _render_buffers_copy_screen_texture(const RenderDataRD *p_render_data); void _render_buffers_copy_depth_texture(const RenderDataRD *p_render_data); void _render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data); void _post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data); void _disable_clear_request(const RenderDataRD *p_render_data); // needed for a single argument calls (material and uv2) PagedArrayPool cull_argument_pool; PagedArray cull_argument; //need this to exist RendererSceneGIRD gi; RendererSceneSkyRD sky; RendererSceneEnvironmentRD *get_environment(RID p_environment) { if (p_environment.is_valid()) { return environment_owner.get_or_null(p_environment); } else { return nullptr; } }; //used for mobile renderer mostly typedef int32_t ForwardID; enum ForwardIDType { FORWARD_ID_TYPE_OMNI_LIGHT, FORWARD_ID_TYPE_SPOT_LIGHT, FORWARD_ID_TYPE_REFLECTION_PROBE, FORWARD_ID_TYPE_DECAL, FORWARD_ID_MAX, }; virtual ForwardID _allocate_forward_id(ForwardIDType p_type) { return -1; } virtual void _free_forward_id(ForwardIDType p_type, ForwardID p_id) {} virtual void _map_forward_id(ForwardIDType p_type, ForwardID p_id, uint32_t p_index) {} virtual bool _uses_forward_ids() const { return false; } virtual void _update_shader_quality_settings() {} private: RS::ViewportDebugDraw debug_draw = RS::VIEWPORT_DEBUG_DRAW_DISABLED; static RendererSceneRenderRD *singleton; /* REFLECTION ATLAS */ struct ReflectionAtlas { int count = 0; int size = 0; RID reflection; RID depth_buffer; RID depth_fb; struct Reflection { RID owner; RendererSceneSkyRD::ReflectionData data; RID fbs[6]; }; Vector reflections; ClusterBuilderRD *cluster_builder = nullptr; }; mutable RID_Owner reflection_atlas_owner; /* REFLECTION PROBE INSTANCE */ struct ReflectionProbeInstance { RID probe; int atlas_index = -1; RID atlas; bool dirty = true; bool rendering = false; int processing_layer = 1; int processing_side = 0; uint32_t render_step = 0; uint64_t last_pass = 0; uint32_t cull_mask = 0; ForwardID forward_id = -1; Transform3D transform; }; mutable RID_Owner reflection_probe_instance_owner; /* DECAL INSTANCE */ struct DecalInstance { RID decal; Transform3D transform; uint32_t cull_mask; ForwardID forward_id = -1; }; mutable RID_Owner decal_instance_owner; /* LIGHTMAP INSTANCE */ struct LightmapInstance { RID lightmap; Transform3D transform; }; mutable RID_Owner lightmap_instance_owner; /* SHADOW ATLAS */ struct ShadowShrinkStage { RID texture; RID filter_texture; uint32_t size; }; struct ShadowAtlas { enum { QUADRANT_SHIFT = 27, OMNI_LIGHT_FLAG = 1 << 26, SHADOW_INDEX_MASK = OMNI_LIGHT_FLAG - 1, SHADOW_INVALID = 0xFFFFFFFF }; struct Quadrant { uint32_t subdivision; struct Shadow { RID owner; uint64_t version; uint64_t fog_version; // used for fog uint64_t alloc_tick; Shadow() { version = 0; fog_version = 0; alloc_tick = 0; } }; Vector shadows; Quadrant() { subdivision = 0; //not in use } } quadrants[4]; int size_order[4] = { 0, 1, 2, 3 }; uint32_t smallest_subdiv = 0; int size = 0; bool use_16_bits = false; RID depth; RID fb; //for copying Map shadow_owners; }; RID_Owner shadow_atlas_owner; void _update_shadow_atlas(ShadowAtlas *shadow_atlas); void _shadow_atlas_invalidate_shadow(RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, RendererSceneRenderRD::ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx); bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow); bool _shadow_atlas_find_omni_shadows(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow); RS::ShadowQuality shadows_quality = RS::SHADOW_QUALITY_MAX; //So it always updates when first set RS::ShadowQuality directional_shadow_quality = RS::SHADOW_QUALITY_MAX; float shadows_quality_radius = 1.0; float directional_shadow_quality_radius = 1.0; float *directional_penumbra_shadow_kernel; float *directional_soft_shadow_kernel; float *penumbra_shadow_kernel; float *soft_shadow_kernel; int directional_penumbra_shadow_samples = 0; int directional_soft_shadow_samples = 0; int penumbra_shadow_samples = 0; int soft_shadow_samples = 0; RS::DecalFilter decals_filter = RS::DECAL_FILTER_LINEAR_MIPMAPS; RS::LightProjectorFilter light_projectors_filter = RS::LIGHT_PROJECTOR_FILTER_LINEAR_MIPMAPS; /* DIRECTIONAL SHADOW */ struct DirectionalShadow { RID depth; RID fb; //when renderign direct int light_count = 0; int size = 0; bool use_16_bits = false; int current_light = 0; } directional_shadow; void _update_directional_shadow_atlas(); /* SHADOW CUBEMAPS */ struct ShadowCubemap { RID cubemap; RID side_fb[6]; }; Map shadow_cubemaps; ShadowCubemap *_get_shadow_cubemap(int p_size); void _create_shadow_cubemaps(); /* LIGHT INSTANCE */ struct LightInstance { struct ShadowTransform { CameraMatrix camera; Transform3D transform; float farplane; float split; float bias_scale; float shadow_texel_size; float range_begin; Rect2 atlas_rect; Vector2 uv_scale; }; RS::LightType light_type = RS::LIGHT_DIRECTIONAL; ShadowTransform shadow_transform[6]; AABB aabb; RID self; RID light; Transform3D transform; Vector3 light_vector; Vector3 spot_vector; float linear_att = 0.0; uint64_t shadow_pass = 0; uint64_t last_scene_pass = 0; uint64_t last_scene_shadow_pass = 0; uint64_t last_pass = 0; uint32_t cull_mask = 0; uint32_t light_directional_index = 0; Rect2 directional_rect; Set shadow_atlases; //shadow atlases where this light is registered ForwardID forward_id = -1; LightInstance() {} }; mutable RID_Owner light_instance_owner; /* FOG VOLUMES */ struct FogVolumeInstance { RID volume; Transform3D transform; bool active = false; }; mutable RID_Owner fog_volume_instance_owner; /* ENVIRONMENT */ RS::EnvironmentSSAOQuality ssao_quality = RS::ENV_SSAO_QUALITY_MEDIUM; bool ssao_half_size = false; bool ssao_using_half_size = false; float ssao_adaptive_target = 0.5; int ssao_blur_passes = 2; float ssao_fadeout_from = 50.0; float ssao_fadeout_to = 300.0; bool glow_bicubic_upscale = false; bool glow_high_quality = false; RS::EnvironmentSSRRoughnessQuality ssr_roughness_quality = RS::ENV_SSR_ROUGNESS_QUALITY_LOW; mutable RID_Owner environment_owner; /* CAMERA EFFECTS */ struct CameraEffects { bool dof_blur_far_enabled = false; float dof_blur_far_distance = 10; float dof_blur_far_transition = 5; bool dof_blur_near_enabled = false; float dof_blur_near_distance = 2; float dof_blur_near_transition = 1; float dof_blur_amount = 0.1; bool override_exposure_enabled = false; float override_exposure = 1; }; RS::DOFBlurQuality dof_blur_quality = RS::DOF_BLUR_QUALITY_MEDIUM; RS::DOFBokehShape dof_blur_bokeh_shape = RS::DOF_BOKEH_HEXAGON; bool dof_blur_use_jitter = false; RS::SubSurfaceScatteringQuality sss_quality = RS::SUB_SURFACE_SCATTERING_QUALITY_MEDIUM; float sss_scale = 0.05; float sss_depth_scale = 0.01; mutable RID_Owner camera_effects_owner; /* RENDER BUFFERS */ ClusterBuilderSharedDataRD cluster_builder_shared; ClusterBuilderRD *current_cluster_builder = nullptr; struct VolumetricFog; struct RenderBuffers { RenderBufferData *data = nullptr; int width = 0, height = 0; RS::ViewportMSAA msaa = RS::VIEWPORT_MSAA_DISABLED; RS::ViewportScreenSpaceAA screen_space_aa = RS::VIEWPORT_SCREEN_SPACE_AA_DISABLED; bool use_debanding = false; uint32_t view_count = 1; RID render_target; uint64_t auto_exposure_version = 1; RID texture; //main texture for rendering to, must be filled after done rendering RID depth_texture; //main depth texture RID texture_fb; // framebuffer for the main texture, ONLY USED FOR MOBILE RENDERER POST EFFECTS, DO NOT USE FOR RENDERING 3D!!! RendererSceneGIRD::SDFGI *sdfgi = nullptr; VolumetricFog *volumetric_fog = nullptr; RendererSceneGIRD::RenderBuffersGI gi; ClusterBuilderRD *cluster_builder = nullptr; //built-in textures used for ping pong image processing and blurring struct Blur { RID texture; struct Mipmap { RID texture; int width; int height; // only used on mobile renderer RID fb; RID half_texture; RID half_fb; }; Vector mipmaps; }; Blur blur[2]; //the second one starts from the first mipmap struct WeightBuffers { RID weight; RID fb; // FB with both texture and weight }; // 2 full size, 2 half size WeightBuffers weight_buffers[4]; // Only used in raster RID base_weight_fb; // base buffer for weight RID depth_back_texture; RID depth_back_fb; // only used on mobile struct Luminance { Vector reduce; RID current; // used only on mobile renderer Vector fb; RID current_fb; } luminance; struct SSAO { RID depth; Vector depth_slices; RID ao_deinterleaved; Vector ao_deinterleaved_slices; RID ao_pong; Vector ao_pong_slices; RID ao_final; RID importance_map[2]; RID downsample_uniform_set; RID gather_uniform_set; RID importance_map_uniform_set; } ssao; struct SSR { RID normal_scaled; RID depth_scaled; RID blur_radius[2]; } ssr; RID ambient_buffer; RID reflection_buffer; }; /* GI */ bool screen_space_roughness_limiter = false; float screen_space_roughness_limiter_amount = 0.25; float screen_space_roughness_limiter_limit = 0.18; mutable RID_Owner render_buffers_owner; void _free_render_buffer_data(RenderBuffers *rb); void _allocate_blur_textures(RenderBuffers *rb); void _allocate_depth_backbuffer_textures(RenderBuffers *rb); void _allocate_luminance_textures(RenderBuffers *rb); void _render_buffers_debug_draw(RID p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer); /* Cluster */ struct Cluster { /* Scene State UBO */ // !BAS! Most data here is not just used by our clustering logic but also by other lighting implementations. Maybe rename this struct to something more appropriate enum { REFLECTION_AMBIENT_DISABLED = 0, REFLECTION_AMBIENT_ENVIRONMENT = 1, REFLECTION_AMBIENT_COLOR = 2, }; struct ReflectionData { float box_extents[3]; float index; float box_offset[3]; uint32_t mask; float ambient[3]; // ambient color, float intensity; uint32_t exterior; uint32_t box_project; uint32_t ambient_mode; uint32_t pad; float local_matrix[16]; // up to here for spot and omni, rest is for directional }; struct LightData { float position[3]; float inv_radius; float direction[3]; // in omni, x and y are used for dual paraboloid offset float size; float color[3]; float attenuation; float inv_spot_attenuation; float cos_spot_angle; float specular_amount; uint32_t shadow_enabled; float atlas_rect[4]; // in omni, used for atlas uv, in spot, used for projector uv float shadow_matrix[16]; float shadow_bias; float shadow_normal_bias; float transmittance_bias; float soft_shadow_size; float soft_shadow_scale; uint32_t mask; float shadow_volumetric_fog_fade; uint32_t bake_mode; float projector_rect[4]; }; struct DirectionalLightData { float direction[3]; float energy; float color[3]; float size; float specular; uint32_t mask; float softshadow_angle; float soft_shadow_scale; uint32_t blend_splits; uint32_t shadow_enabled; float fade_from; float fade_to; uint32_t pad[2]; uint32_t bake_mode; float shadow_volumetric_fog_fade; float shadow_bias[4]; float shadow_normal_bias[4]; float shadow_transmittance_bias[4]; float shadow_z_range[4]; float shadow_range_begin[4]; float shadow_split_offsets[4]; float shadow_matrices[4][16]; float shadow_color1[4]; float shadow_color2[4]; float shadow_color3[4]; float shadow_color4[4]; float uv_scale1[2]; float uv_scale2[2]; float uv_scale3[2]; float uv_scale4[2]; }; struct DecalData { float xform[16]; float inv_extents[3]; float albedo_mix; float albedo_rect[4]; float normal_rect[4]; float orm_rect[4]; float emission_rect[4]; float modulate[4]; float emission_energy; uint32_t mask; float upper_fade; float lower_fade; float normal_xform[12]; float normal[3]; float normal_fade; }; template struct InstanceSort { float depth; T *instance; bool operator<(const InstanceSort &p_sort) const { return depth < p_sort.depth; } }; ReflectionData *reflections; InstanceSort *reflection_sort; uint32_t max_reflections; RID reflection_buffer; uint32_t max_reflection_probes_per_instance; uint32_t reflection_count = 0; DecalData *decals; InstanceSort *decal_sort; uint32_t max_decals; RID decal_buffer; uint32_t decal_count; LightData *omni_lights; LightData *spot_lights; InstanceSort *omni_light_sort; InstanceSort *spot_light_sort; uint32_t max_lights; RID omni_light_buffer; RID spot_light_buffer; uint32_t omni_light_count = 0; uint32_t spot_light_count = 0; DirectionalLightData *directional_lights; uint32_t max_directional_lights; RID directional_light_buffer; } cluster; struct RenderState { const RendererSceneRender::RenderShadowData *render_shadows = nullptr; int render_shadow_count = 0; const RendererSceneRender::RenderSDFGIData *render_sdfgi_regions = nullptr; int render_sdfgi_region_count = 0; const RendererSceneRender::RenderSDFGIUpdateData *sdfgi_update_data = nullptr; uint32_t voxel_gi_count = 0; LocalVector cube_shadows; LocalVector shadows; LocalVector directional_shadows; bool depth_prepass_used; // this does not seem used anywhere... } render_state; struct VolumetricFog { enum { MAX_TEMPORAL_FRAMES = 16 }; uint32_t width = 0; uint32_t height = 0; uint32_t depth = 0; float length; float spread; RID light_density_map; RID prev_light_density_map; RID fog_map; RID density_map; RID light_map; RID emissive_map; RID fog_uniform_set; RID copy_uniform_set; RID process_uniform_set; RID process_uniform_set2; RID sdfgi_uniform_set; RID sky_uniform_set; int last_shadow_filter = -1; Transform3D prev_cam_transform; }; struct VolumetricFogShader { enum FogSet { FOG_SET_BASE, FOG_SET_UNIFORMS, FOG_SET_MATERIAL, FOG_SET_MAX, }; struct FogPushConstant { float position[3]; float pad; float extents[3]; float pad2; int32_t corner[3]; uint32_t shape; float transform[16]; }; struct VolumeUBO { float fog_frustum_size_begin[2]; float fog_frustum_size_end[2]; float fog_frustum_end; float z_near; float z_far; float time; int32_t fog_volume_size[3]; uint32_t directional_light_count; uint32_t use_temporal_reprojection; uint32_t temporal_frame; float detail_spread; float temporal_blend; float to_prev_view[16]; float transform[16]; }; ShaderCompilerRD compiler; VolumetricFogShaderRD shader; FogPushConstant push_constant; RID volume_ubo; RID default_shader; RID default_material; RID default_shader_rd; RID base_uniform_set; RID params_ubo; enum { VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY, VOLUMETRIC_FOG_PROCESS_SHADER_DENSITY_WITH_SDFGI, VOLUMETRIC_FOG_PROCESS_SHADER_FILTER, VOLUMETRIC_FOG_PROCESS_SHADER_FOG, VOLUMETRIC_FOG_PROCESS_SHADER_COPY, VOLUMETRIC_FOG_PROCESS_SHADER_MAX, }; struct ParamsUBO { float fog_frustum_size_begin[2]; float fog_frustum_size_end[2]; float fog_frustum_end; float ambient_inject; float z_far; uint32_t filter_axis; float ambient_color[3]; float sky_contribution; int32_t fog_volume_size[3]; uint32_t directional_light_count; float base_emission[3]; float base_density; float base_scattering[3]; float phase_g; float detail_spread; float gi_inject; uint32_t max_voxel_gi_instances; uint32_t cluster_type_size; float screen_size[2]; uint32_t cluster_shift; uint32_t cluster_width; uint32_t max_cluster_element_count_div_32; uint32_t use_temporal_reprojection; uint32_t temporal_frame; float temporal_blend; float cam_rotation[12]; float to_prev_view[16]; float radiance_inverse_xform[12]; }; VolumetricFogProcessShaderRD process_shader; RID process_shader_version; RID process_pipelines[VOLUMETRIC_FOG_PROCESS_SHADER_MAX]; } volumetric_fog; uint32_t volumetric_fog_depth = 128; uint32_t volumetric_fog_size = 128; bool volumetric_fog_filter_active = true; Vector3i _point_get_position_in_froxel_volume(const Vector3 &p_point, float fog_end, const Vector2 &fog_near_size, const Vector2 &fog_far_size, float volumetric_fog_detail_spread, const Vector3 &fog_size, const Transform3D &p_cam_transform); void _volumetric_fog_erase(RenderBuffers *rb); void _update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform3D &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray &p_fog_volumes); struct FogShaderData : public RendererStorageRD::ShaderData { bool valid; RID version; RID pipeline; Map uniforms; Vector texture_uniforms; Vector ubo_offsets; uint32_t ubo_size; String path; String code; Map default_texture_params; bool uses_time; virtual void set_code(const String &p_Code); virtual void set_default_texture_param(const StringName &p_name, RID p_texture); virtual void get_param_list(List *p_param_list) const; virtual void get_instance_param_list(List *p_param_list) const; virtual bool is_param_texture(const StringName &p_param) const; virtual bool is_animated() const; virtual bool casts_shadows() const; virtual Variant get_default_parameter(const StringName &p_parameter) const; virtual RS::ShaderNativeSourceCode get_native_source_code() const; FogShaderData(); virtual ~FogShaderData(); }; struct FogMaterialData : public RendererStorageRD::MaterialData { uint64_t last_frame; FogShaderData *shader_data; RID uniform_set; bool uniform_set_updated; virtual void set_render_priority(int p_priority) {} virtual void set_next_pass(RID p_pass) {} virtual bool update_parameters(const Map &p_parameters, bool p_uniform_dirty, bool p_textures_dirty); virtual ~FogMaterialData(); }; RendererStorageRD::ShaderData *_create_fog_shader_func(); static RendererStorageRD::ShaderData *_create_fog_shader_funcs(); RendererStorageRD::MaterialData *_create_fog_material_func(FogShaderData *p_shader); static RendererStorageRD::MaterialData *_create_fog_material_funcs(RendererStorageRD::ShaderData *p_shader); RID shadow_sampler; uint64_t scene_pass = 0; uint64_t shadow_atlas_realloc_tolerance_msec = 500; /* !BAS! is this used anywhere? struct SDFGICosineNeighbour { uint32_t neighbour; float weight; }; */ uint32_t max_cluster_elements = 512; void _render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray &p_instances, const Plane &p_camera_plane = Plane(), float p_lod_distance_multiplier = 0, float p_screen_lod_threshold = 0.0, bool p_open_pass = true, bool p_close_pass = true, bool p_clear_region = true, RendererScene::RenderInfo *p_render_info = nullptr); public: virtual Transform3D geometry_instance_get_transform(GeometryInstance *p_instance) = 0; virtual AABB geometry_instance_get_aabb(GeometryInstance *p_instance) = 0; /* SHADOW ATLAS API */ virtual RID shadow_atlas_create() override; virtual void shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits = false) override; virtual void shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) override; virtual bool shadow_atlas_update_light(RID p_atlas, RID p_light_intance, float p_coverage, uint64_t p_light_version) override; _FORCE_INLINE_ bool shadow_atlas_owns_light_instance(RID p_atlas, RID p_light_intance) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_COND_V(!atlas, false); return atlas->shadow_owners.has(p_light_intance); } _FORCE_INLINE_ RID shadow_atlas_get_texture(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->depth; } _FORCE_INLINE_ Size2i shadow_atlas_get_size(RID p_atlas) { ShadowAtlas *atlas = shadow_atlas_owner.get_or_null(p_atlas); ERR_FAIL_COND_V(!atlas, Size2i()); return Size2(atlas->size, atlas->size); } virtual void directional_shadow_atlas_set_size(int p_size, bool p_16_bits = false) override; virtual int get_directional_light_shadow_size(RID p_light_intance) override; virtual void set_directional_shadow_count(int p_count) override; _FORCE_INLINE_ RID directional_shadow_get_texture() { return directional_shadow.depth; } _FORCE_INLINE_ Size2i directional_shadow_get_size() { return Size2i(directional_shadow.size, directional_shadow.size); } /* SDFGI UPDATE */ virtual void sdfgi_update(RID p_render_buffers, RID p_environment, const Vector3 &p_world_position) override; virtual int sdfgi_get_pending_region_count(RID p_render_buffers) const override; virtual AABB sdfgi_get_pending_region_bounds(RID p_render_buffers, int p_region) const override; virtual uint32_t sdfgi_get_pending_region_cascade(RID p_render_buffers, int p_region) const override; RID sdfgi_get_ubo() const { return gi.sdfgi_ubo; } /* SKY API */ virtual RID sky_allocate() override; virtual void sky_initialize(RID p_rid) override; virtual void sky_set_radiance_size(RID p_sky, int p_radiance_size) override; virtual void sky_set_mode(RID p_sky, RS::SkyMode p_mode) override; virtual void sky_set_material(RID p_sky, RID p_material) override; virtual Ref sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) override; /* ENVIRONMENT API */ virtual RID environment_allocate() override; virtual void environment_initialize(RID p_rid) override; virtual void environment_set_background(RID p_env, RS::EnvironmentBG p_bg) override; virtual void environment_set_sky(RID p_env, RID p_sky) override; virtual void environment_set_sky_custom_fov(RID p_env, float p_scale) override; virtual void environment_set_sky_orientation(RID p_env, const Basis &p_orientation) override; virtual void environment_set_bg_color(RID p_env, const Color &p_color) override; virtual void environment_set_bg_energy(RID p_env, float p_energy) override; virtual void environment_set_canvas_max_layer(RID p_env, int p_max_layer) override; virtual void environment_set_ambient_light(RID p_env, const Color &p_color, RS::EnvironmentAmbientSource p_ambient = RS::ENV_AMBIENT_SOURCE_BG, float p_energy = 1.0, float p_sky_contribution = 0.0, RS::EnvironmentReflectionSource p_reflection_source = RS::ENV_REFLECTION_SOURCE_BG) override; virtual RS::EnvironmentBG environment_get_background(RID p_env) const override; RID environment_get_sky(RID p_env) const; float environment_get_sky_custom_fov(RID p_env) const; Basis environment_get_sky_orientation(RID p_env) const; Color environment_get_bg_color(RID p_env) const; float environment_get_bg_energy(RID p_env) const; virtual int environment_get_canvas_max_layer(RID p_env) const override; Color environment_get_ambient_light_color(RID p_env) const; RS::EnvironmentAmbientSource environment_get_ambient_source(RID p_env) const; float environment_get_ambient_light_energy(RID p_env) const; float environment_get_ambient_sky_contribution(RID p_env) const; RS::EnvironmentReflectionSource environment_get_reflection_source(RID p_env) const; virtual bool is_environment(RID p_env) const override; virtual void environment_set_glow(RID p_env, bool p_enable, Vector p_levels, float p_intensity, float p_strength, float p_mix, float p_bloom_threshold, RS::EnvironmentGlowBlendMode p_blend_mode, float p_hdr_bleed_threshold, float p_hdr_bleed_scale, float p_hdr_luminance_cap) override; virtual void environment_glow_set_use_bicubic_upscale(bool p_enable) override; virtual void environment_glow_set_use_high_quality(bool p_enable) override; virtual void environment_set_fog(RID p_env, bool p_enable, const Color &p_light_color, float p_light_energy, float p_sun_scatter, float p_density, float p_height, float p_height_density, float p_aerial_perspective) override; bool environment_is_fog_enabled(RID p_env) const; Color environment_get_fog_light_color(RID p_env) const; float environment_get_fog_light_energy(RID p_env) const; float environment_get_fog_sun_scatter(RID p_env) const; float environment_get_fog_density(RID p_env) const; float environment_get_fog_height(RID p_env) const; float environment_get_fog_height_density(RID p_env) const; float environment_get_fog_aerial_perspective(RID p_env) const; virtual void environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_albedo, const Color &p_emission, float p_emission_energy, float p_anisotropy, float p_length, float p_detail_spread, float p_gi_inject, bool p_temporal_reprojection, float p_temporal_reprojection_amount, float p_ambient_inject) override; virtual void environment_set_volumetric_fog_volume_size(int p_size, int p_depth) override; virtual void environment_set_volumetric_fog_filter_active(bool p_enable) override; virtual void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) override; virtual void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_power, float p_detail, float p_horizon, float p_sharpness, float p_light_affect, float p_ao_channel_affect) override; virtual void environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) override; bool environment_is_ssao_enabled(RID p_env) const; float environment_get_ssao_ao_affect(RID p_env) const; float environment_get_ssao_light_affect(RID p_env) const; bool environment_is_ssr_enabled(RID p_env) const; bool environment_is_sdfgi_enabled(RID p_env) const; virtual void environment_set_sdfgi(RID p_env, bool p_enable, RS::EnvironmentSDFGICascades p_cascades, float p_min_cell_size, RS::EnvironmentSDFGIYScale p_y_scale, bool p_use_occlusion, float p_bounce_feedback, bool p_read_sky, float p_energy, float p_normal_bias, float p_probe_bias) override; virtual void environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) override; virtual void environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) override; virtual void environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) override; virtual void environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) override; RS::EnvironmentSSRRoughnessQuality environment_get_ssr_roughness_quality() const; virtual void environment_set_tonemap(RID p_env, RS::EnvironmentToneMapper p_tone_mapper, float p_exposure, float p_white, bool p_auto_exposure, float p_min_luminance, float p_max_luminance, float p_auto_exp_speed, float p_auto_exp_scale) override; virtual void environment_set_adjustment(RID p_env, bool p_enable, float p_brightness, float p_contrast, float p_saturation, bool p_use_1d_color_correction, RID p_color_correction) override; virtual Ref environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) override; /* CAMERA EFFECTS */ virtual RID camera_effects_allocate() override; virtual void camera_effects_initialize(RID p_rid) override; virtual void camera_effects_set_dof_blur_quality(RS::DOFBlurQuality p_quality, bool p_use_jitter) override; virtual void camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape p_shape) override; virtual void camera_effects_set_dof_blur(RID p_camera_effects, bool p_far_enable, float p_far_distance, float p_far_transition, bool p_near_enable, float p_near_distance, float p_near_transition, float p_amount) override; virtual void camera_effects_set_custom_exposure(RID p_camera_effects, bool p_enable, float p_exposure) override; bool camera_effects_uses_dof(RID p_camera_effects) { CameraEffects *camfx = camera_effects_owner.get_or_null(p_camera_effects); return camfx && (camfx->dof_blur_near_enabled || camfx->dof_blur_far_enabled) && camfx->dof_blur_amount > 0.0; } /* LIGHT INSTANCE API */ virtual RID light_instance_create(RID p_light) override; virtual void light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) override; virtual void light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) override; virtual void light_instance_set_shadow_transform(RID p_light_instance, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale = 1.0, float p_range_begin = 0, const Vector2 &p_uv_scale = Vector2()) override; virtual void light_instance_mark_visible(RID p_light_instance) override; _FORCE_INLINE_ RID light_instance_get_base_light(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->light; } _FORCE_INLINE_ Transform3D light_instance_get_base_transform(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->transform; } _FORCE_INLINE_ Rect2 light_instance_get_shadow_atlas_rect(RID p_light_instance, RID p_shadow_atlas, Vector2i &r_omni_offset) { ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas); LightInstance *li = light_instance_owner.get_or_null(p_light_instance); uint32_t key = shadow_atlas->shadow_owners[li->self]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK; ERR_FAIL_COND_V(shadow >= (uint32_t)shadow_atlas->quadrants[quadrant].shadows.size(), Rect2()); uint32_t atlas_size = shadow_atlas->size; uint32_t quadrant_size = atlas_size >> 1; uint32_t x = (quadrant & 1) * quadrant_size; uint32_t y = (quadrant >> 1) * quadrant_size; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size; if (key & ShadowAtlas::OMNI_LIGHT_FLAG) { if (((shadow + 1) % shadow_atlas->quadrants[quadrant].subdivision) == 0) { r_omni_offset.x = 1 - int(shadow_atlas->quadrants[quadrant].subdivision); r_omni_offset.y = 1; } else { r_omni_offset.x = 1; r_omni_offset.y = 0; } } uint32_t width = shadow_size; uint32_t height = shadow_size; return Rect2(x / float(shadow_atlas->size), y / float(shadow_atlas->size), width / float(shadow_atlas->size), height / float(shadow_atlas->size)); } _FORCE_INLINE_ CameraMatrix light_instance_get_shadow_camera(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].camera; } _FORCE_INLINE_ float light_instance_get_shadow_texel_size(RID p_light_instance, RID p_shadow_atlas) { #ifdef DEBUG_ENABLED LightInstance *li = light_instance_owner.get_or_null(p_light_instance); ERR_FAIL_COND_V(!li->shadow_atlases.has(p_shadow_atlas), 0); #endif ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas); ERR_FAIL_COND_V(!shadow_atlas, 0); #ifdef DEBUG_ENABLED ERR_FAIL_COND_V(!shadow_atlas->shadow_owners.has(p_light_instance), 0); #endif uint32_t key = shadow_atlas->shadow_owners[p_light_instance]; uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3; uint32_t quadrant_size = shadow_atlas->size >> 1; uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision); return float(1.0) / shadow_size; } _FORCE_INLINE_ Transform3D light_instance_get_shadow_transform(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].transform; } _FORCE_INLINE_ float light_instance_get_shadow_bias_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].bias_scale; } _FORCE_INLINE_ float light_instance_get_shadow_range(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].farplane; } _FORCE_INLINE_ float light_instance_get_shadow_range_begin(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].range_begin; } _FORCE_INLINE_ Vector2 light_instance_get_shadow_uv_scale(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].uv_scale; } _FORCE_INLINE_ Rect2 light_instance_get_directional_shadow_atlas_rect(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].atlas_rect; } _FORCE_INLINE_ float light_instance_get_directional_shadow_split(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].split; } _FORCE_INLINE_ float light_instance_get_directional_shadow_texel_size(RID p_light_instance, int p_index) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->shadow_transform[p_index].shadow_texel_size; } _FORCE_INLINE_ void light_instance_set_render_pass(RID p_light_instance, uint64_t p_pass) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); li->last_pass = p_pass; } _FORCE_INLINE_ uint64_t light_instance_get_render_pass(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->last_pass; } _FORCE_INLINE_ ForwardID light_instance_get_forward_id(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->forward_id; } _FORCE_INLINE_ RS::LightType light_instance_get_type(RID p_light_instance) { LightInstance *li = light_instance_owner.get_or_null(p_light_instance); return li->light_type; } /* FOG VOLUMES */ virtual RID fog_volume_instance_create(RID p_fog_volume) override; virtual void fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) override; virtual void fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) override; virtual RID fog_volume_instance_get_volume(RID p_fog_volume_instance) const override; virtual Vector3 fog_volume_instance_get_position(RID p_fog_volume_instance) const override; virtual RID reflection_atlas_create() override; virtual void reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) override; virtual int reflection_atlas_get_size(RID p_ref_atlas) const override; _FORCE_INLINE_ RID reflection_atlas_get_texture(RID p_ref_atlas) { ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_ref_atlas); ERR_FAIL_COND_V(!atlas, RID()); return atlas->reflection; } virtual RID reflection_probe_instance_create(RID p_probe) override; virtual void reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) override; virtual void reflection_probe_release_atlas_index(RID p_instance) override; virtual bool reflection_probe_instance_needs_redraw(RID p_instance) override; virtual bool reflection_probe_instance_has_reflection(RID p_instance) override; virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) override; virtual RID reflection_probe_create_framebuffer(RID p_color, RID p_depth); virtual bool reflection_probe_instance_postprocess_step(RID p_instance) override; uint32_t reflection_probe_instance_get_resolution(RID p_instance); RID reflection_probe_instance_get_framebuffer(RID p_instance, int p_index); RID reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index); _FORCE_INLINE_ RID reflection_probe_instance_get_probe(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, RID()); return rpi->probe; } _FORCE_INLINE_ ForwardID reflection_probe_instance_get_forward_id(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->forward_id; } _FORCE_INLINE_ void reflection_probe_instance_set_render_pass(RID p_instance, uint32_t p_render_pass) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND(!rpi); rpi->last_pass = p_render_pass; } _FORCE_INLINE_ uint32_t reflection_probe_instance_get_render_pass(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, 0); return rpi->last_pass; } _FORCE_INLINE_ Transform3D reflection_probe_instance_get_transform(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, Transform3D()); return rpi->transform; } _FORCE_INLINE_ int reflection_probe_instance_get_atlas_index(RID p_instance) { ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance); ERR_FAIL_COND_V(!rpi, -1); return rpi->atlas_index; } virtual RID decal_instance_create(RID p_decal) override; virtual void decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) override; _FORCE_INLINE_ RID decal_instance_get_base(RID p_decal) const { DecalInstance *decal = decal_instance_owner.get_or_null(p_decal); return decal->decal; } _FORCE_INLINE_ ForwardID decal_instance_get_forward_id(RID p_decal) const { DecalInstance *decal = decal_instance_owner.get_or_null(p_decal); return decal->forward_id; } _FORCE_INLINE_ Transform3D decal_instance_get_transform(RID p_decal) const { DecalInstance *decal = decal_instance_owner.get_or_null(p_decal); return decal->transform; } virtual RID lightmap_instance_create(RID p_lightmap) override; virtual void lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) override; _FORCE_INLINE_ bool lightmap_instance_is_valid(RID p_lightmap_instance) { return lightmap_instance_owner.get_or_null(p_lightmap_instance) != nullptr; } _FORCE_INLINE_ RID lightmap_instance_get_lightmap(RID p_lightmap_instance) { LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap_instance); return li->lightmap; } _FORCE_INLINE_ Transform3D lightmap_instance_get_transform(RID p_lightmap_instance) { LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap_instance); return li->transform; } /* gi light probes */ virtual RID voxel_gi_instance_create(RID p_base) override; virtual void voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) override; virtual bool voxel_gi_needs_update(RID p_probe) const override; virtual void voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector &p_light_instances, const PagedArray &p_dynamic_objects) override; virtual void voxel_gi_set_quality(RS::VoxelGIQuality p_quality) override { gi.voxel_gi_quality = p_quality; } /* render buffers */ virtual float _render_buffers_get_luminance_multiplier(); virtual RD::DataFormat _render_buffers_get_color_format(); virtual bool _render_buffers_can_be_storage(); virtual RID render_buffers_create() override; virtual void render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RS::ViewportScreenSpaceAA p_screen_space_aa, bool p_use_debanding, uint32_t p_view_count) override; virtual void gi_set_use_half_resolution(bool p_enable) override; RID render_buffers_get_depth_texture(RID p_render_buffers); RID render_buffers_get_ao_texture(RID p_render_buffers); RID render_buffers_get_back_buffer_texture(RID p_render_buffers); RID render_buffers_get_back_depth_texture(RID p_render_buffers); RID render_buffers_get_voxel_gi_buffer(RID p_render_buffers); RID render_buffers_get_default_voxel_gi_buffer(); RID render_buffers_get_gi_ambient_texture(RID p_render_buffers); RID render_buffers_get_gi_reflection_texture(RID p_render_buffers); uint32_t render_buffers_get_sdfgi_cascade_count(RID p_render_buffers) const; bool render_buffers_is_sdfgi_enabled(RID p_render_buffers) const; RID render_buffers_get_sdfgi_irradiance_probes(RID p_render_buffers) const; Vector3 render_buffers_get_sdfgi_cascade_offset(RID p_render_buffers, uint32_t p_cascade) const; Vector3i render_buffers_get_sdfgi_cascade_probe_offset(RID p_render_buffers, uint32_t p_cascade) const; float render_buffers_get_sdfgi_cascade_probe_size(RID p_render_buffers, uint32_t p_cascade) const; float render_buffers_get_sdfgi_normal_bias(RID p_render_buffers) const; uint32_t render_buffers_get_sdfgi_cascade_probe_count(RID p_render_buffers) const; uint32_t render_buffers_get_sdfgi_cascade_size(RID p_render_buffers) const; bool render_buffers_is_sdfgi_using_occlusion(RID p_render_buffers) const; float render_buffers_get_sdfgi_energy(RID p_render_buffers) const; RID render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const; bool render_buffers_has_volumetric_fog(RID p_render_buffers) const; RID render_buffers_get_volumetric_fog_texture(RID p_render_buffers); RID render_buffers_get_volumetric_fog_sky_uniform_set(RID p_render_buffers); float render_buffers_get_volumetric_fog_end(RID p_render_buffers); float render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers); virtual void render_scene(RID p_render_buffers, const CameraData *p_camera_data, const PagedArray &p_instances, const PagedArray &p_lights, const PagedArray &p_reflection_probes, const PagedArray &p_voxel_gi_instances, const PagedArray &p_decals, const PagedArray &p_lightmaps, const PagedArray &p_fog_volumes, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data = nullptr, RendererScene::RenderInfo *r_render_info = nullptr) override; virtual void render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) override; virtual void render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray &p_instances) override; virtual void set_scene_pass(uint64_t p_pass) override { scene_pass = p_pass; } _FORCE_INLINE_ uint64_t get_scene_pass() { return scene_pass; } virtual void screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) override; virtual bool screen_space_roughness_limiter_is_active() const override; virtual float screen_space_roughness_limiter_get_amount() const; virtual float screen_space_roughness_limiter_get_limit() const; virtual void sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) override; RS::SubSurfaceScatteringQuality sub_surface_scattering_get_quality() const; virtual void sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) override; virtual void shadows_quality_set(RS::ShadowQuality p_quality) override; virtual void directional_shadow_quality_set(RS::ShadowQuality p_quality) override; virtual void decals_set_filter(RS::DecalFilter p_filter) override; virtual void light_projectors_set_filter(RS::LightProjectorFilter p_filter) override; _FORCE_INLINE_ RS::ShadowQuality shadows_quality_get() const { return shadows_quality; } _FORCE_INLINE_ RS::ShadowQuality directional_shadow_quality_get() const { return directional_shadow_quality; } _FORCE_INLINE_ float shadows_quality_radius_get() const { return shadows_quality_radius; } _FORCE_INLINE_ float directional_shadow_quality_radius_get() const { return directional_shadow_quality_radius; } _FORCE_INLINE_ float *directional_penumbra_shadow_kernel_get() { return directional_penumbra_shadow_kernel; } _FORCE_INLINE_ float *directional_soft_shadow_kernel_get() { return directional_soft_shadow_kernel; } _FORCE_INLINE_ float *penumbra_shadow_kernel_get() { return penumbra_shadow_kernel; } _FORCE_INLINE_ float *soft_shadow_kernel_get() { return soft_shadow_kernel; } _FORCE_INLINE_ int directional_penumbra_shadow_samples_get() const { return directional_penumbra_shadow_samples; } _FORCE_INLINE_ int directional_soft_shadow_samples_get() const { return directional_soft_shadow_samples; } _FORCE_INLINE_ int penumbra_shadow_samples_get() const { return penumbra_shadow_samples; } _FORCE_INLINE_ int soft_shadow_samples_get() const { return soft_shadow_samples; } _FORCE_INLINE_ RS::LightProjectorFilter light_projectors_get_filter() const { return light_projectors_filter; } _FORCE_INLINE_ RS::DecalFilter decals_get_filter() const { return decals_filter; } int get_roughness_layers() const; bool is_using_radiance_cubemap_array() const; virtual TypedArray bake_render_uv2(RID p_base, const Vector &p_material_overrides, const Size2i &p_image_size) override; virtual bool free(RID p_rid) override; virtual void update() override; virtual void set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) override; _FORCE_INLINE_ RS::ViewportDebugDraw get_debug_draw_mode() const { return debug_draw; } virtual void set_time(double p_time, double p_step) override; RID get_reflection_probe_buffer(); RID get_omni_light_buffer(); RID get_spot_light_buffer(); RID get_directional_light_buffer(); RID get_decal_buffer(); int get_max_directional_lights() const; virtual void sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) override; virtual bool is_dynamic_gi_supported() const; virtual bool is_clustered_enabled() const; virtual bool is_volumetric_supported() const; virtual uint32_t get_max_elements() const; void init(); RendererSceneRenderRD(RendererStorageRD *p_storage); ~RendererSceneRenderRD(); }; #endif // RASTERIZER_SCENE_RD_H