// // Copyright (C) 2002-2005 3Dlabs Inc. Ltd. // Copyright (C) 2012-2015 LunarG, Inc. // Copyright (C) 2015-2018 Google, Inc. // Copyright (C) 2017, 2019 ARM Limited. // Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved. // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // Neither the name of 3Dlabs Inc. Ltd. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // #include "ParseHelper.h" #include "Scan.h" #include "../OSDependent/osinclude.h" #include #include "preprocessor/PpContext.h" extern int yyparse(glslang::TParseContext*); namespace glslang { TParseContext::TParseContext(TSymbolTable& symbolTable, TIntermediate& interm, bool parsingBuiltins, int version, EProfile profile, const SpvVersion& spvVersion, EShLanguage language, TInfoSink& infoSink, bool forwardCompatible, EShMessages messages, const TString* entryPoint) : TParseContextBase(symbolTable, interm, parsingBuiltins, version, profile, spvVersion, language, infoSink, forwardCompatible, messages, entryPoint), inMain(false), blockName(nullptr), limits(resources.limits) #ifndef GLSLANG_WEB , atomicUintOffsets(nullptr), anyIndexLimits(false) #endif { // decide whether precision qualifiers should be ignored or respected if (isEsProfile() || spvVersion.vulkan > 0) { precisionManager.respectPrecisionQualifiers(); if (! parsingBuiltins && language == EShLangFragment && !isEsProfile() && spvVersion.vulkan > 0) precisionManager.warnAboutDefaults(); } setPrecisionDefaults(); globalUniformDefaults.clear(); globalUniformDefaults.layoutMatrix = ElmColumnMajor; globalUniformDefaults.layoutPacking = spvVersion.spv != 0 ? ElpStd140 : ElpShared; globalBufferDefaults.clear(); globalBufferDefaults.layoutMatrix = ElmColumnMajor; globalBufferDefaults.layoutPacking = spvVersion.spv != 0 ? ElpStd430 : ElpShared; // use storage buffer on SPIR-V 1.3 and up if (spvVersion.spv >= EShTargetSpv_1_3) intermediate.setUseStorageBuffer(); globalInputDefaults.clear(); globalOutputDefaults.clear(); #ifndef GLSLANG_WEB // "Shaders in the transform // feedback capturing mode have an initial global default of // layout(xfb_buffer = 0) out;" if (language == EShLangVertex || language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry) globalOutputDefaults.layoutXfbBuffer = 0; if (language == EShLangGeometry) globalOutputDefaults.layoutStream = 0; #endif if (entryPoint != nullptr && entryPoint->size() > 0 && *entryPoint != "main") infoSink.info.message(EPrefixError, "Source entry point must be \"main\""); } TParseContext::~TParseContext() { #ifndef GLSLANG_WEB delete [] atomicUintOffsets; #endif } // Set up all default precisions as needed by the current environment. // Intended just as a TParseContext constructor helper. void TParseContext::setPrecisionDefaults() { // Set all precision defaults to EpqNone, which is correct for all types // when not obeying precision qualifiers, and correct for types that don't // have defaults (thus getting an error on use) when obeying precision // qualifiers. for (int type = 0; type < EbtNumTypes; ++type) defaultPrecision[type] = EpqNone; for (int type = 0; type < maxSamplerIndex; ++type) defaultSamplerPrecision[type] = EpqNone; // replace with real precision defaults for those that have them if (obeyPrecisionQualifiers()) { if (isEsProfile()) { // Most don't have defaults, a few default to lowp. TSampler sampler; sampler.set(EbtFloat, Esd2D); defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow; sampler.set(EbtFloat, EsdCube); defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow; sampler.set(EbtFloat, Esd2D); sampler.setExternal(true); defaultSamplerPrecision[computeSamplerTypeIndex(sampler)] = EpqLow; } // If we are parsing built-in computational variables/functions, it is meaningful to record // whether the built-in has no precision qualifier, as that ambiguity // is used to resolve the precision from the supplied arguments/operands instead. // So, we don't actually want to replace EpqNone with a default precision for built-ins. if (! parsingBuiltins) { if (isEsProfile() && language == EShLangFragment) { defaultPrecision[EbtInt] = EpqMedium; defaultPrecision[EbtUint] = EpqMedium; } else { defaultPrecision[EbtInt] = EpqHigh; defaultPrecision[EbtUint] = EpqHigh; defaultPrecision[EbtFloat] = EpqHigh; } if (!isEsProfile()) { // Non-ES profile // All sampler precisions default to highp. for (int type = 0; type < maxSamplerIndex; ++type) defaultSamplerPrecision[type] = EpqHigh; } } defaultPrecision[EbtSampler] = EpqLow; defaultPrecision[EbtAtomicUint] = EpqHigh; } } void TParseContext::setLimits(const TBuiltInResource& r) { resources = r; intermediate.setLimits(r); #ifndef GLSLANG_WEB anyIndexLimits = ! limits.generalAttributeMatrixVectorIndexing || ! limits.generalConstantMatrixVectorIndexing || ! limits.generalSamplerIndexing || ! limits.generalUniformIndexing || ! limits.generalVariableIndexing || ! limits.generalVaryingIndexing; // "Each binding point tracks its own current default offset for // inheritance of subsequent variables using the same binding. The initial state of compilation is that all // binding points have an offset of 0." atomicUintOffsets = new int[resources.maxAtomicCounterBindings]; for (int b = 0; b < resources.maxAtomicCounterBindings; ++b) atomicUintOffsets[b] = 0; #endif } // // Parse an array of strings using yyparse, going through the // preprocessor to tokenize the shader strings, then through // the GLSL scanner. // // Returns true for successful acceptance of the shader, false if any errors. // bool TParseContext::parseShaderStrings(TPpContext& ppContext, TInputScanner& input, bool versionWillBeError) { currentScanner = &input; ppContext.setInput(input, versionWillBeError); yyparse(this); finish(); return numErrors == 0; } // This is called from bison when it has a parse (syntax) error // Note though that to stop cascading errors, we set EOF, which // will usually cause a syntax error, so be more accurate that // compilation is terminating. void TParseContext::parserError(const char* s) { if (! getScanner()->atEndOfInput() || numErrors == 0) error(getCurrentLoc(), "", "", s, ""); else error(getCurrentLoc(), "compilation terminated", "", ""); } void TParseContext::handlePragma(const TSourceLoc& loc, const TVector& tokens) { #ifndef GLSLANG_WEB if (pragmaCallback) pragmaCallback(loc.line, tokens); if (tokens.size() == 0) return; if (tokens[0].compare("optimize") == 0) { if (tokens.size() != 4) { error(loc, "optimize pragma syntax is incorrect", "#pragma", ""); return; } if (tokens[1].compare("(") != 0) { error(loc, "\"(\" expected after 'optimize' keyword", "#pragma", ""); return; } if (tokens[2].compare("on") == 0) contextPragma.optimize = true; else if (tokens[2].compare("off") == 0) contextPragma.optimize = false; else { if(relaxedErrors()) // If an implementation does not recognize the tokens following #pragma, then it will ignore that pragma. warn(loc, "\"on\" or \"off\" expected after '(' for 'optimize' pragma", "#pragma", ""); return; } if (tokens[3].compare(")") != 0) { error(loc, "\")\" expected to end 'optimize' pragma", "#pragma", ""); return; } } else if (tokens[0].compare("debug") == 0) { if (tokens.size() != 4) { error(loc, "debug pragma syntax is incorrect", "#pragma", ""); return; } if (tokens[1].compare("(") != 0) { error(loc, "\"(\" expected after 'debug' keyword", "#pragma", ""); return; } if (tokens[2].compare("on") == 0) contextPragma.debug = true; else if (tokens[2].compare("off") == 0) contextPragma.debug = false; else { if(relaxedErrors()) // If an implementation does not recognize the tokens following #pragma, then it will ignore that pragma. warn(loc, "\"on\" or \"off\" expected after '(' for 'debug' pragma", "#pragma", ""); return; } if (tokens[3].compare(")") != 0) { error(loc, "\")\" expected to end 'debug' pragma", "#pragma", ""); return; } } else if (spvVersion.spv > 0 && tokens[0].compare("use_storage_buffer") == 0) { if (tokens.size() != 1) error(loc, "extra tokens", "#pragma", ""); intermediate.setUseStorageBuffer(); } else if (spvVersion.spv > 0 && tokens[0].compare("use_vulkan_memory_model") == 0) { if (tokens.size() != 1) error(loc, "extra tokens", "#pragma", ""); intermediate.setUseVulkanMemoryModel(); } else if (spvVersion.spv > 0 && tokens[0].compare("use_variable_pointers") == 0) { if (tokens.size() != 1) error(loc, "extra tokens", "#pragma", ""); if (spvVersion.spv < glslang::EShTargetSpv_1_3) error(loc, "requires SPIR-V 1.3", "#pragma use_variable_pointers", ""); intermediate.setUseVariablePointers(); } else if (tokens[0].compare("once") == 0) { warn(loc, "not implemented", "#pragma once", ""); } else if (tokens[0].compare("glslang_binary_double_output") == 0) intermediate.setBinaryDoubleOutput(); #endif } // // Handle seeing a variable identifier in the grammar. // TIntermTyped* TParseContext::handleVariable(const TSourceLoc& loc, TSymbol* symbol, const TString* string) { TIntermTyped* node = nullptr; // Error check for requiring specific extensions present. if (symbol && symbol->getNumExtensions()) requireExtensions(loc, symbol->getNumExtensions(), symbol->getExtensions(), symbol->getName().c_str()); #ifndef GLSLANG_WEB if (symbol && symbol->isReadOnly()) { // All shared things containing an unsized array must be copied up // on first use, so that all future references will share its array structure, // so that editing the implicit size will effect all nodes consuming it, // and so that editing the implicit size won't change the shared one. // // If this is a variable or a block, check it and all it contains, but if this // is a member of an anonymous block, check the whole block, as the whole block // will need to be copied up if it contains an unsized array. // // This check is being done before the block-name check further down, so guard // for that too. if (!symbol->getType().isUnusableName()) { if (symbol->getType().containsUnsizedArray() || (symbol->getAsAnonMember() && symbol->getAsAnonMember()->getAnonContainer().getType().containsUnsizedArray())) makeEditable(symbol); } } #endif const TVariable* variable; const TAnonMember* anon = symbol ? symbol->getAsAnonMember() : nullptr; if (anon) { // It was a member of an anonymous container. // Create a subtree for its dereference. variable = anon->getAnonContainer().getAsVariable(); TIntermTyped* container = intermediate.addSymbol(*variable, loc); TIntermTyped* constNode = intermediate.addConstantUnion(anon->getMemberNumber(), loc); node = intermediate.addIndex(EOpIndexDirectStruct, container, constNode, loc); node->setType(*(*variable->getType().getStruct())[anon->getMemberNumber()].type); if (node->getType().hiddenMember()) error(loc, "member of nameless block was not redeclared", string->c_str(), ""); } else { // Not a member of an anonymous container. // The symbol table search was done in the lexical phase. // See if it was a variable. variable = symbol ? symbol->getAsVariable() : nullptr; if (variable) { if (variable->getType().isUnusableName()) { error(loc, "cannot be used (maybe an instance name is needed)", string->c_str(), ""); variable = nullptr; } } else { if (symbol) error(loc, "variable name expected", string->c_str(), ""); } // Recovery, if it wasn't found or was not a variable. if (! variable) variable = new TVariable(string, TType(EbtVoid)); if (variable->getType().getQualifier().isFrontEndConstant()) node = intermediate.addConstantUnion(variable->getConstArray(), variable->getType(), loc); else node = intermediate.addSymbol(*variable, loc); } if (variable->getType().getQualifier().isIo()) intermediate.addIoAccessed(*string); if (variable->getType().isReference() && variable->getType().getQualifier().bufferReferenceNeedsVulkanMemoryModel()) { intermediate.setUseVulkanMemoryModel(); } return node; } // // Handle seeing a base[index] dereference in the grammar. // TIntermTyped* TParseContext::handleBracketDereference(const TSourceLoc& loc, TIntermTyped* base, TIntermTyped* index) { int indexValue = 0; if (index->getQualifier().isFrontEndConstant()) indexValue = index->getAsConstantUnion()->getConstArray()[0].getIConst(); // basic type checks... variableCheck(base); if (! base->isArray() && ! base->isMatrix() && ! base->isVector() && ! base->getType().isCoopMat() && ! base->isReference()) { if (base->getAsSymbolNode()) error(loc, " left of '[' is not of type array, matrix, or vector ", base->getAsSymbolNode()->getName().c_str(), ""); else error(loc, " left of '[' is not of type array, matrix, or vector ", "expression", ""); // Insert dummy error-recovery result return intermediate.addConstantUnion(0.0, EbtFloat, loc); } if (!base->isArray() && base->isVector()) { if (base->getType().contains16BitFloat()) requireFloat16Arithmetic(loc, "[", "does not operate on types containing float16"); if (base->getType().contains16BitInt()) requireInt16Arithmetic(loc, "[", "does not operate on types containing (u)int16"); if (base->getType().contains8BitInt()) requireInt8Arithmetic(loc, "[", "does not operate on types containing (u)int8"); } // check for constant folding if (base->getType().getQualifier().isFrontEndConstant() && index->getQualifier().isFrontEndConstant()) { // both base and index are front-end constants checkIndex(loc, base->getType(), indexValue); return intermediate.foldDereference(base, indexValue, loc); } // at least one of base and index is not a front-end constant variable... TIntermTyped* result = nullptr; #ifndef GLSLANG_WEB if (base->isReference() && ! base->isArray()) { requireExtensions(loc, 1, &E_GL_EXT_buffer_reference2, "buffer reference indexing"); if (base->getType().getReferentType()->containsUnsizedArray()) { error(loc, "cannot index reference to buffer containing an unsized array", "", ""); result = nullptr; } else { result = intermediate.addBinaryMath(EOpAdd, base, index, loc); if (result != nullptr) result->setType(base->getType()); } if (result == nullptr) { error(loc, "cannot index buffer reference", "", ""); result = intermediate.addConstantUnion(0.0, EbtFloat, loc); } return result; } if (base->getAsSymbolNode() && isIoResizeArray(base->getType())) handleIoResizeArrayAccess(loc, base); #endif if (index->getQualifier().isFrontEndConstant()) checkIndex(loc, base->getType(), indexValue); if (index->getQualifier().isFrontEndConstant()) { #ifndef GLSLANG_WEB if (base->getType().isUnsizedArray()) { base->getWritableType().updateImplicitArraySize(indexValue + 1); // For 2D per-view builtin arrays, update the inner dimension size in parent type if (base->getQualifier().isPerView() && base->getQualifier().builtIn != EbvNone) { TIntermBinary* binaryNode = base->getAsBinaryNode(); if (binaryNode) { TType& leftType = binaryNode->getLeft()->getWritableType(); TArraySizes& arraySizes = *leftType.getArraySizes(); assert(arraySizes.getNumDims() == 2); arraySizes.setDimSize(1, std::max(arraySizes.getDimSize(1), indexValue + 1)); } } } else #endif checkIndex(loc, base->getType(), indexValue); result = intermediate.addIndex(EOpIndexDirect, base, index, loc); } else { #ifndef GLSLANG_WEB if (base->getType().isUnsizedArray()) { // we have a variable index into an unsized array, which is okay, // depending on the situation if (base->getAsSymbolNode() && isIoResizeArray(base->getType())) error(loc, "", "[", "array must be sized by a redeclaration or layout qualifier before being indexed with a variable"); else { // it is okay for a run-time sized array checkRuntimeSizable(loc, *base); } base->getWritableType().setArrayVariablyIndexed(); } #endif if (base->getBasicType() == EbtBlock) { if (base->getQualifier().storage == EvqBuffer) requireProfile(base->getLoc(), ~EEsProfile, "variable indexing buffer block array"); else if (base->getQualifier().storage == EvqUniform) profileRequires(base->getLoc(), EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, "variable indexing uniform block array"); else { // input/output blocks either don't exist or can't be variably indexed } } else if (language == EShLangFragment && base->getQualifier().isPipeOutput()) requireProfile(base->getLoc(), ~EEsProfile, "variable indexing fragment shader output array"); else if (base->getBasicType() == EbtSampler && version >= 130) { const char* explanation = "variable indexing sampler array"; requireProfile(base->getLoc(), EEsProfile | ECoreProfile | ECompatibilityProfile, explanation); profileRequires(base->getLoc(), EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, explanation); profileRequires(base->getLoc(), ECoreProfile | ECompatibilityProfile, 400, nullptr, explanation); } result = intermediate.addIndex(EOpIndexIndirect, base, index, loc); } // Insert valid dereferenced result type TType newType(base->getType(), 0); if (base->getType().getQualifier().isConstant() && index->getQualifier().isConstant()) { newType.getQualifier().storage = EvqConst; // If base or index is a specialization constant, the result should also be a specialization constant. if (base->getType().getQualifier().isSpecConstant() || index->getQualifier().isSpecConstant()) { newType.getQualifier().makeSpecConstant(); } } else { newType.getQualifier().storage = EvqTemporary; newType.getQualifier().specConstant = false; } result->setType(newType); #ifndef GLSLANG_WEB inheritMemoryQualifiers(base->getQualifier(), result->getWritableType().getQualifier()); // Propagate nonuniform if (base->getQualifier().isNonUniform() || index->getQualifier().isNonUniform()) result->getWritableType().getQualifier().nonUniform = true; if (anyIndexLimits) handleIndexLimits(loc, base, index); #endif return result; } #ifndef GLSLANG_WEB // for ES 2.0 (version 100) limitations for almost all index operations except vertex-shader uniforms void TParseContext::handleIndexLimits(const TSourceLoc& /*loc*/, TIntermTyped* base, TIntermTyped* index) { if ((! limits.generalSamplerIndexing && base->getBasicType() == EbtSampler) || (! limits.generalUniformIndexing && base->getQualifier().isUniformOrBuffer() && language != EShLangVertex) || (! limits.generalAttributeMatrixVectorIndexing && base->getQualifier().isPipeInput() && language == EShLangVertex && (base->getType().isMatrix() || base->getType().isVector())) || (! limits.generalConstantMatrixVectorIndexing && base->getAsConstantUnion()) || (! limits.generalVariableIndexing && ! base->getType().getQualifier().isUniformOrBuffer() && ! base->getType().getQualifier().isPipeInput() && ! base->getType().getQualifier().isPipeOutput() && ! base->getType().getQualifier().isConstant()) || (! limits.generalVaryingIndexing && (base->getType().getQualifier().isPipeInput() || base->getType().getQualifier().isPipeOutput()))) { // it's too early to know what the inductive variables are, save it for post processing needsIndexLimitationChecking.push_back(index); } } // Make a shared symbol have a non-shared version that can be edited by the current // compile, such that editing its type will not change the shared version and will // effect all nodes sharing it. void TParseContext::makeEditable(TSymbol*& symbol) { TParseContextBase::makeEditable(symbol); // See if it's tied to IO resizing if (isIoResizeArray(symbol->getType())) ioArraySymbolResizeList.push_back(symbol); } // Return true if this is a geometry shader input array or tessellation control output array // or mesh shader output array. bool TParseContext::isIoResizeArray(const TType& type) const { return type.isArray() && ((language == EShLangGeometry && type.getQualifier().storage == EvqVaryingIn) || (language == EShLangTessControl && type.getQualifier().storage == EvqVaryingOut && ! type.getQualifier().patch) || (language == EShLangFragment && type.getQualifier().storage == EvqVaryingIn && type.getQualifier().pervertexNV) || (language == EShLangMeshNV && type.getQualifier().storage == EvqVaryingOut && !type.getQualifier().perTaskNV)); } // If an array is not isIoResizeArray() but is an io array, make sure it has the right size void TParseContext::fixIoArraySize(const TSourceLoc& loc, TType& type) { if (! type.isArray() || type.getQualifier().patch || symbolTable.atBuiltInLevel()) return; assert(! isIoResizeArray(type)); if (type.getQualifier().storage != EvqVaryingIn || type.getQualifier().patch) return; if (language == EShLangTessControl || language == EShLangTessEvaluation) { if (type.getOuterArraySize() != resources.maxPatchVertices) { if (type.isSizedArray()) error(loc, "tessellation input array size must be gl_MaxPatchVertices or implicitly sized", "[]", ""); type.changeOuterArraySize(resources.maxPatchVertices); } } } // Issue any errors if the non-array object is missing arrayness WRT // shader I/O that has array requirements. // All arrayness checking is handled in array paths, this is for void TParseContext::ioArrayCheck(const TSourceLoc& loc, const TType& type, const TString& identifier) { if (! type.isArray() && ! symbolTable.atBuiltInLevel()) { if (type.getQualifier().isArrayedIo(language) && !type.getQualifier().layoutPassthrough) error(loc, "type must be an array:", type.getStorageQualifierString(), identifier.c_str()); } } // Handle a dereference of a geometry shader input array or tessellation control output array. // See ioArraySymbolResizeList comment in ParseHelper.h. // void TParseContext::handleIoResizeArrayAccess(const TSourceLoc& /*loc*/, TIntermTyped* base) { TIntermSymbol* symbolNode = base->getAsSymbolNode(); assert(symbolNode); if (! symbolNode) return; // fix array size, if it can be fixed and needs to be fixed (will allow variable indexing) if (symbolNode->getType().isUnsizedArray()) { int newSize = getIoArrayImplicitSize(symbolNode->getType().getQualifier()); if (newSize > 0) symbolNode->getWritableType().changeOuterArraySize(newSize); } } // If there has been an input primitive declaration (geometry shader) or an output // number of vertices declaration(tessellation shader), make sure all input array types // match it in size. Types come either from nodes in the AST or symbols in the // symbol table. // // Types without an array size will be given one. // Types already having a size that is wrong will get an error. // void TParseContext::checkIoArraysConsistency(const TSourceLoc &loc, bool tailOnly) { int requiredSize = 0; TString featureString; size_t listSize = ioArraySymbolResizeList.size(); size_t i = 0; // If tailOnly = true, only check the last array symbol in the list. if (tailOnly) { i = listSize - 1; } for (bool firstIteration = true; i < listSize; ++i) { TType &type = ioArraySymbolResizeList[i]->getWritableType(); // As I/O array sizes don't change, fetch requiredSize only once, // except for mesh shaders which could have different I/O array sizes based on type qualifiers. if (firstIteration || (language == EShLangMeshNV)) { requiredSize = getIoArrayImplicitSize(type.getQualifier(), &featureString); if (requiredSize == 0) break; firstIteration = false; } checkIoArrayConsistency(loc, requiredSize, featureString.c_str(), type, ioArraySymbolResizeList[i]->getName()); } } int TParseContext::getIoArrayImplicitSize(const TQualifier &qualifier, TString *featureString) const { int expectedSize = 0; TString str = "unknown"; unsigned int maxVertices = intermediate.getVertices() != TQualifier::layoutNotSet ? intermediate.getVertices() : 0; if (language == EShLangGeometry) { expectedSize = TQualifier::mapGeometryToSize(intermediate.getInputPrimitive()); str = TQualifier::getGeometryString(intermediate.getInputPrimitive()); } else if (language == EShLangTessControl) { expectedSize = maxVertices; str = "vertices"; } else if (language == EShLangFragment) { // Number of vertices for Fragment shader is always three. expectedSize = 3; str = "vertices"; } else if (language == EShLangMeshNV) { unsigned int maxPrimitives = intermediate.getPrimitives() != TQualifier::layoutNotSet ? intermediate.getPrimitives() : 0; if (qualifier.builtIn == EbvPrimitiveIndicesNV) { expectedSize = maxPrimitives * TQualifier::mapGeometryToSize(intermediate.getOutputPrimitive()); str = "max_primitives*"; str += TQualifier::getGeometryString(intermediate.getOutputPrimitive()); } else if (qualifier.isPerPrimitive()) { expectedSize = maxPrimitives; str = "max_primitives"; } else { expectedSize = maxVertices; str = "max_vertices"; } } if (featureString) *featureString = str; return expectedSize; } void TParseContext::checkIoArrayConsistency(const TSourceLoc& loc, int requiredSize, const char* feature, TType& type, const TString& name) { if (type.isUnsizedArray()) type.changeOuterArraySize(requiredSize); else if (type.getOuterArraySize() != requiredSize) { if (language == EShLangGeometry) error(loc, "inconsistent input primitive for array size of", feature, name.c_str()); else if (language == EShLangTessControl) error(loc, "inconsistent output number of vertices for array size of", feature, name.c_str()); else if (language == EShLangFragment) { if (type.getOuterArraySize() > requiredSize) error(loc, " cannot be greater than 3 for pervertexNV", feature, name.c_str()); } else if (language == EShLangMeshNV) error(loc, "inconsistent output array size of", feature, name.c_str()); else assert(0); } } #endif // GLSLANG_WEB // Handle seeing a binary node with a math operation. // Returns nullptr if not semantically allowed. TIntermTyped* TParseContext::handleBinaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* left, TIntermTyped* right) { rValueErrorCheck(loc, str, left->getAsTyped()); rValueErrorCheck(loc, str, right->getAsTyped()); bool allowed = true; switch (op) { // TODO: Bring more source language-specific checks up from intermediate.cpp // to the specific parse helpers for that source language. case EOpLessThan: case EOpGreaterThan: case EOpLessThanEqual: case EOpGreaterThanEqual: if (! left->isScalar() || ! right->isScalar()) allowed = false; break; default: break; } if (((left->getType().contains16BitFloat() || right->getType().contains16BitFloat()) && !float16Arithmetic()) || ((left->getType().contains16BitInt() || right->getType().contains16BitInt()) && !int16Arithmetic()) || ((left->getType().contains8BitInt() || right->getType().contains8BitInt()) && !int8Arithmetic())) { allowed = false; } TIntermTyped* result = nullptr; if (allowed) { if ((left->isReference() || right->isReference())) requireExtensions(loc, 1, &E_GL_EXT_buffer_reference2, "buffer reference math"); result = intermediate.addBinaryMath(op, left, right, loc); } if (result == nullptr) binaryOpError(loc, str, left->getCompleteString(), right->getCompleteString()); return result; } // Handle seeing a unary node with a math operation. TIntermTyped* TParseContext::handleUnaryMath(const TSourceLoc& loc, const char* str, TOperator op, TIntermTyped* childNode) { rValueErrorCheck(loc, str, childNode); bool allowed = true; if ((childNode->getType().contains16BitFloat() && !float16Arithmetic()) || (childNode->getType().contains16BitInt() && !int16Arithmetic()) || (childNode->getType().contains8BitInt() && !int8Arithmetic())) { allowed = false; } TIntermTyped* result = nullptr; if (allowed) result = intermediate.addUnaryMath(op, childNode, loc); if (result) return result; else unaryOpError(loc, str, childNode->getCompleteString()); return childNode; } // // Handle seeing a base.field dereference in the grammar. // TIntermTyped* TParseContext::handleDotDereference(const TSourceLoc& loc, TIntermTyped* base, const TString& field) { variableCheck(base); // // .length() can't be resolved until we later see the function-calling syntax. // Save away the name in the AST for now. Processing is completed in // handleLengthMethod(). // if (field == "length") { if (base->isArray()) { profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, ".length"); profileRequires(loc, EEsProfile, 300, nullptr, ".length"); } else if (base->isVector() || base->isMatrix()) { const char* feature = ".length() on vectors and matrices"; requireProfile(loc, ~EEsProfile, feature); profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, feature); } else if (!base->getType().isCoopMat()) { error(loc, "does not operate on this type:", field.c_str(), base->getType().getCompleteString().c_str()); return base; } return intermediate.addMethod(base, TType(EbtInt), &field, loc); } // It's not .length() if we get to here. if (base->isArray()) { error(loc, "cannot apply to an array:", ".", field.c_str()); return base; } if (base->getType().isCoopMat()) { error(loc, "cannot apply to a cooperative matrix type:", ".", field.c_str()); return base; } // It's neither an array nor .length() if we get here, // leaving swizzles and struct/block dereferences. TIntermTyped* result = base; if ((base->isVector() || base->isScalar()) && (base->isFloatingDomain() || base->isIntegerDomain() || base->getBasicType() == EbtBool)) { result = handleDotSwizzle(loc, base, field); } else if (base->isStruct() || base->isReference()) { const TTypeList* fields = base->isReference() ? base->getType().getReferentType()->getStruct() : base->getType().getStruct(); bool fieldFound = false; int member; for (member = 0; member < (int)fields->size(); ++member) { if ((*fields)[member].type->getFieldName() == field) { fieldFound = true; break; } } if (fieldFound) { if (base->getType().getQualifier().isFrontEndConstant()) result = intermediate.foldDereference(base, member, loc); else { blockMemberExtensionCheck(loc, base, member, field); TIntermTyped* index = intermediate.addConstantUnion(member, loc); result = intermediate.addIndex(EOpIndexDirectStruct, base, index, loc); result->setType(*(*fields)[member].type); if ((*fields)[member].type->getQualifier().isIo()) intermediate.addIoAccessed(field); } inheritMemoryQualifiers(base->getQualifier(), result->getWritableType().getQualifier()); } else error(loc, "no such field in structure", field.c_str(), ""); } else error(loc, "does not apply to this type:", field.c_str(), base->getType().getCompleteString().c_str()); // Propagate noContraction up the dereference chain if (base->getQualifier().isNoContraction()) result->getWritableType().getQualifier().setNoContraction(); // Propagate nonuniform if (base->getQualifier().isNonUniform()) result->getWritableType().getQualifier().nonUniform = true; return result; } // // Handle seeing a base.swizzle, a subset of base.identifier in the grammar. // TIntermTyped* TParseContext::handleDotSwizzle(const TSourceLoc& loc, TIntermTyped* base, const TString& field) { TIntermTyped* result = base; if (base->isScalar()) { const char* dotFeature = "scalar swizzle"; requireProfile(loc, ~EEsProfile, dotFeature); profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, dotFeature); } TSwizzleSelectors selectors; parseSwizzleSelector(loc, field, base->getVectorSize(), selectors); if (base->isVector() && selectors.size() != 1 && base->getType().contains16BitFloat()) requireFloat16Arithmetic(loc, ".", "can't swizzle types containing float16"); if (base->isVector() && selectors.size() != 1 && base->getType().contains16BitInt()) requireInt16Arithmetic(loc, ".", "can't swizzle types containing (u)int16"); if (base->isVector() && selectors.size() != 1 && base->getType().contains8BitInt()) requireInt8Arithmetic(loc, ".", "can't swizzle types containing (u)int8"); if (base->isScalar()) { if (selectors.size() == 1) return result; else { TType type(base->getBasicType(), EvqTemporary, selectors.size()); // Swizzle operations propagate specialization-constantness if (base->getQualifier().isSpecConstant()) type.getQualifier().makeSpecConstant(); return addConstructor(loc, base, type); } } if (base->getType().getQualifier().isFrontEndConstant()) result = intermediate.foldSwizzle(base, selectors, loc); else { if (selectors.size() == 1) { TIntermTyped* index = intermediate.addConstantUnion(selectors[0], loc); result = intermediate.addIndex(EOpIndexDirect, base, index, loc); result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision)); } else { TIntermTyped* index = intermediate.addSwizzle(selectors, loc); result = intermediate.addIndex(EOpVectorSwizzle, base, index, loc); result->setType(TType(base->getBasicType(), EvqTemporary, base->getType().getQualifier().precision, selectors.size())); } // Swizzle operations propagate specialization-constantness if (base->getType().getQualifier().isSpecConstant()) result->getWritableType().getQualifier().makeSpecConstant(); } return result; } void TParseContext::blockMemberExtensionCheck(const TSourceLoc& loc, const TIntermTyped* base, int member, const TString& memberName) { // a block that needs extension checking is either 'base', or if arrayed, // one level removed to the left const TIntermSymbol* baseSymbol = nullptr; if (base->getAsBinaryNode() == nullptr) baseSymbol = base->getAsSymbolNode(); else baseSymbol = base->getAsBinaryNode()->getLeft()->getAsSymbolNode(); if (baseSymbol == nullptr) return; const TSymbol* symbol = symbolTable.find(baseSymbol->getName()); if (symbol == nullptr) return; const TVariable* variable = symbol->getAsVariable(); if (variable == nullptr) return; if (!variable->hasMemberExtensions()) return; // We now have a variable that is the base of a dot reference // with members that need extension checking. if (variable->getNumMemberExtensions(member) > 0) requireExtensions(loc, variable->getNumMemberExtensions(member), variable->getMemberExtensions(member), memberName.c_str()); } // // Handle seeing a function declarator in the grammar. This is the precursor // to recognizing a function prototype or function definition. // TFunction* TParseContext::handleFunctionDeclarator(const TSourceLoc& loc, TFunction& function, bool prototype) { // ES can't declare prototypes inside functions if (! symbolTable.atGlobalLevel()) requireProfile(loc, ~EEsProfile, "local function declaration"); // // Multiple declarations of the same function name are allowed. // // If this is a definition, the definition production code will check for redefinitions // (we don't know at this point if it's a definition or not). // // Redeclarations (full signature match) are allowed. But, return types and parameter qualifiers must also match. // - except ES 100, which only allows a single prototype // // ES 100 does not allow redefining, but does allow overloading of built-in functions. // ES 300 does not allow redefining or overloading of built-in functions. // bool builtIn; TSymbol* symbol = symbolTable.find(function.getMangledName(), &builtIn); if (symbol && symbol->getAsFunction() && builtIn) requireProfile(loc, ~EEsProfile, "redefinition of built-in function"); const TFunction* prevDec = symbol ? symbol->getAsFunction() : 0; if (prevDec) { if (prevDec->isPrototyped() && prototype) profileRequires(loc, EEsProfile, 300, nullptr, "multiple prototypes for same function"); if (prevDec->getType() != function.getType()) error(loc, "overloaded functions must have the same return type", function.getName().c_str(), ""); for (int i = 0; i < prevDec->getParamCount(); ++i) { if ((*prevDec)[i].type->getQualifier().storage != function[i].type->getQualifier().storage) error(loc, "overloaded functions must have the same parameter storage qualifiers for argument", function[i].type->getStorageQualifierString(), "%d", i+1); if ((*prevDec)[i].type->getQualifier().precision != function[i].type->getQualifier().precision) error(loc, "overloaded functions must have the same parameter precision qualifiers for argument", function[i].type->getPrecisionQualifierString(), "%d", i+1); } } arrayObjectCheck(loc, function.getType(), "array in function return type"); if (prototype) { // All built-in functions are defined, even though they don't have a body. // Count their prototype as a definition instead. if (symbolTable.atBuiltInLevel()) function.setDefined(); else { if (prevDec && ! builtIn) symbol->getAsFunction()->setPrototyped(); // need a writable one, but like having prevDec as a const function.setPrototyped(); } } // This insert won't actually insert it if it's a duplicate signature, but it will still check for // other forms of name collisions. if (! symbolTable.insert(function)) error(loc, "function name is redeclaration of existing name", function.getName().c_str(), ""); // // If this is a redeclaration, it could also be a definition, // in which case, we need to use the parameter names from this one, and not the one that's // being redeclared. So, pass back this declaration, not the one in the symbol table. // return &function; } // // Handle seeing the function prototype in front of a function definition in the grammar. // The body is handled after this function returns. // TIntermAggregate* TParseContext::handleFunctionDefinition(const TSourceLoc& loc, TFunction& function) { currentCaller = function.getMangledName(); TSymbol* symbol = symbolTable.find(function.getMangledName()); TFunction* prevDec = symbol ? symbol->getAsFunction() : nullptr; if (! prevDec) error(loc, "can't find function", function.getName().c_str(), ""); // Note: 'prevDec' could be 'function' if this is the first time we've seen function // as it would have just been put in the symbol table. Otherwise, we're looking up // an earlier occurrence. if (prevDec && prevDec->isDefined()) { // Then this function already has a body. error(loc, "function already has a body", function.getName().c_str(), ""); } if (prevDec && ! prevDec->isDefined()) { prevDec->setDefined(); // Remember the return type for later checking for RETURN statements. currentFunctionType = &(prevDec->getType()); } else currentFunctionType = new TType(EbtVoid); functionReturnsValue = false; // Check for entry point if (function.getName().compare(intermediate.getEntryPointName().c_str()) == 0) { intermediate.setEntryPointMangledName(function.getMangledName().c_str()); intermediate.incrementEntryPointCount(); inMain = true; } else inMain = false; // // Raise error message if main function takes any parameters or returns anything other than void // if (inMain) { if (function.getParamCount() > 0) error(loc, "function cannot take any parameter(s)", function.getName().c_str(), ""); if (function.getType().getBasicType() != EbtVoid) error(loc, "", function.getType().getBasicTypeString().c_str(), "entry point cannot return a value"); } // // New symbol table scope for body of function plus its arguments // symbolTable.push(); // // Insert parameters into the symbol table. // If the parameter has no name, it's not an error, just don't insert it // (could be used for unused args). // // Also, accumulate the list of parameters into the HIL, so lower level code // knows where to find parameters. // TIntermAggregate* paramNodes = new TIntermAggregate; for (int i = 0; i < function.getParamCount(); i++) { TParameter& param = function[i]; if (param.name != nullptr) { TVariable *variable = new TVariable(param.name, *param.type); // Insert the parameters with name in the symbol table. if (! symbolTable.insert(*variable)) error(loc, "redefinition", variable->getName().c_str(), ""); else { // Transfer ownership of name pointer to symbol table. param.name = nullptr; // Add the parameter to the HIL paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*variable, loc), loc); } } else paramNodes = intermediate.growAggregate(paramNodes, intermediate.addSymbol(*param.type, loc), loc); } intermediate.setAggregateOperator(paramNodes, EOpParameters, TType(EbtVoid), loc); loopNestingLevel = 0; statementNestingLevel = 0; controlFlowNestingLevel = 0; postEntryPointReturn = false; return paramNodes; } // // Handle seeing function call syntax in the grammar, which could be any of // - .length() method // - constructor // - a call to a built-in function mapped to an operator // - a call to a built-in function that will remain a function call (e.g., texturing) // - user function // - subroutine call (not implemented yet) // TIntermTyped* TParseContext::handleFunctionCall(const TSourceLoc& loc, TFunction* function, TIntermNode* arguments) { TIntermTyped* result = nullptr; if (function->getBuiltInOp() == EOpArrayLength) result = handleLengthMethod(loc, function, arguments); else if (function->getBuiltInOp() != EOpNull) { // // Then this should be a constructor. // Don't go through the symbol table for constructors. // Their parameters will be verified algorithmically. // TType type(EbtVoid); // use this to get the type back if (! constructorError(loc, arguments, *function, function->getBuiltInOp(), type)) { // // It's a constructor, of type 'type'. // result = addConstructor(loc, arguments, type); if (result == nullptr) error(loc, "cannot construct with these arguments", type.getCompleteString().c_str(), ""); } } else { // // Find it in the symbol table. // const TFunction* fnCandidate; bool builtIn; fnCandidate = findFunction(loc, *function, builtIn); if (fnCandidate) { // This is a declared function that might map to // - a built-in operator, // - a built-in function not mapped to an operator, or // - a user function. // Error check for a function requiring specific extensions present. if (builtIn && fnCandidate->getNumExtensions()) requireExtensions(loc, fnCandidate->getNumExtensions(), fnCandidate->getExtensions(), fnCandidate->getName().c_str()); if (builtIn && fnCandidate->getType().contains16BitFloat()) requireFloat16Arithmetic(loc, "built-in function", "float16 types can only be in uniform block or buffer storage"); if (builtIn && fnCandidate->getType().contains16BitInt()) requireInt16Arithmetic(loc, "built-in function", "(u)int16 types can only be in uniform block or buffer storage"); if (builtIn && fnCandidate->getType().contains8BitInt()) requireInt8Arithmetic(loc, "built-in function", "(u)int8 types can only be in uniform block or buffer storage"); if (arguments != nullptr) { // Make sure qualifications work for these arguments. TIntermAggregate* aggregate = arguments->getAsAggregate(); for (int i = 0; i < fnCandidate->getParamCount(); ++i) { // At this early point there is a slight ambiguity between whether an aggregate 'arguments' // is the single argument itself or its children are the arguments. Only one argument // means take 'arguments' itself as the one argument. TIntermNode* arg = fnCandidate->getParamCount() == 1 ? arguments : (aggregate ? aggregate->getSequence()[i] : arguments); TQualifier& formalQualifier = (*fnCandidate)[i].type->getQualifier(); if (formalQualifier.isParamOutput()) { if (lValueErrorCheck(arguments->getLoc(), "assign", arg->getAsTyped())) error(arguments->getLoc(), "Non-L-value cannot be passed for 'out' or 'inout' parameters.", "out", ""); } const TType& argType = arg->getAsTyped()->getType(); const TQualifier& argQualifier = argType.getQualifier(); if (argQualifier.isMemory() && (argType.containsOpaque() || argType.isReference())) { const char* message = "argument cannot drop memory qualifier when passed to formal parameter"; #ifndef GLSLANG_WEB if (argQualifier.volatil && ! formalQualifier.volatil) error(arguments->getLoc(), message, "volatile", ""); if (argQualifier.coherent && ! (formalQualifier.devicecoherent || formalQualifier.coherent)) error(arguments->getLoc(), message, "coherent", ""); if (argQualifier.devicecoherent && ! (formalQualifier.devicecoherent || formalQualifier.coherent)) error(arguments->getLoc(), message, "devicecoherent", ""); if (argQualifier.queuefamilycoherent && ! (formalQualifier.queuefamilycoherent || formalQualifier.devicecoherent || formalQualifier.coherent)) error(arguments->getLoc(), message, "queuefamilycoherent", ""); if (argQualifier.workgroupcoherent && ! (formalQualifier.workgroupcoherent || formalQualifier.queuefamilycoherent || formalQualifier.devicecoherent || formalQualifier.coherent)) error(arguments->getLoc(), message, "workgroupcoherent", ""); if (argQualifier.subgroupcoherent && ! (formalQualifier.subgroupcoherent || formalQualifier.workgroupcoherent || formalQualifier.queuefamilycoherent || formalQualifier.devicecoherent || formalQualifier.coherent)) error(arguments->getLoc(), message, "subgroupcoherent", ""); if (argQualifier.readonly && ! formalQualifier.readonly) error(arguments->getLoc(), message, "readonly", ""); if (argQualifier.writeonly && ! formalQualifier.writeonly) error(arguments->getLoc(), message, "writeonly", ""); // Don't check 'restrict', it is different than the rest: // "...but only restrict can be taken away from a calling argument, by a formal parameter that // lacks the restrict qualifier..." #endif } if (!builtIn && argQualifier.getFormat() != formalQualifier.getFormat()) { // we have mismatched formats, which should only be allowed if writeonly // and at least one format is unknown if (!formalQualifier.isWriteOnly() || (formalQualifier.getFormat() != ElfNone && argQualifier.getFormat() != ElfNone)) error(arguments->getLoc(), "image formats must match", "format", ""); } if (builtIn && arg->getAsTyped()->getType().contains16BitFloat()) requireFloat16Arithmetic(arguments->getLoc(), "built-in function", "float16 types can only be in uniform block or buffer storage"); if (builtIn && arg->getAsTyped()->getType().contains16BitInt()) requireInt16Arithmetic(arguments->getLoc(), "built-in function", "(u)int16 types can only be in uniform block or buffer storage"); if (builtIn && arg->getAsTyped()->getType().contains8BitInt()) requireInt8Arithmetic(arguments->getLoc(), "built-in function", "(u)int8 types can only be in uniform block or buffer storage"); // TODO 4.5 functionality: A shader will fail to compile // if the value passed to the memargument of an atomic memory function does not correspond to a buffer or // shared variable. It is acceptable to pass an element of an array or a single component of a vector to the // memargument of an atomic memory function, as long as the underlying array or vector is a buffer or // shared variable. } // Convert 'in' arguments addInputArgumentConversions(*fnCandidate, arguments); // arguments may be modified if it's just a single argument node } if (builtIn && fnCandidate->getBuiltInOp() != EOpNull) { // A function call mapped to a built-in operation. result = handleBuiltInFunctionCall(loc, arguments, *fnCandidate); } else { // This is a function call not mapped to built-in operator. // It could still be a built-in function, but only if PureOperatorBuiltins == false. result = intermediate.setAggregateOperator(arguments, EOpFunctionCall, fnCandidate->getType(), loc); TIntermAggregate* call = result->getAsAggregate(); call->setName(fnCandidate->getMangledName()); // this is how we know whether the given function is a built-in function or a user-defined function // if builtIn == false, it's a userDefined -> could be an overloaded built-in function also // if builtIn == true, it's definitely a built-in function with EOpNull if (! builtIn) { call->setUserDefined(); if (symbolTable.atGlobalLevel()) { requireProfile(loc, ~EEsProfile, "calling user function from global scope"); intermediate.addToCallGraph(infoSink, "main(", fnCandidate->getMangledName()); } else intermediate.addToCallGraph(infoSink, currentCaller, fnCandidate->getMangledName()); } #ifndef GLSLANG_WEB if (builtIn) nonOpBuiltInCheck(loc, *fnCandidate, *call); else #endif userFunctionCallCheck(loc, *call); } // Convert 'out' arguments. If it was a constant folded built-in, it won't be an aggregate anymore. // Built-ins with a single argument aren't called with an aggregate, but they also don't have an output. // Also, build the qualifier list for user function calls, which are always called with an aggregate. if (result->getAsAggregate()) { TQualifierList& qualifierList = result->getAsAggregate()->getQualifierList(); for (int i = 0; i < fnCandidate->getParamCount(); ++i) { TStorageQualifier qual = (*fnCandidate)[i].type->getQualifier().storage; qualifierList.push_back(qual); } result = addOutputArgumentConversions(*fnCandidate, *result->getAsAggregate()); } if (result->getAsTyped()->getType().isCoopMat() && !result->getAsTyped()->getType().isParameterized()) { assert(fnCandidate->getBuiltInOp() == EOpCooperativeMatrixMulAdd); result->setType(result->getAsAggregate()->getSequence()[2]->getAsTyped()->getType()); } } } // generic error recovery // TODO: simplification: localize all the error recoveries that look like this, and taking type into account to reduce cascades if (result == nullptr) result = intermediate.addConstantUnion(0.0, EbtFloat, loc); return result; } TIntermTyped* TParseContext::handleBuiltInFunctionCall(TSourceLoc loc, TIntermNode* arguments, const TFunction& function) { checkLocation(loc, function.getBuiltInOp()); TIntermTyped *result = intermediate.addBuiltInFunctionCall(loc, function.getBuiltInOp(), function.getParamCount() == 1, arguments, function.getType()); if (result != nullptr && obeyPrecisionQualifiers()) computeBuiltinPrecisions(*result, function); if (result == nullptr) { if (arguments == nullptr) error(loc, " wrong operand type", "Internal Error", "built in unary operator function. Type: %s", ""); else error(arguments->getLoc(), " wrong operand type", "Internal Error", "built in unary operator function. Type: %s", static_cast(arguments)->getCompleteString().c_str()); } else if (result->getAsOperator()) builtInOpCheck(loc, function, *result->getAsOperator()); return result; } // "The operation of a built-in function can have a different precision // qualification than the precision qualification of the resulting value. // These two precision qualifications are established as follows. // // The precision qualification of the operation of a built-in function is // based on the precision qualification of its input arguments and formal // parameters: When a formal parameter specifies a precision qualifier, // that is used, otherwise, the precision qualification of the calling // argument is used. The highest precision of these will be the precision // qualification of the operation of the built-in function. Generally, // this is applied across all arguments to a built-in function, with the // exceptions being: // - bitfieldExtract and bitfieldInsert ignore the 'offset' and 'bits' // arguments. // - interpolateAt* functions only look at the 'interpolant' argument. // // The precision qualification of the result of a built-in function is // determined in one of the following ways: // // - For the texture sampling, image load, and image store functions, // the precision of the return type matches the precision of the // sampler type // // Otherwise: // // - For prototypes that do not specify a resulting precision qualifier, // the precision will be the same as the precision of the operation. // // - For prototypes that do specify a resulting precision qualifier, // the specified precision qualifier is the precision qualification of // the result." // void TParseContext::computeBuiltinPrecisions(TIntermTyped& node, const TFunction& function) { TPrecisionQualifier operationPrecision = EpqNone; TPrecisionQualifier resultPrecision = EpqNone; TIntermOperator* opNode = node.getAsOperator(); if (opNode == nullptr) return; if (TIntermUnary* unaryNode = node.getAsUnaryNode()) { operationPrecision = std::max(function[0].type->getQualifier().precision, unaryNode->getOperand()->getType().getQualifier().precision); if (function.getType().getBasicType() != EbtBool) resultPrecision = function.getType().getQualifier().precision == EpqNone ? operationPrecision : function.getType().getQualifier().precision; } else if (TIntermAggregate* agg = node.getAsAggregate()) { TIntermSequence& sequence = agg->getSequence(); unsigned int numArgs = (unsigned int)sequence.size(); switch (agg->getOp()) { case EOpBitfieldExtract: numArgs = 1; break; case EOpBitfieldInsert: numArgs = 2; break; case EOpInterpolateAtCentroid: case EOpInterpolateAtOffset: case EOpInterpolateAtSample: numArgs = 1; break; case EOpDebugPrintf: numArgs = 0; break; default: break; } // find the maximum precision from the arguments and parameters for (unsigned int arg = 0; arg < numArgs; ++arg) { operationPrecision = std::max(operationPrecision, sequence[arg]->getAsTyped()->getQualifier().precision); operationPrecision = std::max(operationPrecision, function[arg].type->getQualifier().precision); } // compute the result precision if (agg->isSampling() || agg->getOp() == EOpImageLoad || agg->getOp() == EOpImageStore || agg->getOp() == EOpImageLoadLod || agg->getOp() == EOpImageStoreLod) resultPrecision = sequence[0]->getAsTyped()->getQualifier().precision; else if (function.getType().getBasicType() != EbtBool) resultPrecision = function.getType().getQualifier().precision == EpqNone ? operationPrecision : function.getType().getQualifier().precision; } // Propagate precision through this node and its children. That algorithm stops // when a precision is found, so start by clearing this subroot precision opNode->getQualifier().precision = EpqNone; if (operationPrecision != EpqNone) { opNode->propagatePrecision(operationPrecision); opNode->setOperationPrecision(operationPrecision); } // Now, set the result precision, which might not match opNode->getQualifier().precision = resultPrecision; } TIntermNode* TParseContext::handleReturnValue(const TSourceLoc& loc, TIntermTyped* value) { #ifndef GLSLANG_WEB storage16BitAssignmentCheck(loc, value->getType(), "return"); #endif functionReturnsValue = true; TIntermBranch* branch = nullptr; if (currentFunctionType->getBasicType() == EbtVoid) { error(loc, "void function cannot return a value", "return", ""); branch = intermediate.addBranch(EOpReturn, loc); } else if (*currentFunctionType != value->getType()) { TIntermTyped* converted = intermediate.addConversion(EOpReturn, *currentFunctionType, value); if (converted) { if (*currentFunctionType != converted->getType()) error(loc, "cannot convert return value to function return type", "return", ""); if (version < 420) warn(loc, "type conversion on return values was not explicitly allowed until version 420", "return", ""); branch = intermediate.addBranch(EOpReturn, converted, loc); } else { error(loc, "type does not match, or is not convertible to, the function's return type", "return", ""); branch = intermediate.addBranch(EOpReturn, value, loc); } } else branch = intermediate.addBranch(EOpReturn, value, loc); branch->updatePrecision(currentFunctionType->getQualifier().precision); return branch; } // See if the operation is being done in an illegal location. void TParseContext::checkLocation(const TSourceLoc& loc, TOperator op) { #ifndef GLSLANG_WEB switch (op) { case EOpBarrier: if (language == EShLangTessControl) { if (controlFlowNestingLevel > 0) error(loc, "tessellation control barrier() cannot be placed within flow control", "", ""); if (! inMain) error(loc, "tessellation control barrier() must be in main()", "", ""); else if (postEntryPointReturn) error(loc, "tessellation control barrier() cannot be placed after a return from main()", "", ""); } break; case EOpBeginInvocationInterlock: if (language != EShLangFragment) error(loc, "beginInvocationInterlockARB() must be in a fragment shader", "", ""); if (! inMain) error(loc, "beginInvocationInterlockARB() must be in main()", "", ""); else if (postEntryPointReturn) error(loc, "beginInvocationInterlockARB() cannot be placed after a return from main()", "", ""); if (controlFlowNestingLevel > 0) error(loc, "beginInvocationInterlockARB() cannot be placed within flow control", "", ""); if (beginInvocationInterlockCount > 0) error(loc, "beginInvocationInterlockARB() must only be called once", "", ""); if (endInvocationInterlockCount > 0) error(loc, "beginInvocationInterlockARB() must be called before endInvocationInterlockARB()", "", ""); beginInvocationInterlockCount++; // default to pixel_interlock_ordered if (intermediate.getInterlockOrdering() == EioNone) intermediate.setInterlockOrdering(EioPixelInterlockOrdered); break; case EOpEndInvocationInterlock: if (language != EShLangFragment) error(loc, "endInvocationInterlockARB() must be in a fragment shader", "", ""); if (! inMain) error(loc, "endInvocationInterlockARB() must be in main()", "", ""); else if (postEntryPointReturn) error(loc, "endInvocationInterlockARB() cannot be placed after a return from main()", "", ""); if (controlFlowNestingLevel > 0) error(loc, "endInvocationInterlockARB() cannot be placed within flow control", "", ""); if (endInvocationInterlockCount > 0) error(loc, "endInvocationInterlockARB() must only be called once", "", ""); if (beginInvocationInterlockCount == 0) error(loc, "beginInvocationInterlockARB() must be called before endInvocationInterlockARB()", "", ""); endInvocationInterlockCount++; break; default: break; } #endif } // Finish processing object.length(). This started earlier in handleDotDereference(), where // the ".length" part was recognized and semantically checked, and finished here where the // function syntax "()" is recognized. // // Return resulting tree node. TIntermTyped* TParseContext::handleLengthMethod(const TSourceLoc& loc, TFunction* function, TIntermNode* intermNode) { int length = 0; if (function->getParamCount() > 0) error(loc, "method does not accept any arguments", function->getName().c_str(), ""); else { const TType& type = intermNode->getAsTyped()->getType(); if (type.isArray()) { if (type.isUnsizedArray()) { #ifndef GLSLANG_WEB if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) { // We could be between a layout declaration that gives a built-in io array implicit size and // a user redeclaration of that array, meaning we have to substitute its implicit size here // without actually redeclaring the array. (It is an error to use a member before the // redeclaration, but not an error to use the array name itself.) const TString& name = intermNode->getAsSymbolNode()->getName(); if (name == "gl_in" || name == "gl_out" || name == "gl_MeshVerticesNV" || name == "gl_MeshPrimitivesNV") { length = getIoArrayImplicitSize(type.getQualifier()); } } #endif if (length == 0) { #ifndef GLSLANG_WEB if (intermNode->getAsSymbolNode() && isIoResizeArray(type)) error(loc, "", function->getName().c_str(), "array must first be sized by a redeclaration or layout qualifier"); else if (isRuntimeLength(*intermNode->getAsTyped())) { // Create a unary op and let the back end handle it return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt)); } else #endif error(loc, "", function->getName().c_str(), "array must be declared with a size before using this method"); } } else if (type.getOuterArrayNode()) { // If the array's outer size is specified by an intermediate node, it means the array's length // was specified by a specialization constant. In such a case, we should return the node of the // specialization constants to represent the length. return type.getOuterArrayNode(); } else length = type.getOuterArraySize(); } else if (type.isMatrix()) length = type.getMatrixCols(); else if (type.isVector()) length = type.getVectorSize(); else if (type.isCoopMat()) return intermediate.addBuiltInFunctionCall(loc, EOpArrayLength, true, intermNode, TType(EbtInt)); else { // we should not get here, because earlier semantic checking should have prevented this path error(loc, ".length()", "unexpected use of .length()", ""); } } if (length == 0) length = 1; return intermediate.addConstantUnion(length, loc); } // // Add any needed implicit conversions for function-call arguments to input parameters. // void TParseContext::addInputArgumentConversions(const TFunction& function, TIntermNode*& arguments) const { #ifndef GLSLANG_WEB TIntermAggregate* aggregate = arguments->getAsAggregate(); // Process each argument's conversion for (int i = 0; i < function.getParamCount(); ++i) { // At this early point there is a slight ambiguity between whether an aggregate 'arguments' // is the single argument itself or its children are the arguments. Only one argument // means take 'arguments' itself as the one argument. TIntermTyped* arg = function.getParamCount() == 1 ? arguments->getAsTyped() : (aggregate ? aggregate->getSequence()[i]->getAsTyped() : arguments->getAsTyped()); if (*function[i].type != arg->getType()) { if (function[i].type->getQualifier().isParamInput() && !function[i].type->isCoopMat()) { // In-qualified arguments just need an extra node added above the argument to // convert to the correct type. arg = intermediate.addConversion(EOpFunctionCall, *function[i].type, arg); if (arg) { if (function.getParamCount() == 1) arguments = arg; else { if (aggregate) aggregate->getSequence()[i] = arg; else arguments = arg; } } } } } #endif } // // Add any needed implicit output conversions for function-call arguments. This // can require a new tree topology, complicated further by whether the function // has a return value. // // Returns a node of a subtree that evaluates to the return value of the function. // TIntermTyped* TParseContext::addOutputArgumentConversions(const TFunction& function, TIntermAggregate& intermNode) const { #ifdef GLSLANG_WEB return &intermNode; #else TIntermSequence& arguments = intermNode.getSequence(); // Will there be any output conversions? bool outputConversions = false; for (int i = 0; i < function.getParamCount(); ++i) { if (*function[i].type != arguments[i]->getAsTyped()->getType() && function[i].type->getQualifier().isParamOutput()) { outputConversions = true; break; } } if (! outputConversions) return &intermNode; // Setup for the new tree, if needed: // // Output conversions need a different tree topology. // Out-qualified arguments need a temporary of the correct type, with the call // followed by an assignment of the temporary to the original argument: // void: function(arg, ...) -> ( function(tempArg, ...), arg = tempArg, ...) // ret = function(arg, ...) -> ret = (tempRet = function(tempArg, ...), arg = tempArg, ..., tempRet) // Where the "tempArg" type needs no conversion as an argument, but will convert on assignment. TIntermTyped* conversionTree = nullptr; TVariable* tempRet = nullptr; if (intermNode.getBasicType() != EbtVoid) { // do the "tempRet = function(...), " bit from above tempRet = makeInternalVariable("tempReturn", intermNode.getType()); TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc()); conversionTree = intermediate.addAssign(EOpAssign, tempRetNode, &intermNode, intermNode.getLoc()); } else conversionTree = &intermNode; conversionTree = intermediate.makeAggregate(conversionTree); // Process each argument's conversion for (int i = 0; i < function.getParamCount(); ++i) { if (*function[i].type != arguments[i]->getAsTyped()->getType()) { if (function[i].type->getQualifier().isParamOutput()) { // Out-qualified arguments need to use the topology set up above. // do the " ...(tempArg, ...), arg = tempArg" bit from above TType paramType; paramType.shallowCopy(*function[i].type); if (arguments[i]->getAsTyped()->getType().isParameterized() && !paramType.isParameterized()) { paramType.shallowCopy(arguments[i]->getAsTyped()->getType()); paramType.copyTypeParameters(*arguments[i]->getAsTyped()->getType().getTypeParameters()); } TVariable* tempArg = makeInternalVariable("tempArg", paramType); tempArg->getWritableType().getQualifier().makeTemporary(); TIntermSymbol* tempArgNode = intermediate.addSymbol(*tempArg, intermNode.getLoc()); TIntermTyped* tempAssign = intermediate.addAssign(EOpAssign, arguments[i]->getAsTyped(), tempArgNode, arguments[i]->getLoc()); conversionTree = intermediate.growAggregate(conversionTree, tempAssign, arguments[i]->getLoc()); // replace the argument with another node for the same tempArg variable arguments[i] = intermediate.addSymbol(*tempArg, intermNode.getLoc()); } } } // Finalize the tree topology (see bigger comment above). if (tempRet) { // do the "..., tempRet" bit from above TIntermSymbol* tempRetNode = intermediate.addSymbol(*tempRet, intermNode.getLoc()); conversionTree = intermediate.growAggregate(conversionTree, tempRetNode, intermNode.getLoc()); } conversionTree = intermediate.setAggregateOperator(conversionTree, EOpComma, intermNode.getType(), intermNode.getLoc()); return conversionTree; #endif } TIntermTyped* TParseContext::addAssign(const TSourceLoc& loc, TOperator op, TIntermTyped* left, TIntermTyped* right) { if ((op == EOpAddAssign || op == EOpSubAssign) && left->isReference()) requireExtensions(loc, 1, &E_GL_EXT_buffer_reference2, "+= and -= on a buffer reference"); return intermediate.addAssign(op, left, right, loc); } void TParseContext::memorySemanticsCheck(const TSourceLoc& loc, const TFunction& fnCandidate, const TIntermOperator& callNode) { const TIntermSequence* argp = &callNode.getAsAggregate()->getSequence(); //const int gl_SemanticsRelaxed = 0x0; const int gl_SemanticsAcquire = 0x2; const int gl_SemanticsRelease = 0x4; const int gl_SemanticsAcquireRelease = 0x8; const int gl_SemanticsMakeAvailable = 0x2000; const int gl_SemanticsMakeVisible = 0x4000; const int gl_SemanticsVolatile = 0x8000; //const int gl_StorageSemanticsNone = 0x0; const int gl_StorageSemanticsBuffer = 0x40; const int gl_StorageSemanticsShared = 0x100; const int gl_StorageSemanticsImage = 0x800; const int gl_StorageSemanticsOutput = 0x1000; unsigned int semantics = 0, storageClassSemantics = 0; unsigned int semantics2 = 0, storageClassSemantics2 = 0; const TIntermTyped* arg0 = (*argp)[0]->getAsTyped(); const bool isMS = arg0->getBasicType() == EbtSampler && arg0->getType().getSampler().isMultiSample(); // Grab the semantics and storage class semantics from the operands, based on opcode switch (callNode.getOp()) { case EOpAtomicAdd: case EOpAtomicMin: case EOpAtomicMax: case EOpAtomicAnd: case EOpAtomicOr: case EOpAtomicXor: case EOpAtomicExchange: case EOpAtomicStore: storageClassSemantics = (*argp)[3]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[4]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; case EOpAtomicLoad: storageClassSemantics = (*argp)[2]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[3]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; case EOpAtomicCompSwap: storageClassSemantics = (*argp)[4]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[5]->getAsConstantUnion()->getConstArray()[0].getIConst(); storageClassSemantics2 = (*argp)[6]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics2 = (*argp)[7]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; case EOpImageAtomicAdd: case EOpImageAtomicMin: case EOpImageAtomicMax: case EOpImageAtomicAnd: case EOpImageAtomicOr: case EOpImageAtomicXor: case EOpImageAtomicExchange: case EOpImageAtomicStore: storageClassSemantics = (*argp)[isMS ? 5 : 4]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[isMS ? 6 : 5]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; case EOpImageAtomicLoad: storageClassSemantics = (*argp)[isMS ? 4 : 3]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[isMS ? 5 : 4]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; case EOpImageAtomicCompSwap: storageClassSemantics = (*argp)[isMS ? 6 : 5]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[isMS ? 7 : 6]->getAsConstantUnion()->getConstArray()[0].getIConst(); storageClassSemantics2 = (*argp)[isMS ? 8 : 7]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics2 = (*argp)[isMS ? 9 : 8]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; case EOpBarrier: storageClassSemantics = (*argp)[2]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[3]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; case EOpMemoryBarrier: storageClassSemantics = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getIConst(); semantics = (*argp)[2]->getAsConstantUnion()->getConstArray()[0].getIConst(); break; default: break; } if ((semantics & gl_SemanticsAcquire) && (callNode.getOp() == EOpAtomicStore || callNode.getOp() == EOpImageAtomicStore)) { error(loc, "gl_SemanticsAcquire must not be used with (image) atomic store", fnCandidate.getName().c_str(), ""); } if ((semantics & gl_SemanticsRelease) && (callNode.getOp() == EOpAtomicLoad || callNode.getOp() == EOpImageAtomicLoad)) { error(loc, "gl_SemanticsRelease must not be used with (image) atomic load", fnCandidate.getName().c_str(), ""); } if ((semantics & gl_SemanticsAcquireRelease) && (callNode.getOp() == EOpAtomicStore || callNode.getOp() == EOpImageAtomicStore || callNode.getOp() == EOpAtomicLoad || callNode.getOp() == EOpImageAtomicLoad)) { error(loc, "gl_SemanticsAcquireRelease must not be used with (image) atomic load/store", fnCandidate.getName().c_str(), ""); } if (((semantics | semantics2) & ~(gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible | gl_SemanticsVolatile))) { error(loc, "Invalid semantics value", fnCandidate.getName().c_str(), ""); } if (((storageClassSemantics | storageClassSemantics2) & ~(gl_StorageSemanticsBuffer | gl_StorageSemanticsShared | gl_StorageSemanticsImage | gl_StorageSemanticsOutput))) { error(loc, "Invalid storage class semantics value", fnCandidate.getName().c_str(), ""); } if (callNode.getOp() == EOpMemoryBarrier) { if (!IsPow2(semantics & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease))) { error(loc, "Semantics must include exactly one of gl_SemanticsRelease, gl_SemanticsAcquire, or " "gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), ""); } } else { if (semantics & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease)) { if (!IsPow2(semantics & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease))) { error(loc, "Semantics must not include multiple of gl_SemanticsRelease, gl_SemanticsAcquire, or " "gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), ""); } } if (semantics2 & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease)) { if (!IsPow2(semantics2 & (gl_SemanticsAcquire | gl_SemanticsRelease | gl_SemanticsAcquireRelease))) { error(loc, "semUnequal must not include multiple of gl_SemanticsRelease, gl_SemanticsAcquire, or " "gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), ""); } } } if (callNode.getOp() == EOpMemoryBarrier) { if (storageClassSemantics == 0) { error(loc, "Storage class semantics must not be zero", fnCandidate.getName().c_str(), ""); } } if (callNode.getOp() == EOpBarrier && semantics != 0 && storageClassSemantics == 0) { error(loc, "Storage class semantics must not be zero", fnCandidate.getName().c_str(), ""); } if ((callNode.getOp() == EOpAtomicCompSwap || callNode.getOp() == EOpImageAtomicCompSwap) && (semantics2 & (gl_SemanticsRelease | gl_SemanticsAcquireRelease))) { error(loc, "semUnequal must not be gl_SemanticsRelease or gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), ""); } if ((semantics & gl_SemanticsMakeAvailable) && !(semantics & (gl_SemanticsRelease | gl_SemanticsAcquireRelease))) { error(loc, "gl_SemanticsMakeAvailable requires gl_SemanticsRelease or gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), ""); } if ((semantics & gl_SemanticsMakeVisible) && !(semantics & (gl_SemanticsAcquire | gl_SemanticsAcquireRelease))) { error(loc, "gl_SemanticsMakeVisible requires gl_SemanticsAcquire or gl_SemanticsAcquireRelease", fnCandidate.getName().c_str(), ""); } if ((semantics & gl_SemanticsVolatile) && (callNode.getOp() == EOpMemoryBarrier || callNode.getOp() == EOpBarrier)) { error(loc, "gl_SemanticsVolatile must not be used with memoryBarrier or controlBarrier", fnCandidate.getName().c_str(), ""); } if ((callNode.getOp() == EOpAtomicCompSwap || callNode.getOp() == EOpImageAtomicCompSwap) && ((semantics ^ semantics2) & gl_SemanticsVolatile)) { error(loc, "semEqual and semUnequal must either both include gl_SemanticsVolatile or neither", fnCandidate.getName().c_str(), ""); } } // // Do additional checking of built-in function calls that is not caught // by normal semantic checks on argument type, extension tagging, etc. // // Assumes there has been a semantically correct match to a built-in function prototype. // void TParseContext::builtInOpCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermOperator& callNode) { // Set up convenience accessors to the argument(s). There is almost always // multiple arguments for the cases below, but when there might be one, // check the unaryArg first. const TIntermSequence* argp = nullptr; // confusing to use [] syntax on a pointer, so this is to help get a reference const TIntermTyped* unaryArg = nullptr; const TIntermTyped* arg0 = nullptr; if (callNode.getAsAggregate()) { argp = &callNode.getAsAggregate()->getSequence(); if (argp->size() > 0) arg0 = (*argp)[0]->getAsTyped(); } else { assert(callNode.getAsUnaryNode()); unaryArg = callNode.getAsUnaryNode()->getOperand(); arg0 = unaryArg; } TString featureString; const char* feature = nullptr; switch (callNode.getOp()) { #ifndef GLSLANG_WEB case EOpTextureGather: case EOpTextureGatherOffset: case EOpTextureGatherOffsets: { // Figure out which variants are allowed by what extensions, // and what arguments must be constant for which situations. featureString = fnCandidate.getName(); featureString += "(...)"; feature = featureString.c_str(); profileRequires(loc, EEsProfile, 310, nullptr, feature); int compArg = -1; // track which argument, if any, is the constant component argument switch (callNode.getOp()) { case EOpTextureGather: // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, // otherwise, need GL_ARB_texture_gather. if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) { profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); if (! fnCandidate[0].type->getSampler().shadow) compArg = 2; } else profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); break; case EOpTextureGatherOffset: // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument if (fnCandidate[0].type->getSampler().dim == Esd2D && ! fnCandidate[0].type->getSampler().shadow && fnCandidate.getParamCount() == 3) profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); else profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); if (! (*argp)[fnCandidate[0].type->getSampler().shadow ? 3 : 2]->getAsConstantUnion()) profileRequires(loc, EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, "non-constant offset argument"); if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; break; case EOpTextureGatherOffsets: profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; // check for constant offsets if (! (*argp)[fnCandidate[0].type->getSampler().shadow ? 3 : 2]->getAsConstantUnion()) error(loc, "must be a compile-time constant:", feature, "offsets argument"); break; default: break; } if (compArg > 0 && compArg < fnCandidate.getParamCount()) { if ((*argp)[compArg]->getAsConstantUnion()) { int value = (*argp)[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); if (value < 0 || value > 3) error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); } else error(loc, "must be a compile-time constant:", feature, "component argument"); } bool bias = false; if (callNode.getOp() == EOpTextureGather) bias = fnCandidate.getParamCount() > 3; else if (callNode.getOp() == EOpTextureGatherOffset || callNode.getOp() == EOpTextureGatherOffsets) bias = fnCandidate.getParamCount() > 4; if (bias) { featureString = fnCandidate.getName(); featureString += "with bias argument"; feature = featureString.c_str(); profileRequires(loc, ~EEsProfile, 450, nullptr, feature); requireExtensions(loc, 1, &E_GL_AMD_texture_gather_bias_lod, feature); } break; } case EOpSparseTextureGather: case EOpSparseTextureGatherOffset: case EOpSparseTextureGatherOffsets: { bool bias = false; if (callNode.getOp() == EOpSparseTextureGather) bias = fnCandidate.getParamCount() > 4; else if (callNode.getOp() == EOpSparseTextureGatherOffset || callNode.getOp() == EOpSparseTextureGatherOffsets) bias = fnCandidate.getParamCount() > 5; if (bias) { featureString = fnCandidate.getName(); featureString += "with bias argument"; feature = featureString.c_str(); profileRequires(loc, ~EEsProfile, 450, nullptr, feature); requireExtensions(loc, 1, &E_GL_AMD_texture_gather_bias_lod, feature); } break; } case EOpSparseTextureGatherLod: case EOpSparseTextureGatherLodOffset: case EOpSparseTextureGatherLodOffsets: { requireExtensions(loc, 1, &E_GL_ARB_sparse_texture2, fnCandidate.getName().c_str()); break; } case EOpSwizzleInvocations: { if (! (*argp)[1]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "offset", ""); else { unsigned offset[4] = {}; offset[0] = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getUConst(); offset[1] = (*argp)[1]->getAsConstantUnion()->getConstArray()[1].getUConst(); offset[2] = (*argp)[1]->getAsConstantUnion()->getConstArray()[2].getUConst(); offset[3] = (*argp)[1]->getAsConstantUnion()->getConstArray()[3].getUConst(); if (offset[0] > 3 || offset[1] > 3 || offset[2] > 3 || offset[3] > 3) error(loc, "components must be in the range [0, 3]", "offset", ""); } break; } case EOpSwizzleInvocationsMasked: { if (! (*argp)[1]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "mask", ""); else { unsigned mask[3] = {}; mask[0] = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getUConst(); mask[1] = (*argp)[1]->getAsConstantUnion()->getConstArray()[1].getUConst(); mask[2] = (*argp)[1]->getAsConstantUnion()->getConstArray()[2].getUConst(); if (mask[0] > 31 || mask[1] > 31 || mask[2] > 31) error(loc, "components must be in the range [0, 31]", "mask", ""); } break; } #endif case EOpTextureOffset: case EOpTextureFetchOffset: case EOpTextureProjOffset: case EOpTextureLodOffset: case EOpTextureProjLodOffset: case EOpTextureGradOffset: case EOpTextureProjGradOffset: { // Handle texture-offset limits checking // Pick which argument has to hold constant offsets int arg = -1; switch (callNode.getOp()) { case EOpTextureOffset: arg = 2; break; case EOpTextureFetchOffset: arg = (arg0->getType().getSampler().isRect()) ? 2 : 3; break; case EOpTextureProjOffset: arg = 2; break; case EOpTextureLodOffset: arg = 3; break; case EOpTextureProjLodOffset: arg = 3; break; case EOpTextureGradOffset: arg = 4; break; case EOpTextureProjGradOffset: arg = 4; break; default: assert(0); break; } if (arg > 0) { #ifndef GLSLANG_WEB bool f16ShadowCompare = (*argp)[1]->getAsTyped()->getBasicType() == EbtFloat16 && arg0->getType().getSampler().shadow; if (f16ShadowCompare) ++arg; #endif if (! (*argp)[arg]->getAsTyped()->getQualifier().isConstant()) error(loc, "argument must be compile-time constant", "texel offset", ""); else if ((*argp)[arg]->getAsConstantUnion()) { const TType& type = (*argp)[arg]->getAsTyped()->getType(); for (int c = 0; c < type.getVectorSize(); ++c) { int offset = (*argp)[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); } } } break; } #ifndef GLSLANG_WEB case EOpTrace: if (!(*argp)[10]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "payload number", ""); break; case EOpExecuteCallable: if (!(*argp)[1]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "callable data number", ""); break; case EOpRayQueryGetIntersectionType: case EOpRayQueryGetIntersectionT: case EOpRayQueryGetIntersectionInstanceCustomIndex: case EOpRayQueryGetIntersectionInstanceId: case EOpRayQueryGetIntersectionInstanceShaderBindingTableRecordOffset: case EOpRayQueryGetIntersectionGeometryIndex: case EOpRayQueryGetIntersectionPrimitiveIndex: case EOpRayQueryGetIntersectionBarycentrics: case EOpRayQueryGetIntersectionFrontFace: case EOpRayQueryGetIntersectionObjectRayDirection: case EOpRayQueryGetIntersectionObjectRayOrigin: case EOpRayQueryGetIntersectionObjectToWorld: case EOpRayQueryGetIntersectionWorldToObject: if (!(*argp)[1]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "committed", ""); break; case EOpTextureQuerySamples: case EOpImageQuerySamples: // GL_ARB_shader_texture_image_samples profileRequires(loc, ~EEsProfile, 450, E_GL_ARB_shader_texture_image_samples, "textureSamples and imageSamples"); break; case EOpImageAtomicAdd: case EOpImageAtomicMin: case EOpImageAtomicMax: case EOpImageAtomicAnd: case EOpImageAtomicOr: case EOpImageAtomicXor: case EOpImageAtomicExchange: case EOpImageAtomicCompSwap: case EOpImageAtomicLoad: case EOpImageAtomicStore: { // Make sure the image types have the correct layout() format and correct argument types const TType& imageType = arg0->getType(); if (imageType.getSampler().type == EbtInt || imageType.getSampler().type == EbtUint) { if (imageType.getQualifier().getFormat() != ElfR32i && imageType.getQualifier().getFormat() != ElfR32ui) error(loc, "only supported on image with format r32i or r32ui", fnCandidate.getName().c_str(), ""); } else { bool isImageAtomicOnFloatAllowed = ((fnCandidate.getName().compare(0, 14, "imageAtomicAdd") == 0) || (fnCandidate.getName().compare(0, 15, "imageAtomicLoad") == 0) || (fnCandidate.getName().compare(0, 16, "imageAtomicStore") == 0) || (fnCandidate.getName().compare(0, 19, "imageAtomicExchange") == 0)); if (imageType.getSampler().type == EbtFloat && isImageAtomicOnFloatAllowed && (fnCandidate.getName().compare(0, 19, "imageAtomicExchange") != 0)) // imageAtomicExchange doesn't require GL_EXT_shader_atomic_float requireExtensions(loc, 1, &E_GL_EXT_shader_atomic_float, fnCandidate.getName().c_str()); if (!isImageAtomicOnFloatAllowed) error(loc, "only supported on integer images", fnCandidate.getName().c_str(), ""); else if (imageType.getQualifier().getFormat() != ElfR32f && isEsProfile()) error(loc, "only supported on image with format r32f", fnCandidate.getName().c_str(), ""); } const size_t maxArgs = imageType.getSampler().isMultiSample() ? 5 : 4; if (argp->size() > maxArgs) { requireExtensions(loc, 1, &E_GL_KHR_memory_scope_semantics, fnCandidate.getName().c_str()); memorySemanticsCheck(loc, fnCandidate, callNode); } break; } case EOpAtomicAdd: case EOpAtomicMin: case EOpAtomicMax: case EOpAtomicAnd: case EOpAtomicOr: case EOpAtomicXor: case EOpAtomicExchange: case EOpAtomicCompSwap: case EOpAtomicLoad: case EOpAtomicStore: { if (argp->size() > 3) { requireExtensions(loc, 1, &E_GL_KHR_memory_scope_semantics, fnCandidate.getName().c_str()); memorySemanticsCheck(loc, fnCandidate, callNode); if ((callNode.getOp() == EOpAtomicAdd || callNode.getOp() == EOpAtomicExchange || callNode.getOp() == EOpAtomicLoad || callNode.getOp() == EOpAtomicStore) && (arg0->getType().isFloatingDomain())) { requireExtensions(loc, 1, &E_GL_EXT_shader_atomic_float, fnCandidate.getName().c_str()); } } else if (arg0->getType().getBasicType() == EbtInt64 || arg0->getType().getBasicType() == EbtUint64) { const char* const extensions[2] = { E_GL_NV_shader_atomic_int64, E_GL_EXT_shader_atomic_int64 }; requireExtensions(loc, 2, extensions, fnCandidate.getName().c_str()); } else if ((callNode.getOp() == EOpAtomicAdd || callNode.getOp() == EOpAtomicExchange) && (arg0->getType().isFloatingDomain())) { requireExtensions(loc, 1, &E_GL_EXT_shader_atomic_float, fnCandidate.getName().c_str()); } break; } case EOpInterpolateAtCentroid: case EOpInterpolateAtSample: case EOpInterpolateAtOffset: case EOpInterpolateAtVertex: // Make sure the first argument is an interpolant, or an array element of an interpolant if (arg0->getType().getQualifier().storage != EvqVaryingIn) { // It might still be an array element. // // We could check more, but the semantics of the first argument are already met; the // only way to turn an array into a float/vec* is array dereference and swizzle. // // ES and desktop 4.3 and earlier: swizzles may not be used // desktop 4.4 and later: swizzles may be used bool swizzleOkay = (!isEsProfile()) && (version >= 440); const TIntermTyped* base = TIntermediate::findLValueBase(arg0, swizzleOkay); if (base == nullptr || base->getType().getQualifier().storage != EvqVaryingIn) error(loc, "first argument must be an interpolant, or interpolant-array element", fnCandidate.getName().c_str(), ""); } if (callNode.getOp() == EOpInterpolateAtVertex) { if (!arg0->getType().getQualifier().isExplicitInterpolation()) error(loc, "argument must be qualified as __explicitInterpAMD in", "interpolant", ""); else { if (! (*argp)[1]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "vertex index", ""); else { unsigned vertexIdx = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getUConst(); if (vertexIdx > 2) error(loc, "must be in the range [0, 2]", "vertex index", ""); } } } break; case EOpEmitStreamVertex: case EOpEndStreamPrimitive: intermediate.setMultiStream(); break; case EOpSubgroupClusteredAdd: case EOpSubgroupClusteredMul: case EOpSubgroupClusteredMin: case EOpSubgroupClusteredMax: case EOpSubgroupClusteredAnd: case EOpSubgroupClusteredOr: case EOpSubgroupClusteredXor: // The as used in the subgroupClustered() operations must be: // - An integral constant expression. // - At least 1. // - A power of 2. if ((*argp)[1]->getAsConstantUnion() == nullptr) error(loc, "argument must be compile-time constant", "cluster size", ""); else { int size = (*argp)[1]->getAsConstantUnion()->getConstArray()[0].getIConst(); if (size < 1) error(loc, "argument must be at least 1", "cluster size", ""); else if (!IsPow2(size)) error(loc, "argument must be a power of 2", "cluster size", ""); } break; case EOpSubgroupBroadcast: case EOpSubgroupQuadBroadcast: if (spvVersion.spv < EShTargetSpv_1_5) { // must be an integral constant expression. if ((*argp)[1]->getAsConstantUnion() == nullptr) error(loc, "argument must be compile-time constant", "id", ""); } break; case EOpBarrier: case EOpMemoryBarrier: if (argp->size() > 0) { requireExtensions(loc, 1, &E_GL_KHR_memory_scope_semantics, fnCandidate.getName().c_str()); memorySemanticsCheck(loc, fnCandidate, callNode); } break; case EOpMix: if (profile == EEsProfile && version < 310) { // Look for specific signatures if ((*argp)[0]->getAsTyped()->getBasicType() != EbtFloat && (*argp)[1]->getAsTyped()->getBasicType() != EbtFloat && (*argp)[2]->getAsTyped()->getBasicType() == EbtBool) { requireExtensions(loc, 1, &E_GL_EXT_shader_integer_mix, "specific signature of builtin mix"); } } if (profile != EEsProfile && version < 450) { if ((*argp)[0]->getAsTyped()->getBasicType() != EbtFloat && (*argp)[0]->getAsTyped()->getBasicType() != EbtDouble && (*argp)[1]->getAsTyped()->getBasicType() != EbtFloat && (*argp)[1]->getAsTyped()->getBasicType() != EbtDouble && (*argp)[2]->getAsTyped()->getBasicType() == EbtBool) { requireExtensions(loc, 1, &E_GL_EXT_shader_integer_mix, fnCandidate.getName().c_str()); } } break; #endif default: break; } // Texture operations on texture objects (aside from texelFetch on a // textureBuffer) require EXT_samplerless_texture_functions. switch (callNode.getOp()) { case EOpTextureQuerySize: case EOpTextureQueryLevels: case EOpTextureQuerySamples: case EOpTextureFetch: case EOpTextureFetchOffset: { const TSampler& sampler = fnCandidate[0].type->getSampler(); const bool isTexture = sampler.isTexture() && !sampler.isCombined(); const bool isBuffer = sampler.isBuffer(); const bool isFetch = callNode.getOp() == EOpTextureFetch || callNode.getOp() == EOpTextureFetchOffset; if (isTexture && (!isBuffer || !isFetch)) requireExtensions(loc, 1, &E_GL_EXT_samplerless_texture_functions, fnCandidate.getName().c_str()); break; } default: break; } if (callNode.isSubgroup()) { // these require SPIR-V 1.3 if (spvVersion.spv > 0 && spvVersion.spv < EShTargetSpv_1_3) error(loc, "requires SPIR-V 1.3", "subgroup op", ""); // Check that if extended types are being used that the correct extensions are enabled. if (arg0 != nullptr) { const TType& type = arg0->getType(); switch (type.getBasicType()) { default: break; case EbtInt8: case EbtUint8: requireExtensions(loc, 1, &E_GL_EXT_shader_subgroup_extended_types_int8, type.getCompleteString().c_str()); break; case EbtInt16: case EbtUint16: requireExtensions(loc, 1, &E_GL_EXT_shader_subgroup_extended_types_int16, type.getCompleteString().c_str()); break; case EbtInt64: case EbtUint64: requireExtensions(loc, 1, &E_GL_EXT_shader_subgroup_extended_types_int64, type.getCompleteString().c_str()); break; case EbtFloat16: requireExtensions(loc, 1, &E_GL_EXT_shader_subgroup_extended_types_float16, type.getCompleteString().c_str()); break; } } } } #ifndef GLSLANG_WEB extern bool PureOperatorBuiltins; // Deprecated! Use PureOperatorBuiltins == true instead, in which case this // functionality is handled in builtInOpCheck() instead of here. // // Do additional checking of built-in function calls that were not mapped // to built-in operations (e.g., texturing functions). // // Assumes there has been a semantically correct match to a built-in function. // void TParseContext::nonOpBuiltInCheck(const TSourceLoc& loc, const TFunction& fnCandidate, TIntermAggregate& callNode) { // Further maintenance of this function is deprecated, because the "correct" // future-oriented design is to not have to do string compares on function names. // If PureOperatorBuiltins == true, then all built-ins should be mapped // to a TOperator, and this function would then never get called. assert(PureOperatorBuiltins == false); // built-in texturing functions get their return value precision from the precision of the sampler if (fnCandidate.getType().getQualifier().precision == EpqNone && fnCandidate.getParamCount() > 0 && fnCandidate[0].type->getBasicType() == EbtSampler) callNode.getQualifier().precision = callNode.getSequence()[0]->getAsTyped()->getQualifier().precision; if (fnCandidate.getName().compare(0, 7, "texture") == 0) { if (fnCandidate.getName().compare(0, 13, "textureGather") == 0) { TString featureString = fnCandidate.getName() + "(...)"; const char* feature = featureString.c_str(); profileRequires(loc, EEsProfile, 310, nullptr, feature); int compArg = -1; // track which argument, if any, is the constant component argument if (fnCandidate.getName().compare("textureGatherOffset") == 0) { // GL_ARB_texture_gather is good enough for 2D non-shadow textures with no component argument if (fnCandidate[0].type->getSampler().dim == Esd2D && ! fnCandidate[0].type->getSampler().shadow && fnCandidate.getParamCount() == 3) profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); else profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); int offsetArg = fnCandidate[0].type->getSampler().shadow ? 3 : 2; if (! callNode.getSequence()[offsetArg]->getAsConstantUnion()) profileRequires(loc, EEsProfile, 320, Num_AEP_gpu_shader5, AEP_gpu_shader5, "non-constant offset argument"); if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; } else if (fnCandidate.getName().compare("textureGatherOffsets") == 0) { profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); if (! fnCandidate[0].type->getSampler().shadow) compArg = 3; // check for constant offsets int offsetArg = fnCandidate[0].type->getSampler().shadow ? 3 : 2; if (! callNode.getSequence()[offsetArg]->getAsConstantUnion()) error(loc, "must be a compile-time constant:", feature, "offsets argument"); } else if (fnCandidate.getName().compare("textureGather") == 0) { // More than two arguments needs gpu_shader5, and rectangular or shadow needs gpu_shader5, // otherwise, need GL_ARB_texture_gather. if (fnCandidate.getParamCount() > 2 || fnCandidate[0].type->getSampler().dim == EsdRect || fnCandidate[0].type->getSampler().shadow) { profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_gpu_shader5, feature); if (! fnCandidate[0].type->getSampler().shadow) compArg = 2; } else profileRequires(loc, ~EEsProfile, 400, E_GL_ARB_texture_gather, feature); } if (compArg > 0 && compArg < fnCandidate.getParamCount()) { if (callNode.getSequence()[compArg]->getAsConstantUnion()) { int value = callNode.getSequence()[compArg]->getAsConstantUnion()->getConstArray()[0].getIConst(); if (value < 0 || value > 3) error(loc, "must be 0, 1, 2, or 3:", feature, "component argument"); } else error(loc, "must be a compile-time constant:", feature, "component argument"); } } else { // this is only for functions not starting "textureGather"... if (fnCandidate.getName().find("Offset") != TString::npos) { // Handle texture-offset limits checking int arg = -1; if (fnCandidate.getName().compare("textureOffset") == 0) arg = 2; else if (fnCandidate.getName().compare("texelFetchOffset") == 0) arg = 3; else if (fnCandidate.getName().compare("textureProjOffset") == 0) arg = 2; else if (fnCandidate.getName().compare("textureLodOffset") == 0) arg = 3; else if (fnCandidate.getName().compare("textureProjLodOffset") == 0) arg = 3; else if (fnCandidate.getName().compare("textureGradOffset") == 0) arg = 4; else if (fnCandidate.getName().compare("textureProjGradOffset") == 0) arg = 4; if (arg > 0) { if (! callNode.getSequence()[arg]->getAsConstantUnion()) error(loc, "argument must be compile-time constant", "texel offset", ""); else { const TType& type = callNode.getSequence()[arg]->getAsTyped()->getType(); for (int c = 0; c < type.getVectorSize(); ++c) { int offset = callNode.getSequence()[arg]->getAsConstantUnion()->getConstArray()[c].getIConst(); if (offset > resources.maxProgramTexelOffset || offset < resources.minProgramTexelOffset) error(loc, "value is out of range:", "texel offset", "[gl_MinProgramTexelOffset, gl_MaxProgramTexelOffset]"); } } } } } } // GL_ARB_shader_texture_image_samples if (fnCandidate.getName().compare(0, 14, "textureSamples") == 0 || fnCandidate.getName().compare(0, 12, "imageSamples") == 0) profileRequires(loc, ~EEsProfile, 450, E_GL_ARB_shader_texture_image_samples, "textureSamples and imageSamples"); if (fnCandidate.getName().compare(0, 11, "imageAtomic") == 0) { const TType& imageType = callNode.getSequence()[0]->getAsTyped()->getType(); if (imageType.getSampler().type == EbtInt || imageType.getSampler().type == EbtUint) { if (imageType.getQualifier().getFormat() != ElfR32i && imageType.getQualifier().getFormat() != ElfR32ui) error(loc, "only supported on image with format r32i or r32ui", fnCandidate.getName().c_str(), ""); } else { if (fnCandidate.getName().compare(0, 19, "imageAtomicExchange") != 0) error(loc, "only supported on integer images", fnCandidate.getName().c_str(), ""); else if (imageType.getQualifier().getFormat() != ElfR32f && isEsProfile()) error(loc, "only supported on image with format r32f", fnCandidate.getName().c_str(), ""); } } } #endif // // Do any extra checking for a user function call. // void TParseContext::userFunctionCallCheck(const TSourceLoc& loc, TIntermAggregate& callNode) { TIntermSequence& arguments = callNode.getSequence(); for (int i = 0; i < (int)arguments.size(); ++i) samplerConstructorLocationCheck(loc, "call argument", arguments[i]); } // // Emit an error if this is a sampler constructor // void TParseContext::samplerConstructorLocationCheck(const TSourceLoc& loc, const char* token, TIntermNode* node) { if (node->getAsOperator() && node->getAsOperator()->getOp() == EOpConstructTextureSampler) error(loc, "sampler constructor must appear at point of use", token, ""); } // // Handle seeing a built-in constructor in a grammar production. // TFunction* TParseContext::handleConstructorCall(const TSourceLoc& loc, const TPublicType& publicType) { TType type(publicType); type.getQualifier().precision = EpqNone; if (type.isArray()) { profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "arrayed constructor"); profileRequires(loc, EEsProfile, 300, nullptr, "arrayed constructor"); } TOperator op = intermediate.mapTypeToConstructorOp(type); if (op == EOpNull) { error(loc, "cannot construct this type", type.getBasicString(), ""); op = EOpConstructFloat; TType errorType(EbtFloat); type.shallowCopy(errorType); } TString empty(""); return new TFunction(&empty, type, op); } // Handle seeing a precision qualifier in the grammar. void TParseContext::handlePrecisionQualifier(const TSourceLoc& /*loc*/, TQualifier& qualifier, TPrecisionQualifier precision) { if (obeyPrecisionQualifiers()) qualifier.precision = precision; } // Check for messages to give on seeing a precision qualifier used in a // declaration in the grammar. void TParseContext::checkPrecisionQualifier(const TSourceLoc& loc, TPrecisionQualifier) { if (precisionManager.shouldWarnAboutDefaults()) { warn(loc, "all default precisions are highp; use precision statements to quiet warning, e.g.:\n" " \"precision mediump int; precision highp float;\"", "", ""); precisionManager.defaultWarningGiven(); } } // // Same error message for all places assignments don't work. // void TParseContext::assignError(const TSourceLoc& loc, const char* op, TString left, TString right) { error(loc, "", op, "cannot convert from '%s' to '%s'", right.c_str(), left.c_str()); } // // Same error message for all places unary operations don't work. // void TParseContext::unaryOpError(const TSourceLoc& loc, const char* op, TString operand) { error(loc, " wrong operand type", op, "no operation '%s' exists that takes an operand of type %s (or there is no acceptable conversion)", op, operand.c_str()); } // // Same error message for all binary operations don't work. // void TParseContext::binaryOpError(const TSourceLoc& loc, const char* op, TString left, TString right) { error(loc, " wrong operand types:", op, "no operation '%s' exists that takes a left-hand operand of type '%s' and " "a right operand of type '%s' (or there is no acceptable conversion)", op, left.c_str(), right.c_str()); } // // A basic type of EbtVoid is a key that the name string was seen in the source, but // it was not found as a variable in the symbol table. If so, give the error // message and insert a dummy variable in the symbol table to prevent future errors. // void TParseContext::variableCheck(TIntermTyped*& nodePtr) { TIntermSymbol* symbol = nodePtr->getAsSymbolNode(); if (! symbol) return; if (symbol->getType().getBasicType() == EbtVoid) { const char *extraInfoFormat = ""; if (spvVersion.vulkan != 0 && symbol->getName() == "gl_VertexID") { extraInfoFormat = "(Did you mean gl_VertexIndex?)"; } else if (spvVersion.vulkan != 0 && symbol->getName() == "gl_InstanceID") { extraInfoFormat = "(Did you mean gl_InstanceIndex?)"; } error(symbol->getLoc(), "undeclared identifier", symbol->getName().c_str(), extraInfoFormat); // Add to symbol table to prevent future error messages on the same name if (symbol->getName().size() > 0) { TVariable* fakeVariable = new TVariable(&symbol->getName(), TType(EbtFloat)); symbolTable.insert(*fakeVariable); // substitute a symbol node for this new variable nodePtr = intermediate.addSymbol(*fakeVariable, symbol->getLoc()); } } else { switch (symbol->getQualifier().storage) { case EvqPointCoord: profileRequires(symbol->getLoc(), ENoProfile, 120, nullptr, "gl_PointCoord"); break; default: break; // some compilers want this } } } // // Both test and if necessary, spit out an error, to see if the node is really // an l-value that can be operated on this way. // // Returns true if there was an error. // bool TParseContext::lValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) { TIntermBinary* binaryNode = node->getAsBinaryNode(); if (binaryNode) { bool errorReturn = false; switch(binaryNode->getOp()) { #ifndef GLSLANG_WEB case EOpIndexDirect: case EOpIndexIndirect: // ... tessellation control shader ... // If a per-vertex output variable is used as an l-value, it is a // compile-time or link-time error if the expression indicating the // vertex index is not the identifier gl_InvocationID. if (language == EShLangTessControl) { const TType& leftType = binaryNode->getLeft()->getType(); if (leftType.getQualifier().storage == EvqVaryingOut && ! leftType.getQualifier().patch && binaryNode->getLeft()->getAsSymbolNode()) { // we have a per-vertex output const TIntermSymbol* rightSymbol = binaryNode->getRight()->getAsSymbolNode(); if (! rightSymbol || rightSymbol->getQualifier().builtIn != EbvInvocationId) error(loc, "tessellation-control per-vertex output l-value must be indexed with gl_InvocationID", "[]", ""); } } break; // left node is checked by base class #endif case EOpVectorSwizzle: errorReturn = lValueErrorCheck(loc, op, binaryNode->getLeft()); if (!errorReturn) { int offset[4] = {0,0,0,0}; TIntermTyped* rightNode = binaryNode->getRight(); TIntermAggregate *aggrNode = rightNode->getAsAggregate(); for (TIntermSequence::iterator p = aggrNode->getSequence().begin(); p != aggrNode->getSequence().end(); p++) { int value = (*p)->getAsTyped()->getAsConstantUnion()->getConstArray()[0].getIConst(); offset[value]++; if (offset[value] > 1) { error(loc, " l-value of swizzle cannot have duplicate components", op, "", ""); return true; } } } return errorReturn; default: break; } if (errorReturn) { error(loc, " l-value required", op, "", ""); return true; } } if (binaryNode && binaryNode->getOp() == EOpIndexDirectStruct && binaryNode->getLeft()->isReference()) return false; // Let the base class check errors if (TParseContextBase::lValueErrorCheck(loc, op, node)) return true; const char* symbol = nullptr; TIntermSymbol* symNode = node->getAsSymbolNode(); if (symNode != nullptr) symbol = symNode->getName().c_str(); const char* message = nullptr; switch (node->getQualifier().storage) { case EvqVaryingIn: message = "can't modify shader input"; break; case EvqInstanceId: message = "can't modify gl_InstanceID"; break; case EvqVertexId: message = "can't modify gl_VertexID"; break; case EvqFace: message = "can't modify gl_FrontFace"; break; case EvqFragCoord: message = "can't modify gl_FragCoord"; break; case EvqPointCoord: message = "can't modify gl_PointCoord"; break; case EvqFragDepth: intermediate.setDepthReplacing(); // "In addition, it is an error to statically write to gl_FragDepth in the fragment shader." if (isEsProfile() && intermediate.getEarlyFragmentTests()) message = "can't modify gl_FragDepth if using early_fragment_tests"; break; default: break; } if (message == nullptr && binaryNode == nullptr && symNode == nullptr) { error(loc, " l-value required", op, "", ""); return true; } // // Everything else is okay, no error. // if (message == nullptr) return false; // // If we get here, we have an error and a message. // if (symNode) error(loc, " l-value required", op, "\"%s\" (%s)", symbol, message); else error(loc, " l-value required", op, "(%s)", message); return true; } // Test for and give an error if the node can't be read from. void TParseContext::rValueErrorCheck(const TSourceLoc& loc, const char* op, TIntermTyped* node) { // Let the base class check errors TParseContextBase::rValueErrorCheck(loc, op, node); TIntermSymbol* symNode = node->getAsSymbolNode(); if (!(symNode && symNode->getQualifier().isWriteOnly())) // base class checks if (symNode && symNode->getQualifier().isExplicitInterpolation()) error(loc, "can't read from explicitly-interpolated object: ", op, symNode->getName().c_str()); } // // Both test, and if necessary spit out an error, to see if the node is really // a constant. // void TParseContext::constantValueCheck(TIntermTyped* node, const char* token) { if (! node->getQualifier().isConstant()) error(node->getLoc(), "constant expression required", token, ""); } // // Both test, and if necessary spit out an error, to see if the node is really // an integer. // void TParseContext::integerCheck(const TIntermTyped* node, const char* token) { if ((node->getBasicType() == EbtInt || node->getBasicType() == EbtUint) && node->isScalar()) return; error(node->getLoc(), "scalar integer expression required", token, ""); } // // Both test, and if necessary spit out an error, to see if we are currently // globally scoped. // void TParseContext::globalCheck(const TSourceLoc& loc, const char* token) { if (! symbolTable.atGlobalLevel()) error(loc, "not allowed in nested scope", token, ""); } // // Reserved errors for GLSL. // void TParseContext::reservedErrorCheck(const TSourceLoc& loc, const TString& identifier) { // "Identifiers starting with "gl_" are reserved for use by OpenGL, and may not be // declared in a shader; this results in a compile-time error." if (! symbolTable.atBuiltInLevel()) { if (builtInName(identifier)) error(loc, "identifiers starting with \"gl_\" are reserved", identifier.c_str(), ""); // "__" are not supposed to be an error. ES 300 (and desktop) added the clarification: // "In addition, all identifiers containing two consecutive underscores (__) are // reserved; using such a name does not itself result in an error, but may result // in undefined behavior." // however, before that, ES tests required an error. if (identifier.find("__") != TString::npos) { if (isEsProfile() && version < 300) error(loc, "identifiers containing consecutive underscores (\"__\") are reserved, and an error if version < 300", identifier.c_str(), ""); else warn(loc, "identifiers containing consecutive underscores (\"__\") are reserved", identifier.c_str(), ""); } } } // // Reserved errors for the preprocessor. // void TParseContext::reservedPpErrorCheck(const TSourceLoc& loc, const char* identifier, const char* op) { // "__" are not supposed to be an error. ES 300 (and desktop) added the clarification: // "All macro names containing two consecutive underscores ( __ ) are reserved; // defining such a name does not itself result in an error, but may result in // undefined behavior. All macro names prefixed with "GL_" ("GL" followed by a // single underscore) are also reserved, and defining such a name results in a // compile-time error." // however, before that, ES tests required an error. if (strncmp(identifier, "GL_", 3) == 0) ppError(loc, "names beginning with \"GL_\" can't be (un)defined:", op, identifier); else if (strncmp(identifier, "defined", 8) == 0) if (relaxedErrors()) ppWarn(loc, "\"defined\" is (un)defined:", op, identifier); else ppError(loc, "\"defined\" can't be (un)defined:", op, identifier); else if (strstr(identifier, "__") != 0) { if (isEsProfile() && version >= 300 && (strcmp(identifier, "__LINE__") == 0 || strcmp(identifier, "__FILE__") == 0 || strcmp(identifier, "__VERSION__") == 0)) ppError(loc, "predefined names can't be (un)defined:", op, identifier); else { if (isEsProfile() && version < 300 && !relaxedErrors()) ppError(loc, "names containing consecutive underscores are reserved, and an error if version < 300:", op, identifier); else ppWarn(loc, "names containing consecutive underscores are reserved:", op, identifier); } } } // // See if this version/profile allows use of the line-continuation character '\'. // // Returns true if a line continuation should be done. // bool TParseContext::lineContinuationCheck(const TSourceLoc& loc, bool endOfComment) { #ifdef GLSLANG_WEB return true; #endif const char* message = "line continuation"; bool lineContinuationAllowed = (isEsProfile() && version >= 300) || (!isEsProfile() && (version >= 420 || extensionTurnedOn(E_GL_ARB_shading_language_420pack))); if (endOfComment) { if (lineContinuationAllowed) warn(loc, "used at end of comment; the following line is still part of the comment", message, ""); else warn(loc, "used at end of comment, but this version does not provide line continuation", message, ""); return lineContinuationAllowed; } if (relaxedErrors()) { if (! lineContinuationAllowed) warn(loc, "not allowed in this version", message, ""); return true; } else { profileRequires(loc, EEsProfile, 300, nullptr, message); profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, message); } return lineContinuationAllowed; } bool TParseContext::builtInName(const TString& identifier) { return identifier.compare(0, 3, "gl_") == 0; } // // Make sure there is enough data and not too many arguments provided to the // constructor to build something of the type of the constructor. Also returns // the type of the constructor. // // Part of establishing type is establishing specialization-constness. // We don't yet know "top down" whether type is a specialization constant, // but a const constructor can becomes a specialization constant if any of // its children are, subject to KHR_vulkan_glsl rules: // // - int(), uint(), and bool() constructors for type conversions // from any of the following types to any of the following types: // * int // * uint // * bool // - vector versions of the above conversion constructors // // Returns true if there was an error in construction. // bool TParseContext::constructorError(const TSourceLoc& loc, TIntermNode* node, TFunction& function, TOperator op, TType& type) { // See if the constructor does not establish the main type, only requalifies // it, in which case the type comes from the argument instead of from the // constructor function. switch (op) { #ifndef GLSLANG_WEB case EOpConstructNonuniform: if (node != nullptr && node->getAsTyped() != nullptr) { type.shallowCopy(node->getAsTyped()->getType()); type.getQualifier().makeTemporary(); type.getQualifier().nonUniform = true; } break; #endif default: type.shallowCopy(function.getType()); break; } // See if it's a matrix bool constructingMatrix = false; switch (op) { case EOpConstructTextureSampler: return constructorTextureSamplerError(loc, function); case EOpConstructMat2x2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3x3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4x4: #ifndef GLSLANG_WEB case EOpConstructDMat2x2: case EOpConstructDMat2x3: case EOpConstructDMat2x4: case EOpConstructDMat3x2: case EOpConstructDMat3x3: case EOpConstructDMat3x4: case EOpConstructDMat4x2: case EOpConstructDMat4x3: case EOpConstructDMat4x4: case EOpConstructF16Mat2x2: case EOpConstructF16Mat2x3: case EOpConstructF16Mat2x4: case EOpConstructF16Mat3x2: case EOpConstructF16Mat3x3: case EOpConstructF16Mat3x4: case EOpConstructF16Mat4x2: case EOpConstructF16Mat4x3: case EOpConstructF16Mat4x4: #endif constructingMatrix = true; break; default: break; } // // Walk the arguments for first-pass checks and collection of information. // int size = 0; bool constType = true; bool specConstType = false; // value is only valid if constType is true bool full = false; bool overFull = false; bool matrixInMatrix = false; bool arrayArg = false; bool floatArgument = false; for (int arg = 0; arg < function.getParamCount(); ++arg) { if (function[arg].type->isArray()) { if (function[arg].type->isUnsizedArray()) { // Can't construct from an unsized array. error(loc, "array argument must be sized", "constructor", ""); return true; } arrayArg = true; } if (constructingMatrix && function[arg].type->isMatrix()) matrixInMatrix = true; // 'full' will go to true when enough args have been seen. If we loop // again, there is an extra argument. if (full) { // For vectors and matrices, it's okay to have too many components // available, but not okay to have unused arguments. overFull = true; } size += function[arg].type->computeNumComponents(); if (op != EOpConstructStruct && ! type.isArray() && size >= type.computeNumComponents()) full = true; if (! function[arg].type->getQualifier().isConstant()) constType = false; if (function[arg].type->getQualifier().isSpecConstant()) specConstType = true; if (function[arg].type->isFloatingDomain()) floatArgument = true; if (type.isStruct()) { if (function[arg].type->contains16BitFloat()) { requireFloat16Arithmetic(loc, "constructor", "can't construct structure containing 16-bit type"); } if (function[arg].type->contains16BitInt()) { requireInt16Arithmetic(loc, "constructor", "can't construct structure containing 16-bit type"); } if (function[arg].type->contains8BitInt()) { requireInt8Arithmetic(loc, "constructor", "can't construct structure containing 8-bit type"); } } } if (op == EOpConstructNonuniform) constType = false; #ifndef GLSLANG_WEB switch (op) { case EOpConstructFloat16: case EOpConstructF16Vec2: case EOpConstructF16Vec3: case EOpConstructF16Vec4: if (type.isArray()) requireFloat16Arithmetic(loc, "constructor", "16-bit arrays not supported"); if (type.isVector() && function.getParamCount() != 1) requireFloat16Arithmetic(loc, "constructor", "16-bit vectors only take vector types"); break; case EOpConstructUint16: case EOpConstructU16Vec2: case EOpConstructU16Vec3: case EOpConstructU16Vec4: case EOpConstructInt16: case EOpConstructI16Vec2: case EOpConstructI16Vec3: case EOpConstructI16Vec4: if (type.isArray()) requireInt16Arithmetic(loc, "constructor", "16-bit arrays not supported"); if (type.isVector() && function.getParamCount() != 1) requireInt16Arithmetic(loc, "constructor", "16-bit vectors only take vector types"); break; case EOpConstructUint8: case EOpConstructU8Vec2: case EOpConstructU8Vec3: case EOpConstructU8Vec4: case EOpConstructInt8: case EOpConstructI8Vec2: case EOpConstructI8Vec3: case EOpConstructI8Vec4: if (type.isArray()) requireInt8Arithmetic(loc, "constructor", "8-bit arrays not supported"); if (type.isVector() && function.getParamCount() != 1) requireInt8Arithmetic(loc, "constructor", "8-bit vectors only take vector types"); break; default: break; } #endif // inherit constness from children if (constType) { bool makeSpecConst; // Finish pinning down spec-const semantics if (specConstType) { switch (op) { case EOpConstructInt8: case EOpConstructInt: case EOpConstructUint: case EOpConstructBool: case EOpConstructBVec2: case EOpConstructBVec3: case EOpConstructBVec4: case EOpConstructIVec2: case EOpConstructIVec3: case EOpConstructIVec4: case EOpConstructUVec2: case EOpConstructUVec3: case EOpConstructUVec4: #ifndef GLSLANG_WEB case EOpConstructUint8: case EOpConstructInt16: case EOpConstructUint16: case EOpConstructInt64: case EOpConstructUint64: case EOpConstructI8Vec2: case EOpConstructI8Vec3: case EOpConstructI8Vec4: case EOpConstructU8Vec2: case EOpConstructU8Vec3: case EOpConstructU8Vec4: case EOpConstructI16Vec2: case EOpConstructI16Vec3: case EOpConstructI16Vec4: case EOpConstructU16Vec2: case EOpConstructU16Vec3: case EOpConstructU16Vec4: case EOpConstructI64Vec2: case EOpConstructI64Vec3: case EOpConstructI64Vec4: case EOpConstructU64Vec2: case EOpConstructU64Vec3: case EOpConstructU64Vec4: #endif // This was the list of valid ones, if they aren't converting from float // and aren't making an array. makeSpecConst = ! floatArgument && ! type.isArray(); break; default: // anything else wasn't white-listed in the spec as a conversion makeSpecConst = false; break; } } else makeSpecConst = false; if (makeSpecConst) type.getQualifier().makeSpecConstant(); else if (specConstType) type.getQualifier().makeTemporary(); else type.getQualifier().storage = EvqConst; } if (type.isArray()) { if (function.getParamCount() == 0) { error(loc, "array constructor must have at least one argument", "constructor", ""); return true; } if (type.isUnsizedArray()) { // auto adapt the constructor type to the number of arguments type.changeOuterArraySize(function.getParamCount()); } else if (type.getOuterArraySize() != function.getParamCount()) { error(loc, "array constructor needs one argument per array element", "constructor", ""); return true; } if (type.isArrayOfArrays()) { // Types have to match, but we're still making the type. // Finish making the type, and the comparison is done later // when checking for conversion. TArraySizes& arraySizes = *type.getArraySizes(); // At least the dimensionalities have to match. if (! function[0].type->isArray() || arraySizes.getNumDims() != function[0].type->getArraySizes()->getNumDims() + 1) { error(loc, "array constructor argument not correct type to construct array element", "constructor", ""); return true; } if (arraySizes.isInnerUnsized()) { // "Arrays of arrays ..., and the size for any dimension is optional" // That means we need to adopt (from the first argument) the other array sizes into the type. for (int d = 1; d < arraySizes.getNumDims(); ++d) { if (arraySizes.getDimSize(d) == UnsizedArraySize) { arraySizes.setDimSize(d, function[0].type->getArraySizes()->getDimSize(d - 1)); } } } } } if (arrayArg && op != EOpConstructStruct && ! type.isArrayOfArrays()) { error(loc, "constructing non-array constituent from array argument", "constructor", ""); return true; } if (matrixInMatrix && ! type.isArray()) { profileRequires(loc, ENoProfile, 120, nullptr, "constructing matrix from matrix"); // "If a matrix argument is given to a matrix constructor, // it is a compile-time error to have any other arguments." if (function.getParamCount() != 1) error(loc, "matrix constructed from matrix can only have one argument", "constructor", ""); return false; } if (overFull) { error(loc, "too many arguments", "constructor", ""); return true; } if (op == EOpConstructStruct && ! type.isArray() && (int)type.getStruct()->size() != function.getParamCount()) { error(loc, "Number of constructor parameters does not match the number of structure fields", "constructor", ""); return true; } if ((op != EOpConstructStruct && size != 1 && size < type.computeNumComponents()) || (op == EOpConstructStruct && size < type.computeNumComponents())) { error(loc, "not enough data provided for construction", "constructor", ""); return true; } if (type.isCoopMat() && function.getParamCount() != 1) { error(loc, "wrong number of arguments", "constructor", ""); return true; } if (type.isCoopMat() && !(function[0].type->isScalar() || function[0].type->isCoopMat())) { error(loc, "Cooperative matrix constructor argument must be scalar or cooperative matrix", "constructor", ""); return true; } TIntermTyped* typed = node->getAsTyped(); if (typed == nullptr) { error(loc, "constructor argument does not have a type", "constructor", ""); return true; } if (op != EOpConstructStruct && op != EOpConstructNonuniform && typed->getBasicType() == EbtSampler) { error(loc, "cannot convert a sampler", "constructor", ""); return true; } if (op != EOpConstructStruct && typed->isAtomic()) { error(loc, "cannot convert an atomic_uint", "constructor", ""); return true; } if (typed->getBasicType() == EbtVoid) { error(loc, "cannot convert a void", "constructor", ""); return true; } return false; } // Verify all the correct semantics for constructing a combined texture/sampler. // Return true if the semantics are incorrect. bool TParseContext::constructorTextureSamplerError(const TSourceLoc& loc, const TFunction& function) { TString constructorName = function.getType().getBasicTypeString(); // TODO: performance: should not be making copy; interface needs to change const char* token = constructorName.c_str(); // exactly two arguments needed if (function.getParamCount() != 2) { error(loc, "sampler-constructor requires two arguments", token, ""); return true; } // For now, not allowing arrayed constructors, the rest of this function // is set up to allow them, if this test is removed: if (function.getType().isArray()) { error(loc, "sampler-constructor cannot make an array of samplers", token, ""); return true; } // first argument // * the constructor's first argument must be a texture type // * the dimensionality (1D, 2D, 3D, Cube, Rect, Buffer, MS, and Array) // of the texture type must match that of the constructed sampler type // (that is, the suffixes of the type of the first argument and the // type of the constructor will be spelled the same way) if (function[0].type->getBasicType() != EbtSampler || ! function[0].type->getSampler().isTexture() || function[0].type->isArray()) { error(loc, "sampler-constructor first argument must be a scalar *texture* type", token, ""); return true; } // simulate the first argument's impact on the result type, so it can be compared with the encapsulated operator!=() TSampler texture = function.getType().getSampler(); texture.setCombined(false); texture.shadow = false; if (texture != function[0].type->getSampler()) { error(loc, "sampler-constructor first argument must be a *texture* type" " matching the dimensionality and sampled type of the constructor", token, ""); return true; } // second argument // * the constructor's second argument must be a scalar of type // *sampler* or *samplerShadow* if ( function[1].type->getBasicType() != EbtSampler || ! function[1].type->getSampler().isPureSampler() || function[1].type->isArray()) { error(loc, "sampler-constructor second argument must be a scalar sampler or samplerShadow", token, ""); return true; } return false; } // Checks to see if a void variable has been declared and raise an error message for such a case // // returns true in case of an error // bool TParseContext::voidErrorCheck(const TSourceLoc& loc, const TString& identifier, const TBasicType basicType) { if (basicType == EbtVoid) { error(loc, "illegal use of type 'void'", identifier.c_str(), ""); return true; } return false; } // Checks to see if the node (for the expression) contains a scalar boolean expression or not void TParseContext::boolCheck(const TSourceLoc& loc, const TIntermTyped* type) { if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) error(loc, "boolean expression expected", "", ""); } // This function checks to see if the node (for the expression) contains a scalar boolean expression or not void TParseContext::boolCheck(const TSourceLoc& loc, const TPublicType& pType) { if (pType.basicType != EbtBool || pType.arraySizes || pType.matrixCols > 1 || (pType.vectorSize > 1)) error(loc, "boolean expression expected", "", ""); } void TParseContext::samplerCheck(const TSourceLoc& loc, const TType& type, const TString& identifier, TIntermTyped* /*initializer*/) { // Check that the appropriate extension is enabled if external sampler is used. // There are two extensions. The correct one must be used based on GLSL version. if (type.getBasicType() == EbtSampler && type.getSampler().isExternal()) { if (version < 300) { requireExtensions(loc, 1, &E_GL_OES_EGL_image_external, "samplerExternalOES"); } else { requireExtensions(loc, 1, &E_GL_OES_EGL_image_external_essl3, "samplerExternalOES"); } } if (type.getSampler().isYuv()) { requireExtensions(loc, 1, &E_GL_EXT_YUV_target, "__samplerExternal2DY2YEXT"); } if (type.getQualifier().storage == EvqUniform) return; if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtSampler)) error(loc, "non-uniform struct contains a sampler or image:", type.getBasicTypeString().c_str(), identifier.c_str()); else if (type.getBasicType() == EbtSampler && type.getQualifier().storage != EvqUniform) { // non-uniform sampler // not yet: okay if it has an initializer // if (! initializer) error(loc, "sampler/image types can only be used in uniform variables or function parameters:", type.getBasicTypeString().c_str(), identifier.c_str()); } } #ifndef GLSLANG_WEB void TParseContext::atomicUintCheck(const TSourceLoc& loc, const TType& type, const TString& identifier) { if (type.getQualifier().storage == EvqUniform) return; if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtAtomicUint)) error(loc, "non-uniform struct contains an atomic_uint:", type.getBasicTypeString().c_str(), identifier.c_str()); else if (type.getBasicType() == EbtAtomicUint && type.getQualifier().storage != EvqUniform) error(loc, "atomic_uints can only be used in uniform variables or function parameters:", type.getBasicTypeString().c_str(), identifier.c_str()); } void TParseContext::accStructCheck(const TSourceLoc& loc, const TType& type, const TString& identifier) { if (type.getQualifier().storage == EvqUniform) return; if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtAccStruct)) error(loc, "non-uniform struct contains an accelerationStructureNV:", type.getBasicTypeString().c_str(), identifier.c_str()); else if (type.getBasicType() == EbtAccStruct && type.getQualifier().storage != EvqUniform) error(loc, "accelerationStructureNV can only be used in uniform variables or function parameters:", type.getBasicTypeString().c_str(), identifier.c_str()); } #endif // GLSLANG_WEB void TParseContext::transparentOpaqueCheck(const TSourceLoc& loc, const TType& type, const TString& identifier) { if (parsingBuiltins) return; if (type.getQualifier().storage != EvqUniform) return; if (type.containsNonOpaque()) { // Vulkan doesn't allow transparent uniforms outside of blocks if (spvVersion.vulkan > 0) vulkanRemoved(loc, "non-opaque uniforms outside a block"); // OpenGL wants locations on these (unless they are getting automapped) if (spvVersion.openGl > 0 && !type.getQualifier().hasLocation() && !intermediate.getAutoMapLocations()) error(loc, "non-opaque uniform variables need a layout(location=L)", identifier.c_str(), ""); } } // // Qualifier checks knowing the qualifier and that it is a member of a struct/block. // void TParseContext::memberQualifierCheck(glslang::TPublicType& publicType) { globalQualifierFixCheck(publicType.loc, publicType.qualifier); checkNoShaderLayouts(publicType.loc, publicType.shaderQualifiers); if (publicType.qualifier.isNonUniform()) { error(publicType.loc, "not allowed on block or structure members", "nonuniformEXT", ""); publicType.qualifier.nonUniform = false; } } // // Check/fix just a full qualifier (no variables or types yet, but qualifier is complete) at global level. // void TParseContext::globalQualifierFixCheck(const TSourceLoc& loc, TQualifier& qualifier) { bool nonuniformOkay = false; // move from parameter/unknown qualifiers to pipeline in/out qualifiers switch (qualifier.storage) { case EvqIn: profileRequires(loc, ENoProfile, 130, nullptr, "in for stage inputs"); profileRequires(loc, EEsProfile, 300, nullptr, "in for stage inputs"); qualifier.storage = EvqVaryingIn; nonuniformOkay = true; break; case EvqOut: profileRequires(loc, ENoProfile, 130, nullptr, "out for stage outputs"); profileRequires(loc, EEsProfile, 300, nullptr, "out for stage outputs"); qualifier.storage = EvqVaryingOut; break; case EvqInOut: qualifier.storage = EvqVaryingIn; error(loc, "cannot use 'inout' at global scope", "", ""); break; case EvqGlobal: case EvqTemporary: nonuniformOkay = true; break; default: break; } if (!nonuniformOkay && qualifier.isNonUniform()) error(loc, "for non-parameter, can only apply to 'in' or no storage qualifier", "nonuniformEXT", ""); invariantCheck(loc, qualifier); } // // Check a full qualifier and type (no variable yet) at global level. // void TParseContext::globalQualifierTypeCheck(const TSourceLoc& loc, const TQualifier& qualifier, const TPublicType& publicType) { if (! symbolTable.atGlobalLevel()) return; if (!(publicType.userDef && publicType.userDef->isReference())) { if (qualifier.isMemoryQualifierImageAndSSBOOnly() && ! publicType.isImage() && publicType.qualifier.storage != EvqBuffer) { error(loc, "memory qualifiers cannot be used on this type", "", ""); } else if (qualifier.isMemory() && (publicType.basicType != EbtSampler) && !publicType.qualifier.isUniformOrBuffer()) { error(loc, "memory qualifiers cannot be used on this type", "", ""); } } if (qualifier.storage == EvqBuffer && publicType.basicType != EbtBlock && !qualifier.hasBufferReference()) error(loc, "buffers can be declared only as blocks", "buffer", ""); if (qualifier.storage != EvqVaryingIn && publicType.basicType == EbtDouble && extensionTurnedOn(E_GL_ARB_vertex_attrib_64bit) && language == EShLangVertex && version < 400) { profileRequires(loc, ECoreProfile | ECompatibilityProfile, 410, E_GL_ARB_gpu_shader_fp64, "vertex-shader `double` type"); } if (qualifier.storage != EvqVaryingIn && qualifier.storage != EvqVaryingOut) return; if (publicType.shaderQualifiers.hasBlendEquation()) error(loc, "can only be applied to a standalone 'out'", "blend equation", ""); // now, knowing it is a shader in/out, do all the in/out semantic checks if (publicType.basicType == EbtBool && !parsingBuiltins) { error(loc, "cannot be bool", GetStorageQualifierString(qualifier.storage), ""); return; } if (isTypeInt(publicType.basicType) || publicType.basicType == EbtDouble) profileRequires(loc, EEsProfile, 300, nullptr, "shader input/output"); if (!qualifier.flat && !qualifier.isExplicitInterpolation() && !qualifier.isPervertexNV()) { if (isTypeInt(publicType.basicType) || publicType.basicType == EbtDouble || (publicType.userDef && ( publicType.userDef->containsBasicType(EbtInt) || publicType.userDef->containsBasicType(EbtUint) || publicType.userDef->contains16BitInt() || publicType.userDef->contains8BitInt() || publicType.userDef->contains64BitInt() || publicType.userDef->containsDouble()))) { if (qualifier.storage == EvqVaryingIn && language == EShLangFragment) error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage)); else if (qualifier.storage == EvqVaryingOut && language == EShLangVertex && version == 300) error(loc, "must be qualified as flat", TType::getBasicString(publicType.basicType), GetStorageQualifierString(qualifier.storage)); } } if (qualifier.isPatch() && qualifier.isInterpolation()) error(loc, "cannot use interpolation qualifiers with patch", "patch", ""); if (qualifier.isTaskMemory() && publicType.basicType != EbtBlock) error(loc, "taskNV variables can be declared only as blocks", "taskNV", ""); if (qualifier.storage == EvqVaryingIn) { switch (language) { case EShLangVertex: if (publicType.basicType == EbtStruct) { error(loc, "cannot be a structure or array", GetStorageQualifierString(qualifier.storage), ""); return; } if (publicType.arraySizes) { requireProfile(loc, ~EEsProfile, "vertex input arrays"); profileRequires(loc, ENoProfile, 150, nullptr, "vertex input arrays"); } if (publicType.basicType == EbtDouble) profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_vertex_attrib_64bit, "vertex-shader `double` type input"); if (qualifier.isAuxiliary() || qualifier.isInterpolation() || qualifier.isMemory() || qualifier.invariant) error(loc, "vertex input cannot be further qualified", "", ""); break; case EShLangFragment: if (publicType.userDef) { profileRequires(loc, EEsProfile, 300, nullptr, "fragment-shader struct input"); profileRequires(loc, ~EEsProfile, 150, nullptr, "fragment-shader struct input"); if (publicType.userDef->containsStructure()) requireProfile(loc, ~EEsProfile, "fragment-shader struct input containing structure"); if (publicType.userDef->containsArray()) requireProfile(loc, ~EEsProfile, "fragment-shader struct input containing an array"); } break; case EShLangCompute: if (! symbolTable.atBuiltInLevel()) error(loc, "global storage input qualifier cannot be used in a compute shader", "in", ""); break; #ifndef GLSLANG_WEB case EShLangTessControl: if (qualifier.patch) error(loc, "can only use on output in tessellation-control shader", "patch", ""); break; #endif default: break; } } else { // qualifier.storage == EvqVaryingOut switch (language) { case EShLangVertex: if (publicType.userDef) { profileRequires(loc, EEsProfile, 300, nullptr, "vertex-shader struct output"); profileRequires(loc, ~EEsProfile, 150, nullptr, "vertex-shader struct output"); if (publicType.userDef->containsStructure()) requireProfile(loc, ~EEsProfile, "vertex-shader struct output containing structure"); if (publicType.userDef->containsArray()) requireProfile(loc, ~EEsProfile, "vertex-shader struct output containing an array"); } break; case EShLangFragment: profileRequires(loc, EEsProfile, 300, nullptr, "fragment shader output"); if (publicType.basicType == EbtStruct) { error(loc, "cannot be a structure", GetStorageQualifierString(qualifier.storage), ""); return; } if (publicType.matrixRows > 0) { error(loc, "cannot be a matrix", GetStorageQualifierString(qualifier.storage), ""); return; } if (qualifier.isAuxiliary()) error(loc, "can't use auxiliary qualifier on a fragment output", "centroid/sample/patch", ""); if (qualifier.isInterpolation()) error(loc, "can't use interpolation qualifier on a fragment output", "flat/smooth/noperspective", ""); if (publicType.basicType == EbtDouble || publicType.basicType == EbtInt64 || publicType.basicType == EbtUint64) error(loc, "cannot contain a double, int64, or uint64", GetStorageQualifierString(qualifier.storage), ""); break; case EShLangCompute: error(loc, "global storage output qualifier cannot be used in a compute shader", "out", ""); break; #ifndef GLSLANG_WEB case EShLangTessEvaluation: if (qualifier.patch) error(loc, "can only use on input in tessellation-evaluation shader", "patch", ""); break; #endif default: break; } } } // // Merge characteristics of the 'src' qualifier into the 'dst'. // If there is duplication, issue error messages, unless 'force' // is specified, which means to just override default settings. // // Also, when force is false, it will be assumed that 'src' follows // 'dst', for the purpose of error checking order for versions // that require specific orderings of qualifiers. // void TParseContext::mergeQualifiers(const TSourceLoc& loc, TQualifier& dst, const TQualifier& src, bool force) { // Multiple auxiliary qualifiers (mostly done later by 'individual qualifiers') if (src.isAuxiliary() && dst.isAuxiliary()) error(loc, "can only have one auxiliary qualifier (centroid, patch, and sample)", "", ""); // Multiple interpolation qualifiers (mostly done later by 'individual qualifiers') if (src.isInterpolation() && dst.isInterpolation()) error(loc, "can only have one interpolation qualifier (flat, smooth, noperspective, __explicitInterpAMD)", "", ""); // Ordering if (! force && ((!isEsProfile() && version < 420) || (isEsProfile() && version < 310)) && ! extensionTurnedOn(E_GL_ARB_shading_language_420pack)) { // non-function parameters if (src.isNoContraction() && (dst.invariant || dst.isInterpolation() || dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone)) error(loc, "precise qualifier must appear first", "", ""); if (src.invariant && (dst.isInterpolation() || dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone)) error(loc, "invariant qualifier must appear before interpolation, storage, and precision qualifiers ", "", ""); else if (src.isInterpolation() && (dst.isAuxiliary() || dst.storage != EvqTemporary || dst.precision != EpqNone)) error(loc, "interpolation qualifiers must appear before storage and precision qualifiers", "", ""); else if (src.isAuxiliary() && (dst.storage != EvqTemporary || dst.precision != EpqNone)) error(loc, "Auxiliary qualifiers (centroid, patch, and sample) must appear before storage and precision qualifiers", "", ""); else if (src.storage != EvqTemporary && (dst.precision != EpqNone)) error(loc, "precision qualifier must appear as last qualifier", "", ""); // function parameters if (src.isNoContraction() && (dst.storage == EvqConst || dst.storage == EvqIn || dst.storage == EvqOut)) error(loc, "precise qualifier must appear first", "", ""); if (src.storage == EvqConst && (dst.storage == EvqIn || dst.storage == EvqOut)) error(loc, "in/out must appear before const", "", ""); } // Storage qualification if (dst.storage == EvqTemporary || dst.storage == EvqGlobal) dst.storage = src.storage; else if ((dst.storage == EvqIn && src.storage == EvqOut) || (dst.storage == EvqOut && src.storage == EvqIn)) dst.storage = EvqInOut; else if ((dst.storage == EvqIn && src.storage == EvqConst) || (dst.storage == EvqConst && src.storage == EvqIn)) dst.storage = EvqConstReadOnly; else if (src.storage != EvqTemporary && src.storage != EvqGlobal) error(loc, "too many storage qualifiers", GetStorageQualifierString(src.storage), ""); // Precision qualifiers if (! force && src.precision != EpqNone && dst.precision != EpqNone) error(loc, "only one precision qualifier allowed", GetPrecisionQualifierString(src.precision), ""); if (dst.precision == EpqNone || (force && src.precision != EpqNone)) dst.precision = src.precision; #ifndef GLSLANG_WEB if (!force && ((src.coherent && (dst.devicecoherent || dst.queuefamilycoherent || dst.workgroupcoherent || dst.subgroupcoherent || dst.shadercallcoherent)) || (src.devicecoherent && (dst.coherent || dst.queuefamilycoherent || dst.workgroupcoherent || dst.subgroupcoherent || dst.shadercallcoherent)) || (src.queuefamilycoherent && (dst.coherent || dst.devicecoherent || dst.workgroupcoherent || dst.subgroupcoherent || dst.shadercallcoherent)) || (src.workgroupcoherent && (dst.coherent || dst.devicecoherent || dst.queuefamilycoherent || dst.subgroupcoherent || dst.shadercallcoherent)) || (src.subgroupcoherent && (dst.coherent || dst.devicecoherent || dst.queuefamilycoherent || dst.workgroupcoherent || dst.shadercallcoherent)) || (src.shadercallcoherent && (dst.coherent || dst.devicecoherent || dst.queuefamilycoherent || dst.workgroupcoherent || dst.subgroupcoherent)))) { error(loc, "only one coherent/devicecoherent/queuefamilycoherent/workgroupcoherent/subgroupcoherent/shadercallcoherent qualifier allowed", GetPrecisionQualifierString(src.precision), ""); } #endif // Layout qualifiers mergeObjectLayoutQualifiers(dst, src, false); // individual qualifiers bool repeated = false; #define MERGE_SINGLETON(field) repeated |= dst.field && src.field; dst.field |= src.field; MERGE_SINGLETON(invariant); MERGE_SINGLETON(centroid); MERGE_SINGLETON(smooth); MERGE_SINGLETON(flat); MERGE_SINGLETON(specConstant); #ifndef GLSLANG_WEB MERGE_SINGLETON(noContraction); MERGE_SINGLETON(nopersp); MERGE_SINGLETON(explicitInterp); MERGE_SINGLETON(perPrimitiveNV); MERGE_SINGLETON(perViewNV); MERGE_SINGLETON(perTaskNV); MERGE_SINGLETON(patch); MERGE_SINGLETON(sample); MERGE_SINGLETON(coherent); MERGE_SINGLETON(devicecoherent); MERGE_SINGLETON(queuefamilycoherent); MERGE_SINGLETON(workgroupcoherent); MERGE_SINGLETON(subgroupcoherent); MERGE_SINGLETON(shadercallcoherent); MERGE_SINGLETON(nonprivate); MERGE_SINGLETON(volatil); MERGE_SINGLETON(restrict); MERGE_SINGLETON(readonly); MERGE_SINGLETON(writeonly); MERGE_SINGLETON(nonUniform); #endif if (repeated) error(loc, "replicated qualifiers", "", ""); } void TParseContext::setDefaultPrecision(const TSourceLoc& loc, TPublicType& publicType, TPrecisionQualifier qualifier) { TBasicType basicType = publicType.basicType; if (basicType == EbtSampler) { defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)] = qualifier; return; // all is well } if (basicType == EbtInt || basicType == EbtFloat) { if (publicType.isScalar()) { defaultPrecision[basicType] = qualifier; if (basicType == EbtInt) { defaultPrecision[EbtUint] = qualifier; precisionManager.explicitIntDefaultSeen(); } else precisionManager.explicitFloatDefaultSeen(); return; // all is well } } if (basicType == EbtAtomicUint) { if (qualifier != EpqHigh) error(loc, "can only apply highp to atomic_uint", "precision", ""); return; } error(loc, "cannot apply precision statement to this type; use 'float', 'int' or a sampler type", TType::getBasicString(basicType), ""); } // used to flatten the sampler type space into a single dimension // correlates with the declaration of defaultSamplerPrecision[] int TParseContext::computeSamplerTypeIndex(TSampler& sampler) { int arrayIndex = sampler.arrayed ? 1 : 0; int shadowIndex = sampler.shadow ? 1 : 0; int externalIndex = sampler.isExternal() ? 1 : 0; int imageIndex = sampler.isImageClass() ? 1 : 0; int msIndex = sampler.isMultiSample() ? 1 : 0; int flattened = EsdNumDims * (EbtNumTypes * (2 * (2 * (2 * (2 * arrayIndex + msIndex) + imageIndex) + shadowIndex) + externalIndex) + sampler.type) + sampler.dim; assert(flattened < maxSamplerIndex); return flattened; } TPrecisionQualifier TParseContext::getDefaultPrecision(TPublicType& publicType) { if (publicType.basicType == EbtSampler) return defaultSamplerPrecision[computeSamplerTypeIndex(publicType.sampler)]; else return defaultPrecision[publicType.basicType]; } void TParseContext::precisionQualifierCheck(const TSourceLoc& loc, TBasicType baseType, TQualifier& qualifier) { // Built-in symbols are allowed some ambiguous precisions, to be pinned down // later by context. if (! obeyPrecisionQualifiers() || parsingBuiltins) return; #ifndef GLSLANG_WEB if (baseType == EbtAtomicUint && qualifier.precision != EpqNone && qualifier.precision != EpqHigh) error(loc, "atomic counters can only be highp", "atomic_uint", ""); #endif if (baseType == EbtFloat || baseType == EbtUint || baseType == EbtInt || baseType == EbtSampler || baseType == EbtAtomicUint) { if (qualifier.precision == EpqNone) { if (relaxedErrors()) warn(loc, "type requires declaration of default precision qualifier", TType::getBasicString(baseType), "substituting 'mediump'"); else error(loc, "type requires declaration of default precision qualifier", TType::getBasicString(baseType), ""); qualifier.precision = EpqMedium; defaultPrecision[baseType] = EpqMedium; } } else if (qualifier.precision != EpqNone) error(loc, "type cannot have precision qualifier", TType::getBasicString(baseType), ""); } void TParseContext::parameterTypeCheck(const TSourceLoc& loc, TStorageQualifier qualifier, const TType& type) { if ((qualifier == EvqOut || qualifier == EvqInOut) && type.isOpaque()) error(loc, "samplers and atomic_uints cannot be output parameters", type.getBasicTypeString().c_str(), ""); if (!parsingBuiltins && type.contains16BitFloat()) requireFloat16Arithmetic(loc, type.getBasicTypeString().c_str(), "float16 types can only be in uniform block or buffer storage"); if (!parsingBuiltins && type.contains16BitInt()) requireInt16Arithmetic(loc, type.getBasicTypeString().c_str(), "(u)int16 types can only be in uniform block or buffer storage"); if (!parsingBuiltins && type.contains8BitInt()) requireInt8Arithmetic(loc, type.getBasicTypeString().c_str(), "(u)int8 types can only be in uniform block or buffer storage"); } bool TParseContext::containsFieldWithBasicType(const TType& type, TBasicType basicType) { if (type.getBasicType() == basicType) return true; if (type.getBasicType() == EbtStruct) { const TTypeList& structure = *type.getStruct(); for (unsigned int i = 0; i < structure.size(); ++i) { if (containsFieldWithBasicType(*structure[i].type, basicType)) return true; } } return false; } // // Do size checking for an array type's size. // void TParseContext::arraySizeCheck(const TSourceLoc& loc, TIntermTyped* expr, TArraySize& sizePair, const char *sizeType) { bool isConst = false; sizePair.node = nullptr; int size = 1; TIntermConstantUnion* constant = expr->getAsConstantUnion(); if (constant) { // handle true (non-specialization) constant size = constant->getConstArray()[0].getIConst(); isConst = true; } else { // see if it's a specialization constant instead if (expr->getQualifier().isSpecConstant()) { isConst = true; sizePair.node = expr; TIntermSymbol* symbol = expr->getAsSymbolNode(); if (symbol && symbol->getConstArray().size() > 0) size = symbol->getConstArray()[0].getIConst(); } else if (expr->getAsUnaryNode() && expr->getAsUnaryNode()->getOp() == glslang::EOpArrayLength && expr->getAsUnaryNode()->getOperand()->getType().isCoopMat()) { isConst = true; size = 1; sizePair.node = expr->getAsUnaryNode(); } } sizePair.size = size; if (! isConst || (expr->getBasicType() != EbtInt && expr->getBasicType() != EbtUint)) { error(loc, sizeType, "", "must be a constant integer expression"); return; } if (size <= 0) { error(loc, sizeType, "", "must be a positive integer"); return; } } // // See if this qualifier can be an array. // // Returns true if there is an error. // bool TParseContext::arrayQualifierError(const TSourceLoc& loc, const TQualifier& qualifier) { if (qualifier.storage == EvqConst) { profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "const array"); profileRequires(loc, EEsProfile, 300, nullptr, "const array"); } if (qualifier.storage == EvqVaryingIn && language == EShLangVertex) { requireProfile(loc, ~EEsProfile, "vertex input arrays"); profileRequires(loc, ENoProfile, 150, nullptr, "vertex input arrays"); } return false; } // // See if this qualifier and type combination can be an array. // Assumes arrayQualifierError() was also called to catch the type-invariant tests. // // Returns true if there is an error. // bool TParseContext::arrayError(const TSourceLoc& loc, const TType& type) { if (type.getQualifier().storage == EvqVaryingOut && language == EShLangVertex) { if (type.isArrayOfArrays()) requireProfile(loc, ~EEsProfile, "vertex-shader array-of-array output"); else if (type.isStruct()) requireProfile(loc, ~EEsProfile, "vertex-shader array-of-struct output"); } if (type.getQualifier().storage == EvqVaryingIn && language == EShLangFragment) { if (type.isArrayOfArrays()) requireProfile(loc, ~EEsProfile, "fragment-shader array-of-array input"); else if (type.isStruct()) requireProfile(loc, ~EEsProfile, "fragment-shader array-of-struct input"); } if (type.getQualifier().storage == EvqVaryingOut && language == EShLangFragment) { if (type.isArrayOfArrays()) requireProfile(loc, ~EEsProfile, "fragment-shader array-of-array output"); } return false; } // // Require array to be completely sized // void TParseContext::arraySizeRequiredCheck(const TSourceLoc& loc, const TArraySizes& arraySizes) { if (!parsingBuiltins && arraySizes.hasUnsized()) error(loc, "array size required", "", ""); } void TParseContext::structArrayCheck(const TSourceLoc& /*loc*/, const TType& type) { const TTypeList& structure = *type.getStruct(); for (int m = 0; m < (int)structure.size(); ++m) { const TType& member = *structure[m].type; if (member.isArray()) arraySizeRequiredCheck(structure[m].loc, *member.getArraySizes()); } } void TParseContext::arraySizesCheck(const TSourceLoc& loc, const TQualifier& qualifier, TArraySizes* arraySizes, const TIntermTyped* initializer, bool lastMember) { assert(arraySizes); // always allow special built-in ins/outs sized to topologies if (parsingBuiltins) return; // initializer must be a sized array, in which case // allow the initializer to set any unknown array sizes if (initializer != nullptr) { if (initializer->getType().isUnsizedArray()) error(loc, "array initializer must be sized", "[]", ""); return; } // No environment allows any non-outer-dimension to be implicitly sized if (arraySizes->isInnerUnsized()) { error(loc, "only outermost dimension of an array of arrays can be implicitly sized", "[]", ""); arraySizes->clearInnerUnsized(); } if (arraySizes->isInnerSpecialization() && (qualifier.storage != EvqTemporary && qualifier.storage != EvqGlobal && qualifier.storage != EvqShared && qualifier.storage != EvqConst)) error(loc, "only outermost dimension of an array of arrays can be a specialization constant", "[]", ""); #ifndef GLSLANG_WEB // desktop always allows outer-dimension-unsized variable arrays, if (!isEsProfile()) return; // for ES, if size isn't coming from an initializer, it has to be explicitly declared now, // with very few exceptions // implicitly-sized io exceptions: switch (language) { case EShLangGeometry: if (qualifier.storage == EvqVaryingIn) if ((isEsProfile() && version >= 320) || extensionsTurnedOn(Num_AEP_geometry_shader, AEP_geometry_shader)) return; break; case EShLangTessControl: if ( qualifier.storage == EvqVaryingIn || (qualifier.storage == EvqVaryingOut && ! qualifier.isPatch())) if ((isEsProfile() && version >= 320) || extensionsTurnedOn(Num_AEP_tessellation_shader, AEP_tessellation_shader)) return; break; case EShLangTessEvaluation: if ((qualifier.storage == EvqVaryingIn && ! qualifier.isPatch()) || qualifier.storage == EvqVaryingOut) if ((isEsProfile() && version >= 320) || extensionsTurnedOn(Num_AEP_tessellation_shader, AEP_tessellation_shader)) return; break; case EShLangMeshNV: if (qualifier.storage == EvqVaryingOut) if ((isEsProfile() && version >= 320) || extensionTurnedOn(E_GL_NV_mesh_shader)) return; break; default: break; } #endif // last member of ssbo block exception: if (qualifier.storage == EvqBuffer && lastMember) return; arraySizeRequiredCheck(loc, *arraySizes); } void TParseContext::arrayOfArrayVersionCheck(const TSourceLoc& loc, const TArraySizes* sizes) { if (sizes == nullptr || sizes->getNumDims() == 1) return; const char* feature = "arrays of arrays"; requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature); profileRequires(loc, EEsProfile, 310, nullptr, feature); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, nullptr, feature); } // // Do all the semantic checking for declaring or redeclaring an array, with and // without a size, and make the right changes to the symbol table. // void TParseContext::declareArray(const TSourceLoc& loc, const TString& identifier, const TType& type, TSymbol*& symbol) { if (symbol == nullptr) { bool currentScope; symbol = symbolTable.find(identifier, nullptr, ¤tScope); if (symbol && builtInName(identifier) && ! symbolTable.atBuiltInLevel()) { // bad shader (errors already reported) trying to redeclare a built-in name as an array symbol = nullptr; return; } if (symbol == nullptr || ! currentScope) { // // Successfully process a new definition. // (Redeclarations have to take place at the same scope; otherwise they are hiding declarations) // symbol = new TVariable(&identifier, type); symbolTable.insert(*symbol); if (symbolTable.atGlobalLevel()) trackLinkage(*symbol); #ifndef GLSLANG_WEB if (! symbolTable.atBuiltInLevel()) { if (isIoResizeArray(type)) { ioArraySymbolResizeList.push_back(symbol); checkIoArraysConsistency(loc, true); } else fixIoArraySize(loc, symbol->getWritableType()); } #endif return; } if (symbol->getAsAnonMember()) { error(loc, "cannot redeclare a user-block member array", identifier.c_str(), ""); symbol = nullptr; return; } } // // Process a redeclaration. // if (symbol == nullptr) { error(loc, "array variable name expected", identifier.c_str(), ""); return; } // redeclareBuiltinVariable() should have already done the copyUp() TType& existingType = symbol->getWritableType(); if (! existingType.isArray()) { error(loc, "redeclaring non-array as array", identifier.c_str(), ""); return; } if (! existingType.sameElementType(type)) { error(loc, "redeclaration of array with a different element type", identifier.c_str(), ""); return; } if (! existingType.sameInnerArrayness(type)) { error(loc, "redeclaration of array with a different array dimensions or sizes", identifier.c_str(), ""); return; } #ifndef GLSLANG_WEB if (existingType.isSizedArray()) { // be more leniant for input arrays to geometry shaders and tessellation control outputs, where the redeclaration is the same size if (! (isIoResizeArray(type) && existingType.getOuterArraySize() == type.getOuterArraySize())) error(loc, "redeclaration of array with size", identifier.c_str(), ""); return; } arrayLimitCheck(loc, identifier, type.getOuterArraySize()); existingType.updateArraySizes(type); if (isIoResizeArray(type)) checkIoArraysConsistency(loc); #endif } #ifndef GLSLANG_WEB // Policy and error check for needing a runtime sized array. void TParseContext::checkRuntimeSizable(const TSourceLoc& loc, const TIntermTyped& base) { // runtime length implies runtime sizeable, so no problem if (isRuntimeLength(base)) return; // Check for last member of a bufferreference type, which is runtime sizeable // but doesn't support runtime length if (base.getType().getQualifier().storage == EvqBuffer) { const TIntermBinary* binary = base.getAsBinaryNode(); if (binary != nullptr && binary->getOp() == EOpIndexDirectStruct && binary->getLeft()->isReference()) { const int index = binary->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst(); const int memberCount = (int)binary->getLeft()->getType().getReferentType()->getStruct()->size(); if (index == memberCount - 1) return; } } // check for additional things allowed by GL_EXT_nonuniform_qualifier if (base.getBasicType() == EbtSampler || base.getBasicType() == EbtAccStruct || base.getBasicType() == EbtRayQuery || (base.getBasicType() == EbtBlock && base.getType().getQualifier().isUniformOrBuffer())) requireExtensions(loc, 1, &E_GL_EXT_nonuniform_qualifier, "variable index"); else error(loc, "", "[", "array must be redeclared with a size before being indexed with a variable"); } // Policy decision for whether a run-time .length() is allowed. bool TParseContext::isRuntimeLength(const TIntermTyped& base) const { if (base.getType().getQualifier().storage == EvqBuffer) { // in a buffer block const TIntermBinary* binary = base.getAsBinaryNode(); if (binary != nullptr && binary->getOp() == EOpIndexDirectStruct) { // is it the last member? const int index = binary->getRight()->getAsConstantUnion()->getConstArray()[0].getIConst(); if (binary->getLeft()->isReference()) return false; const int memberCount = (int)binary->getLeft()->getType().getStruct()->size(); if (index == memberCount - 1) return true; } } return false; } // Check if mesh perviewNV attributes have a view dimension // and resize it to gl_MaxMeshViewCountNV when implicitly sized. void TParseContext::checkAndResizeMeshViewDim(const TSourceLoc& loc, TType& type, bool isBlockMember) { // see if member is a per-view attribute if (!type.getQualifier().isPerView()) return; if ((isBlockMember && type.isArray()) || (!isBlockMember && type.isArrayOfArrays())) { // since we don't have the maxMeshViewCountNV set during parsing builtins, we hardcode the value. int maxViewCount = parsingBuiltins ? 4 : resources.maxMeshViewCountNV; // For block members, outermost array dimension is the view dimension. // For non-block members, outermost array dimension is the vertex/primitive dimension // and 2nd outermost is the view dimension. int viewDim = isBlockMember ? 0 : 1; int viewDimSize = type.getArraySizes()->getDimSize(viewDim); if (viewDimSize != UnsizedArraySize && viewDimSize != maxViewCount) error(loc, "mesh view output array size must be gl_MaxMeshViewCountNV or implicitly sized", "[]", ""); else if (viewDimSize == UnsizedArraySize) type.getArraySizes()->setDimSize(viewDim, maxViewCount); } else { error(loc, "requires a view array dimension", "perviewNV", ""); } } #endif // GLSLANG_WEB // Returns true if the first argument to the #line directive is the line number for the next line. // // Desktop, pre-version 3.30: "After processing this directive // (including its new-line), the implementation will behave as if it is compiling at line number line+1 and // source string number source-string-number." // // Desktop, version 3.30 and later, and ES: "After processing this directive // (including its new-line), the implementation will behave as if it is compiling at line number line and // source string number source-string-number. bool TParseContext::lineDirectiveShouldSetNextLine() const { return isEsProfile() || version >= 330; } // // Enforce non-initializer type/qualifier rules. // void TParseContext::nonInitConstCheck(const TSourceLoc& loc, TString& identifier, TType& type) { // // Make the qualifier make sense, given that there is not an initializer. // if (type.getQualifier().storage == EvqConst || type.getQualifier().storage == EvqConstReadOnly) { type.getQualifier().makeTemporary(); error(loc, "variables with qualifier 'const' must be initialized", identifier.c_str(), ""); } } // // See if the identifier is a built-in symbol that can be redeclared, and if so, // copy the symbol table's read-only built-in variable to the current // global level, where it can be modified based on the passed in type. // // Returns nullptr if no redeclaration took place; meaning a normal declaration still // needs to occur for it, not necessarily an error. // // Returns a redeclared and type-modified variable if a redeclarated occurred. // TSymbol* TParseContext::redeclareBuiltinVariable(const TSourceLoc& loc, const TString& identifier, const TQualifier& qualifier, const TShaderQualifiers& publicType) { #ifndef GLSLANG_WEB if (! builtInName(identifier) || symbolTable.atBuiltInLevel() || ! symbolTable.atGlobalLevel()) return nullptr; bool nonEsRedecls = (!isEsProfile() && (version >= 130 || identifier == "gl_TexCoord")); bool esRedecls = (isEsProfile() && (version >= 320 || extensionsTurnedOn(Num_AEP_shader_io_blocks, AEP_shader_io_blocks))); if (! esRedecls && ! nonEsRedecls) return nullptr; // Special case when using GL_ARB_separate_shader_objects bool ssoPre150 = false; // means the only reason this variable is redeclared is due to this combination if (!isEsProfile() && version <= 140 && extensionTurnedOn(E_GL_ARB_separate_shader_objects)) { if (identifier == "gl_Position" || identifier == "gl_PointSize" || identifier == "gl_ClipVertex" || identifier == "gl_FogFragCoord") ssoPre150 = true; } // Potentially redeclaring a built-in variable... if (ssoPre150 || (identifier == "gl_FragDepth" && ((nonEsRedecls && version >= 420) || esRedecls)) || (identifier == "gl_FragCoord" && ((nonEsRedecls && version >= 150) || esRedecls)) || identifier == "gl_ClipDistance" || identifier == "gl_CullDistance" || identifier == "gl_FrontColor" || identifier == "gl_BackColor" || identifier == "gl_FrontSecondaryColor" || identifier == "gl_BackSecondaryColor" || identifier == "gl_SecondaryColor" || (identifier == "gl_Color" && language == EShLangFragment) || (identifier == "gl_FragStencilRefARB" && (nonEsRedecls && version >= 140) && language == EShLangFragment) || identifier == "gl_SampleMask" || identifier == "gl_Layer" || identifier == "gl_PrimitiveIndicesNV" || identifier == "gl_TexCoord") { // Find the existing symbol, if any. bool builtIn; TSymbol* symbol = symbolTable.find(identifier, &builtIn); // If the symbol was not found, this must be a version/profile/stage // that doesn't have it. if (! symbol) return nullptr; // If it wasn't at a built-in level, then it's already been redeclared; // that is, this is a redeclaration of a redeclaration; reuse that initial // redeclaration. Otherwise, make the new one. if (builtIn) makeEditable(symbol); // Now, modify the type of the copy, as per the type of the current redeclaration. TQualifier& symbolQualifier = symbol->getWritableType().getQualifier(); if (ssoPre150) { if (intermediate.inIoAccessed(identifier)) error(loc, "cannot redeclare after use", identifier.c_str(), ""); if (qualifier.hasLayout()) error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str()); if (qualifier.isMemory() || qualifier.isAuxiliary() || (language == EShLangVertex && qualifier.storage != EvqVaryingOut) || (language == EShLangFragment && qualifier.storage != EvqVaryingIn)) error(loc, "cannot change storage, memory, or auxiliary qualification of", "redeclaration", symbol->getName().c_str()); if (! qualifier.smooth) error(loc, "cannot change interpolation qualification of", "redeclaration", symbol->getName().c_str()); } else if (identifier == "gl_FrontColor" || identifier == "gl_BackColor" || identifier == "gl_FrontSecondaryColor" || identifier == "gl_BackSecondaryColor" || identifier == "gl_SecondaryColor" || identifier == "gl_Color") { symbolQualifier.flat = qualifier.flat; symbolQualifier.smooth = qualifier.smooth; symbolQualifier.nopersp = qualifier.nopersp; if (qualifier.hasLayout()) error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str()); if (qualifier.isMemory() || qualifier.isAuxiliary() || symbol->getType().getQualifier().storage != qualifier.storage) error(loc, "cannot change storage, memory, or auxiliary qualification of", "redeclaration", symbol->getName().c_str()); } else if (identifier == "gl_TexCoord" || identifier == "gl_ClipDistance" || identifier == "gl_CullDistance") { if (qualifier.hasLayout() || qualifier.isMemory() || qualifier.isAuxiliary() || qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat || symbolQualifier.storage != qualifier.storage) error(loc, "cannot change qualification of", "redeclaration", symbol->getName().c_str()); } else if (identifier == "gl_FragCoord") { if (intermediate.inIoAccessed("gl_FragCoord")) error(loc, "cannot redeclare after use", "gl_FragCoord", ""); if (qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat || qualifier.isMemory() || qualifier.isAuxiliary()) error(loc, "can only change layout qualification of", "redeclaration", symbol->getName().c_str()); if (qualifier.storage != EvqVaryingIn) error(loc, "cannot change input storage qualification of", "redeclaration", symbol->getName().c_str()); if (! builtIn && (publicType.pixelCenterInteger != intermediate.getPixelCenterInteger() || publicType.originUpperLeft != intermediate.getOriginUpperLeft())) error(loc, "cannot redeclare with different qualification:", "redeclaration", symbol->getName().c_str()); if (publicType.pixelCenterInteger) intermediate.setPixelCenterInteger(); if (publicType.originUpperLeft) intermediate.setOriginUpperLeft(); } else if (identifier == "gl_FragDepth") { if (qualifier.nopersp != symbolQualifier.nopersp || qualifier.flat != symbolQualifier.flat || qualifier.isMemory() || qualifier.isAuxiliary()) error(loc, "can only change layout qualification of", "redeclaration", symbol->getName().c_str()); if (qualifier.storage != EvqVaryingOut) error(loc, "cannot change output storage qualification of", "redeclaration", symbol->getName().c_str()); if (publicType.layoutDepth != EldNone) { if (intermediate.inIoAccessed("gl_FragDepth")) error(loc, "cannot redeclare after use", "gl_FragDepth", ""); if (! intermediate.setDepth(publicType.layoutDepth)) error(loc, "all redeclarations must use the same depth layout on", "redeclaration", symbol->getName().c_str()); } } else if ( identifier == "gl_PrimitiveIndicesNV" || identifier == "gl_FragStencilRefARB") { if (qualifier.hasLayout()) error(loc, "cannot apply layout qualifier to", "redeclaration", symbol->getName().c_str()); if (qualifier.storage != EvqVaryingOut) error(loc, "cannot change output storage qualification of", "redeclaration", symbol->getName().c_str()); } else if (identifier == "gl_SampleMask") { if (!publicType.layoutOverrideCoverage) { error(loc, "redeclaration only allowed for override_coverage layout", "redeclaration", symbol->getName().c_str()); } intermediate.setLayoutOverrideCoverage(); } else if (identifier == "gl_Layer") { if (!qualifier.layoutViewportRelative && qualifier.layoutSecondaryViewportRelativeOffset == -2048) error(loc, "redeclaration only allowed for viewport_relative or secondary_view_offset layout", "redeclaration", symbol->getName().c_str()); symbolQualifier.layoutViewportRelative = qualifier.layoutViewportRelative; symbolQualifier.layoutSecondaryViewportRelativeOffset = qualifier.layoutSecondaryViewportRelativeOffset; } // TODO: semantics quality: separate smooth from nothing declared, then use IsInterpolation for several tests above return symbol; } #endif return nullptr; } // // Either redeclare the requested block, or give an error message why it can't be done. // // TODO: functionality: explicitly sizing members of redeclared blocks is not giving them an explicit size void TParseContext::redeclareBuiltinBlock(const TSourceLoc& loc, TTypeList& newTypeList, const TString& blockName, const TString* instanceName, TArraySizes* arraySizes) { #ifndef GLSLANG_WEB const char* feature = "built-in block redeclaration"; profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, feature); profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature); if (blockName != "gl_PerVertex" && blockName != "gl_PerFragment" && blockName != "gl_MeshPerVertexNV" && blockName != "gl_MeshPerPrimitiveNV") { error(loc, "cannot redeclare block: ", "block declaration", blockName.c_str()); return; } // Redeclaring a built-in block... if (instanceName && ! builtInName(*instanceName)) { error(loc, "cannot redeclare a built-in block with a user name", instanceName->c_str(), ""); return; } // Blocks with instance names are easy to find, lookup the instance name, // Anonymous blocks need to be found via a member. bool builtIn; TSymbol* block; if (instanceName) block = symbolTable.find(*instanceName, &builtIn); else block = symbolTable.find(newTypeList.front().type->getFieldName(), &builtIn); // If the block was not found, this must be a version/profile/stage // that doesn't have it, or the instance name is wrong. const char* errorName = instanceName ? instanceName->c_str() : newTypeList.front().type->getFieldName().c_str(); if (! block) { error(loc, "no declaration found for redeclaration", errorName, ""); return; } // Built-in blocks cannot be redeclared more than once, which if happened, // we'd be finding the already redeclared one here, rather than the built in. if (! builtIn) { error(loc, "can only redeclare a built-in block once, and before any use", blockName.c_str(), ""); return; } // Copy the block to make a writable version, to insert into the block table after editing. block = symbolTable.copyUpDeferredInsert(block); if (block->getType().getBasicType() != EbtBlock) { error(loc, "cannot redeclare a non block as a block", errorName, ""); return; } // Fix XFB stuff up, it applies to the order of the redeclaration, not // the order of the original members. if (currentBlockQualifier.storage == EvqVaryingOut && globalOutputDefaults.hasXfbBuffer()) { if (!currentBlockQualifier.hasXfbBuffer()) currentBlockQualifier.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; if (!currentBlockQualifier.hasStream()) currentBlockQualifier.layoutStream = globalOutputDefaults.layoutStream; fixXfbOffsets(currentBlockQualifier, newTypeList); } // Edit and error check the container against the redeclaration // - remove unused members // - ensure remaining qualifiers/types match TType& type = block->getWritableType(); // if gl_PerVertex is redeclared for the purpose of passing through "gl_Position" // for passthrough purpose, the redeclared block should have the same qualifers as // the current one if (currentBlockQualifier.layoutPassthrough) { type.getQualifier().layoutPassthrough = currentBlockQualifier.layoutPassthrough; type.getQualifier().storage = currentBlockQualifier.storage; type.getQualifier().layoutStream = currentBlockQualifier.layoutStream; type.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer; } TTypeList::iterator member = type.getWritableStruct()->begin(); size_t numOriginalMembersFound = 0; while (member != type.getStruct()->end()) { // look for match bool found = false; TTypeList::const_iterator newMember; TSourceLoc memberLoc; memberLoc.init(); for (newMember = newTypeList.begin(); newMember != newTypeList.end(); ++newMember) { if (member->type->getFieldName() == newMember->type->getFieldName()) { found = true; memberLoc = newMember->loc; break; } } if (found) { ++numOriginalMembersFound; // - ensure match between redeclared members' types // - check for things that can't be changed // - update things that can be changed TType& oldType = *member->type; const TType& newType = *newMember->type; if (! newType.sameElementType(oldType)) error(memberLoc, "cannot redeclare block member with a different type", member->type->getFieldName().c_str(), ""); if (oldType.isArray() != newType.isArray()) error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), ""); else if (! oldType.getQualifier().isPerView() && ! oldType.sameArrayness(newType) && oldType.isSizedArray()) error(memberLoc, "cannot change array size of redeclared block member", member->type->getFieldName().c_str(), ""); else if (! oldType.getQualifier().isPerView() && newType.isArray()) arrayLimitCheck(loc, member->type->getFieldName(), newType.getOuterArraySize()); if (oldType.getQualifier().isPerView() && ! newType.getQualifier().isPerView()) error(memberLoc, "missing perviewNV qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); else if (! oldType.getQualifier().isPerView() && newType.getQualifier().isPerView()) error(memberLoc, "cannot add perviewNV qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); else if (newType.getQualifier().isPerView()) { if (oldType.getArraySizes()->getNumDims() != newType.getArraySizes()->getNumDims()) error(memberLoc, "cannot change arrayness of redeclared block member", member->type->getFieldName().c_str(), ""); else if (! newType.isUnsizedArray() && newType.getOuterArraySize() != resources.maxMeshViewCountNV) error(loc, "mesh view output array size must be gl_MaxMeshViewCountNV or implicitly sized", "[]", ""); else if (newType.getArraySizes()->getNumDims() == 2) { int innerDimSize = newType.getArraySizes()->getDimSize(1); arrayLimitCheck(memberLoc, member->type->getFieldName(), innerDimSize); oldType.getArraySizes()->setDimSize(1, innerDimSize); } } if (oldType.getQualifier().isPerPrimitive() && ! newType.getQualifier().isPerPrimitive()) error(memberLoc, "missing perprimitiveNV qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); else if (! oldType.getQualifier().isPerPrimitive() && newType.getQualifier().isPerPrimitive()) error(memberLoc, "cannot add perprimitiveNV qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); if (newType.getQualifier().isMemory()) error(memberLoc, "cannot add memory qualifier to redeclared block member", member->type->getFieldName().c_str(), ""); if (newType.getQualifier().hasNonXfbLayout()) error(memberLoc, "cannot add non-XFB layout to redeclared block member", member->type->getFieldName().c_str(), ""); if (newType.getQualifier().patch) error(memberLoc, "cannot add patch to redeclared block member", member->type->getFieldName().c_str(), ""); if (newType.getQualifier().hasXfbBuffer() && newType.getQualifier().layoutXfbBuffer != currentBlockQualifier.layoutXfbBuffer) error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); if (newType.getQualifier().hasStream() && newType.getQualifier().layoutStream != currentBlockQualifier.layoutStream) error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_stream", ""); oldType.getQualifier().centroid = newType.getQualifier().centroid; oldType.getQualifier().sample = newType.getQualifier().sample; oldType.getQualifier().invariant = newType.getQualifier().invariant; oldType.getQualifier().noContraction = newType.getQualifier().noContraction; oldType.getQualifier().smooth = newType.getQualifier().smooth; oldType.getQualifier().flat = newType.getQualifier().flat; oldType.getQualifier().nopersp = newType.getQualifier().nopersp; oldType.getQualifier().layoutXfbOffset = newType.getQualifier().layoutXfbOffset; oldType.getQualifier().layoutXfbBuffer = newType.getQualifier().layoutXfbBuffer; oldType.getQualifier().layoutXfbStride = newType.getQualifier().layoutXfbStride; if (oldType.getQualifier().layoutXfbOffset != TQualifier::layoutXfbBufferEnd) { // If any member has an xfb_offset, then the block's xfb_buffer inherents current xfb_buffer, // and for xfb processing, the member needs it as well, along with xfb_stride. type.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer; oldType.getQualifier().layoutXfbBuffer = currentBlockQualifier.layoutXfbBuffer; } if (oldType.isUnsizedArray() && newType.isSizedArray()) oldType.changeOuterArraySize(newType.getOuterArraySize()); // check and process the member's type, which will include managing xfb information layoutTypeCheck(loc, oldType); // go to next member ++member; } else { // For missing members of anonymous blocks that have been redeclared, // hide the original (shared) declaration. // Instance-named blocks can just have the member removed. if (instanceName) member = type.getWritableStruct()->erase(member); else { member->type->hideMember(); ++member; } } } if (spvVersion.vulkan > 0) { // ...then streams apply to built-in blocks, instead of them being only on stream 0 type.getQualifier().layoutStream = currentBlockQualifier.layoutStream; } if (numOriginalMembersFound < newTypeList.size()) error(loc, "block redeclaration has extra members", blockName.c_str(), ""); if (type.isArray() != (arraySizes != nullptr) || (type.isArray() && arraySizes != nullptr && type.getArraySizes()->getNumDims() != arraySizes->getNumDims())) error(loc, "cannot change arrayness of redeclared block", blockName.c_str(), ""); else if (type.isArray()) { // At this point, we know both are arrays and both have the same number of dimensions. // It is okay for a built-in block redeclaration to be unsized, and keep the size of the // original block declaration. if (!arraySizes->isSized() && type.isSizedArray()) arraySizes->changeOuterSize(type.getOuterArraySize()); // And, okay to be giving a size to the array, by the redeclaration if (!type.isSizedArray() && arraySizes->isSized()) type.changeOuterArraySize(arraySizes->getOuterSize()); // Now, they must match in all dimensions. if (type.isSizedArray() && *type.getArraySizes() != *arraySizes) error(loc, "cannot change array size of redeclared block", blockName.c_str(), ""); } symbolTable.insert(*block); // Check for general layout qualifier errors layoutObjectCheck(loc, *block); // Tracking for implicit sizing of array if (isIoResizeArray(block->getType())) { ioArraySymbolResizeList.push_back(block); checkIoArraysConsistency(loc, true); } else if (block->getType().isArray()) fixIoArraySize(loc, block->getWritableType()); // Save it in the AST for linker use. trackLinkage(*block); #endif // GLSLANG_WEB } void TParseContext::paramCheckFixStorage(const TSourceLoc& loc, const TStorageQualifier& qualifier, TType& type) { switch (qualifier) { case EvqConst: case EvqConstReadOnly: type.getQualifier().storage = EvqConstReadOnly; break; case EvqIn: case EvqOut: case EvqInOut: type.getQualifier().storage = qualifier; break; case EvqGlobal: case EvqTemporary: type.getQualifier().storage = EvqIn; break; default: type.getQualifier().storage = EvqIn; error(loc, "storage qualifier not allowed on function parameter", GetStorageQualifierString(qualifier), ""); break; } } void TParseContext::paramCheckFix(const TSourceLoc& loc, const TQualifier& qualifier, TType& type) { #ifndef GLSLANG_WEB if (qualifier.isMemory()) { type.getQualifier().volatil = qualifier.volatil; type.getQualifier().coherent = qualifier.coherent; type.getQualifier().devicecoherent = qualifier.devicecoherent ; type.getQualifier().queuefamilycoherent = qualifier.queuefamilycoherent; type.getQualifier().workgroupcoherent = qualifier.workgroupcoherent; type.getQualifier().subgroupcoherent = qualifier.subgroupcoherent; type.getQualifier().shadercallcoherent = qualifier.shadercallcoherent; type.getQualifier().nonprivate = qualifier.nonprivate; type.getQualifier().readonly = qualifier.readonly; type.getQualifier().writeonly = qualifier.writeonly; type.getQualifier().restrict = qualifier.restrict; } #endif if (qualifier.isAuxiliary() || qualifier.isInterpolation()) error(loc, "cannot use auxiliary or interpolation qualifiers on a function parameter", "", ""); if (qualifier.hasLayout()) error(loc, "cannot use layout qualifiers on a function parameter", "", ""); if (qualifier.invariant) error(loc, "cannot use invariant qualifier on a function parameter", "", ""); if (qualifier.isNoContraction()) { if (qualifier.isParamOutput()) type.getQualifier().setNoContraction(); else warn(loc, "qualifier has no effect on non-output parameters", "precise", ""); } if (qualifier.isNonUniform()) type.getQualifier().nonUniform = qualifier.nonUniform; paramCheckFixStorage(loc, qualifier.storage, type); } void TParseContext::nestedBlockCheck(const TSourceLoc& loc) { if (structNestingLevel > 0) error(loc, "cannot nest a block definition inside a structure or block", "", ""); ++structNestingLevel; } void TParseContext::nestedStructCheck(const TSourceLoc& loc) { if (structNestingLevel > 0) error(loc, "cannot nest a structure definition inside a structure or block", "", ""); ++structNestingLevel; } void TParseContext::arrayObjectCheck(const TSourceLoc& loc, const TType& type, const char* op) { // Some versions don't allow comparing arrays or structures containing arrays if (type.containsArray()) { profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, op); profileRequires(loc, EEsProfile, 300, nullptr, op); } } void TParseContext::opaqueCheck(const TSourceLoc& loc, const TType& type, const char* op) { if (containsFieldWithBasicType(type, EbtSampler)) error(loc, "can't use with samplers or structs containing samplers", op, ""); } void TParseContext::referenceCheck(const TSourceLoc& loc, const TType& type, const char* op) { #ifndef GLSLANG_WEB if (containsFieldWithBasicType(type, EbtReference)) error(loc, "can't use with reference types", op, ""); #endif } void TParseContext::storage16BitAssignmentCheck(const TSourceLoc& loc, const TType& type, const char* op) { #ifndef GLSLANG_WEB if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtFloat16)) requireFloat16Arithmetic(loc, op, "can't use with structs containing float16"); if (type.isArray() && type.getBasicType() == EbtFloat16) requireFloat16Arithmetic(loc, op, "can't use with arrays containing float16"); if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtInt16)) requireInt16Arithmetic(loc, op, "can't use with structs containing int16"); if (type.isArray() && type.getBasicType() == EbtInt16) requireInt16Arithmetic(loc, op, "can't use with arrays containing int16"); if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtUint16)) requireInt16Arithmetic(loc, op, "can't use with structs containing uint16"); if (type.isArray() && type.getBasicType() == EbtUint16) requireInt16Arithmetic(loc, op, "can't use with arrays containing uint16"); if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtInt8)) requireInt8Arithmetic(loc, op, "can't use with structs containing int8"); if (type.isArray() && type.getBasicType() == EbtInt8) requireInt8Arithmetic(loc, op, "can't use with arrays containing int8"); if (type.getBasicType() == EbtStruct && containsFieldWithBasicType(type, EbtUint8)) requireInt8Arithmetic(loc, op, "can't use with structs containing uint8"); if (type.isArray() && type.getBasicType() == EbtUint8) requireInt8Arithmetic(loc, op, "can't use with arrays containing uint8"); #endif } void TParseContext::specializationCheck(const TSourceLoc& loc, const TType& type, const char* op) { if (type.containsSpecializationSize()) error(loc, "can't use with types containing arrays sized with a specialization constant", op, ""); } void TParseContext::structTypeCheck(const TSourceLoc& /*loc*/, TPublicType& publicType) { const TTypeList& typeList = *publicType.userDef->getStruct(); // fix and check for member storage qualifiers and types that don't belong within a structure for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; if (memberQualifier.isAuxiliary() || memberQualifier.isInterpolation() || (memberQualifier.storage != EvqTemporary && memberQualifier.storage != EvqGlobal)) error(memberLoc, "cannot use storage or interpolation qualifiers on structure members", typeList[member].type->getFieldName().c_str(), ""); if (memberQualifier.isMemory()) error(memberLoc, "cannot use memory qualifiers on structure members", typeList[member].type->getFieldName().c_str(), ""); if (memberQualifier.hasLayout()) { error(memberLoc, "cannot use layout qualifiers on structure members", typeList[member].type->getFieldName().c_str(), ""); memberQualifier.clearLayout(); } if (memberQualifier.invariant) error(memberLoc, "cannot use invariant qualifier on structure members", typeList[member].type->getFieldName().c_str(), ""); } } // // See if this loop satisfies the limitations for ES 2.0 (version 100) for loops in Appendex A: // // "The loop index has type int or float. // // "The for statement has the form: // for ( init-declaration ; condition ; expression ) // init-declaration has the form: type-specifier identifier = constant-expression // condition has the form: loop-index relational_operator constant-expression // where relational_operator is one of: > >= < <= == or != // expression [sic] has one of the following forms: // loop-index++ // loop-index-- // loop-index += constant-expression // loop-index -= constant-expression // // The body is handled in an AST traversal. // void TParseContext::inductiveLoopCheck(const TSourceLoc& loc, TIntermNode* init, TIntermLoop* loop) { #ifndef GLSLANG_WEB // loop index init must exist and be a declaration, which shows up in the AST as an aggregate of size 1 of the declaration bool badInit = false; if (! init || ! init->getAsAggregate() || init->getAsAggregate()->getSequence().size() != 1) badInit = true; TIntermBinary* binaryInit = 0; if (! badInit) { // get the declaration assignment binaryInit = init->getAsAggregate()->getSequence()[0]->getAsBinaryNode(); if (! binaryInit) badInit = true; } if (badInit) { error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", ""); return; } // loop index must be type int or float if (! binaryInit->getType().isScalar() || (binaryInit->getBasicType() != EbtInt && binaryInit->getBasicType() != EbtFloat)) { error(loc, "inductive loop requires a scalar 'int' or 'float' loop index", "limitations", ""); return; } // init is the form "loop-index = constant" if (binaryInit->getOp() != EOpAssign || ! binaryInit->getLeft()->getAsSymbolNode() || ! binaryInit->getRight()->getAsConstantUnion()) { error(loc, "inductive-loop init-declaration requires the form \"type-specifier loop-index = constant-expression\"", "limitations", ""); return; } // get the unique id of the loop index int loopIndex = binaryInit->getLeft()->getAsSymbolNode()->getId(); inductiveLoopIds.insert(loopIndex); // condition's form must be "loop-index relational-operator constant-expression" bool badCond = ! loop->getTest(); if (! badCond) { TIntermBinary* binaryCond = loop->getTest()->getAsBinaryNode(); badCond = ! binaryCond; if (! badCond) { switch (binaryCond->getOp()) { case EOpGreaterThan: case EOpGreaterThanEqual: case EOpLessThan: case EOpLessThanEqual: case EOpEqual: case EOpNotEqual: break; default: badCond = true; } } if (binaryCond && (! binaryCond->getLeft()->getAsSymbolNode() || binaryCond->getLeft()->getAsSymbolNode()->getId() != loopIndex || ! binaryCond->getRight()->getAsConstantUnion())) badCond = true; } if (badCond) { error(loc, "inductive-loop condition requires the form \"loop-index constant-expression\"", "limitations", ""); return; } // loop-index++ // loop-index-- // loop-index += constant-expression // loop-index -= constant-expression bool badTerminal = ! loop->getTerminal(); if (! badTerminal) { TIntermUnary* unaryTerminal = loop->getTerminal()->getAsUnaryNode(); TIntermBinary* binaryTerminal = loop->getTerminal()->getAsBinaryNode(); if (unaryTerminal || binaryTerminal) { switch(loop->getTerminal()->getAsOperator()->getOp()) { case EOpPostDecrement: case EOpPostIncrement: case EOpAddAssign: case EOpSubAssign: break; default: badTerminal = true; } } else badTerminal = true; if (binaryTerminal && (! binaryTerminal->getLeft()->getAsSymbolNode() || binaryTerminal->getLeft()->getAsSymbolNode()->getId() != loopIndex || ! binaryTerminal->getRight()->getAsConstantUnion())) badTerminal = true; if (unaryTerminal && (! unaryTerminal->getOperand()->getAsSymbolNode() || unaryTerminal->getOperand()->getAsSymbolNode()->getId() != loopIndex)) badTerminal = true; } if (badTerminal) { error(loc, "inductive-loop termination requires the form \"loop-index++, loop-index--, loop-index += constant-expression, or loop-index -= constant-expression\"", "limitations", ""); return; } // the body inductiveLoopBodyCheck(loop->getBody(), loopIndex, symbolTable); #endif } #ifndef GLSLANG_WEB // Do limit checks for built-in arrays. void TParseContext::arrayLimitCheck(const TSourceLoc& loc, const TString& identifier, int size) { if (identifier.compare("gl_TexCoord") == 0) limitCheck(loc, size, "gl_MaxTextureCoords", "gl_TexCoord array size"); else if (identifier.compare("gl_ClipDistance") == 0) limitCheck(loc, size, "gl_MaxClipDistances", "gl_ClipDistance array size"); else if (identifier.compare("gl_CullDistance") == 0) limitCheck(loc, size, "gl_MaxCullDistances", "gl_CullDistance array size"); else if (identifier.compare("gl_ClipDistancePerViewNV") == 0) limitCheck(loc, size, "gl_MaxClipDistances", "gl_ClipDistancePerViewNV array size"); else if (identifier.compare("gl_CullDistancePerViewNV") == 0) limitCheck(loc, size, "gl_MaxCullDistances", "gl_CullDistancePerViewNV array size"); } #endif // GLSLANG_WEB // See if the provided value is less than or equal to the symbol indicated by limit, // which should be a constant in the symbol table. void TParseContext::limitCheck(const TSourceLoc& loc, int value, const char* limit, const char* feature) { TSymbol* symbol = symbolTable.find(limit); assert(symbol->getAsVariable()); const TConstUnionArray& constArray = symbol->getAsVariable()->getConstArray(); assert(! constArray.empty()); if (value > constArray[0].getIConst()) error(loc, "must be less than or equal to", feature, "%s (%d)", limit, constArray[0].getIConst()); } #ifndef GLSLANG_WEB // // Do any additional error checking, etc., once we know the parsing is done. // void TParseContext::finish() { TParseContextBase::finish(); if (parsingBuiltins) return; // Check on array indexes for ES 2.0 (version 100) limitations. for (size_t i = 0; i < needsIndexLimitationChecking.size(); ++i) constantIndexExpressionCheck(needsIndexLimitationChecking[i]); // Check for stages that are enabled by extension. // Can't do this at the beginning, it is chicken and egg to add a stage by // extension. // Stage-specific features were correctly tested for already, this is just // about the stage itself. switch (language) { case EShLangGeometry: if (isEsProfile() && version == 310) requireExtensions(getCurrentLoc(), Num_AEP_geometry_shader, AEP_geometry_shader, "geometry shaders"); break; case EShLangTessControl: case EShLangTessEvaluation: if (isEsProfile() && version == 310) requireExtensions(getCurrentLoc(), Num_AEP_tessellation_shader, AEP_tessellation_shader, "tessellation shaders"); else if (!isEsProfile() && version < 400) requireExtensions(getCurrentLoc(), 1, &E_GL_ARB_tessellation_shader, "tessellation shaders"); break; case EShLangCompute: if (!isEsProfile() && version < 430) requireExtensions(getCurrentLoc(), 1, &E_GL_ARB_compute_shader, "compute shaders"); break; case EShLangTaskNV: requireExtensions(getCurrentLoc(), 1, &E_GL_NV_mesh_shader, "task shaders"); break; case EShLangMeshNV: requireExtensions(getCurrentLoc(), 1, &E_GL_NV_mesh_shader, "mesh shaders"); break; default: break; } // Set default outputs for GL_NV_geometry_shader_passthrough if (language == EShLangGeometry && extensionTurnedOn(E_SPV_NV_geometry_shader_passthrough)) { if (intermediate.getOutputPrimitive() == ElgNone) { switch (intermediate.getInputPrimitive()) { case ElgPoints: intermediate.setOutputPrimitive(ElgPoints); break; case ElgLines: intermediate.setOutputPrimitive(ElgLineStrip); break; case ElgTriangles: intermediate.setOutputPrimitive(ElgTriangleStrip); break; default: break; } } if (intermediate.getVertices() == TQualifier::layoutNotSet) { switch (intermediate.getInputPrimitive()) { case ElgPoints: intermediate.setVertices(1); break; case ElgLines: intermediate.setVertices(2); break; case ElgTriangles: intermediate.setVertices(3); break; default: break; } } } } #endif // GLSLANG_WEB // // Layout qualifier stuff. // // Put the id's layout qualification into the public type, for qualifiers not having a number set. // This is before we know any type information for error checking. void TParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id) { std::transform(id.begin(), id.end(), id.begin(), ::tolower); if (id == TQualifier::getLayoutMatrixString(ElmColumnMajor)) { publicType.qualifier.layoutMatrix = ElmColumnMajor; return; } if (id == TQualifier::getLayoutMatrixString(ElmRowMajor)) { publicType.qualifier.layoutMatrix = ElmRowMajor; return; } if (id == TQualifier::getLayoutPackingString(ElpPacked)) { if (spvVersion.spv != 0) spvRemoved(loc, "packed"); publicType.qualifier.layoutPacking = ElpPacked; return; } if (id == TQualifier::getLayoutPackingString(ElpShared)) { if (spvVersion.spv != 0) spvRemoved(loc, "shared"); publicType.qualifier.layoutPacking = ElpShared; return; } if (id == TQualifier::getLayoutPackingString(ElpStd140)) { publicType.qualifier.layoutPacking = ElpStd140; return; } #ifndef GLSLANG_WEB if (id == TQualifier::getLayoutPackingString(ElpStd430)) { requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, "std430"); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, E_GL_ARB_shader_storage_buffer_object, "std430"); profileRequires(loc, EEsProfile, 310, nullptr, "std430"); publicType.qualifier.layoutPacking = ElpStd430; return; } if (id == TQualifier::getLayoutPackingString(ElpScalar)) { requireVulkan(loc, "scalar"); requireExtensions(loc, 1, &E_GL_EXT_scalar_block_layout, "scalar block layout"); publicType.qualifier.layoutPacking = ElpScalar; return; } // TODO: compile-time performance: may need to stop doing linear searches for (TLayoutFormat format = (TLayoutFormat)(ElfNone + 1); format < ElfCount; format = (TLayoutFormat)(format + 1)) { if (id == TQualifier::getLayoutFormatString(format)) { if ((format > ElfEsFloatGuard && format < ElfFloatGuard) || (format > ElfEsIntGuard && format < ElfIntGuard) || (format > ElfEsUintGuard && format < ElfCount)) requireProfile(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, "image load-store format"); profileRequires(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, 420, E_GL_ARB_shader_image_load_store, "image load store"); profileRequires(loc, EEsProfile, 310, E_GL_ARB_shader_image_load_store, "image load store"); publicType.qualifier.layoutFormat = format; return; } } if (id == "push_constant") { requireVulkan(loc, "push_constant"); publicType.qualifier.layoutPushConstant = true; return; } if (id == "buffer_reference") { requireVulkan(loc, "buffer_reference"); requireExtensions(loc, 1, &E_GL_EXT_buffer_reference, "buffer_reference"); publicType.qualifier.layoutBufferReference = true; intermediate.setUseStorageBuffer(); intermediate.setUsePhysicalStorageBuffer(); return; } if (language == EShLangGeometry || language == EShLangTessEvaluation || language == EShLangMeshNV) { if (id == TQualifier::getGeometryString(ElgTriangles)) { publicType.shaderQualifiers.geometry = ElgTriangles; return; } if (language == EShLangGeometry || language == EShLangMeshNV) { if (id == TQualifier::getGeometryString(ElgPoints)) { publicType.shaderQualifiers.geometry = ElgPoints; return; } if (id == TQualifier::getGeometryString(ElgLines)) { publicType.shaderQualifiers.geometry = ElgLines; return; } if (language == EShLangGeometry) { if (id == TQualifier::getGeometryString(ElgLineStrip)) { publicType.shaderQualifiers.geometry = ElgLineStrip; return; } if (id == TQualifier::getGeometryString(ElgLinesAdjacency)) { publicType.shaderQualifiers.geometry = ElgLinesAdjacency; return; } if (id == TQualifier::getGeometryString(ElgTrianglesAdjacency)) { publicType.shaderQualifiers.geometry = ElgTrianglesAdjacency; return; } if (id == TQualifier::getGeometryString(ElgTriangleStrip)) { publicType.shaderQualifiers.geometry = ElgTriangleStrip; return; } if (id == "passthrough") { requireExtensions(loc, 1, &E_SPV_NV_geometry_shader_passthrough, "geometry shader passthrough"); publicType.qualifier.layoutPassthrough = true; intermediate.setGeoPassthroughEXT(); return; } } } else { assert(language == EShLangTessEvaluation); // input primitive if (id == TQualifier::getGeometryString(ElgTriangles)) { publicType.shaderQualifiers.geometry = ElgTriangles; return; } if (id == TQualifier::getGeometryString(ElgQuads)) { publicType.shaderQualifiers.geometry = ElgQuads; return; } if (id == TQualifier::getGeometryString(ElgIsolines)) { publicType.shaderQualifiers.geometry = ElgIsolines; return; } // vertex spacing if (id == TQualifier::getVertexSpacingString(EvsEqual)) { publicType.shaderQualifiers.spacing = EvsEqual; return; } if (id == TQualifier::getVertexSpacingString(EvsFractionalEven)) { publicType.shaderQualifiers.spacing = EvsFractionalEven; return; } if (id == TQualifier::getVertexSpacingString(EvsFractionalOdd)) { publicType.shaderQualifiers.spacing = EvsFractionalOdd; return; } // triangle order if (id == TQualifier::getVertexOrderString(EvoCw)) { publicType.shaderQualifiers.order = EvoCw; return; } if (id == TQualifier::getVertexOrderString(EvoCcw)) { publicType.shaderQualifiers.order = EvoCcw; return; } // point mode if (id == "point_mode") { publicType.shaderQualifiers.pointMode = true; return; } } } if (language == EShLangFragment) { if (id == "origin_upper_left") { requireProfile(loc, ECoreProfile | ECompatibilityProfile, "origin_upper_left"); publicType.shaderQualifiers.originUpperLeft = true; return; } if (id == "pixel_center_integer") { requireProfile(loc, ECoreProfile | ECompatibilityProfile, "pixel_center_integer"); publicType.shaderQualifiers.pixelCenterInteger = true; return; } if (id == "early_fragment_tests") { profileRequires(loc, ENoProfile | ECoreProfile | ECompatibilityProfile, 420, E_GL_ARB_shader_image_load_store, "early_fragment_tests"); profileRequires(loc, EEsProfile, 310, nullptr, "early_fragment_tests"); publicType.shaderQualifiers.earlyFragmentTests = true; return; } if (id == "post_depth_coverage") { requireExtensions(loc, Num_post_depth_coverageEXTs, post_depth_coverageEXTs, "post depth coverage"); if (extensionTurnedOn(E_GL_ARB_post_depth_coverage)) { publicType.shaderQualifiers.earlyFragmentTests = true; } publicType.shaderQualifiers.postDepthCoverage = true; return; } for (TLayoutDepth depth = (TLayoutDepth)(EldNone + 1); depth < EldCount; depth = (TLayoutDepth)(depth+1)) { if (id == TQualifier::getLayoutDepthString(depth)) { requireProfile(loc, ECoreProfile | ECompatibilityProfile, "depth layout qualifier"); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 420, nullptr, "depth layout qualifier"); publicType.shaderQualifiers.layoutDepth = depth; return; } } for (TInterlockOrdering order = (TInterlockOrdering)(EioNone + 1); order < EioCount; order = (TInterlockOrdering)(order+1)) { if (id == TQualifier::getInterlockOrderingString(order)) { requireProfile(loc, ECoreProfile | ECompatibilityProfile, "fragment shader interlock layout qualifier"); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 450, nullptr, "fragment shader interlock layout qualifier"); requireExtensions(loc, 1, &E_GL_ARB_fragment_shader_interlock, TQualifier::getInterlockOrderingString(order)); if (order == EioShadingRateInterlockOrdered || order == EioShadingRateInterlockUnordered) requireExtensions(loc, 1, &E_GL_NV_shading_rate_image, TQualifier::getInterlockOrderingString(order)); publicType.shaderQualifiers.interlockOrdering = order; return; } } if (id.compare(0, 13, "blend_support") == 0) { bool found = false; for (TBlendEquationShift be = (TBlendEquationShift)0; be < EBlendCount; be = (TBlendEquationShift)(be + 1)) { if (id == TQualifier::getBlendEquationString(be)) { profileRequires(loc, EEsProfile, 320, E_GL_KHR_blend_equation_advanced, "blend equation"); profileRequires(loc, ~EEsProfile, 0, E_GL_KHR_blend_equation_advanced, "blend equation"); intermediate.addBlendEquation(be); publicType.shaderQualifiers.blendEquation = true; found = true; break; } } if (! found) error(loc, "unknown blend equation", "blend_support", ""); return; } if (id == "override_coverage") { requireExtensions(loc, 1, &E_GL_NV_sample_mask_override_coverage, "sample mask override coverage"); publicType.shaderQualifiers.layoutOverrideCoverage = true; return; } } if (language == EShLangVertex || language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry ) { if (id == "viewport_relative") { requireExtensions(loc, 1, &E_GL_NV_viewport_array2, "view port array2"); publicType.qualifier.layoutViewportRelative = true; return; } } else { if (language == EShLangRayGen || language == EShLangIntersect || language == EShLangAnyHit || language == EShLangClosestHit || language == EShLangMiss || language == EShLangCallable) { if (id == "shaderrecordnv" || id == "shaderrecordext") { if (id == "shaderrecordnv") { requireExtensions(loc, 1, &E_GL_NV_ray_tracing, "shader record NV"); } else { requireExtensions(loc, 1, &E_GL_EXT_ray_tracing, "shader record EXT"); } publicType.qualifier.layoutShaderRecord = true; return; } } } if (language == EShLangCompute) { if (id.compare(0, 17, "derivative_group_") == 0) { requireExtensions(loc, 1, &E_GL_NV_compute_shader_derivatives, "compute shader derivatives"); if (id == "derivative_group_quadsnv") { publicType.shaderQualifiers.layoutDerivativeGroupQuads = true; return; } else if (id == "derivative_group_linearnv") { publicType.shaderQualifiers.layoutDerivativeGroupLinear = true; return; } } } if (id == "primitive_culling") { requireExtensions(loc, 1, &E_GL_EXT_ray_flags_primitive_culling, "primitive culling"); publicType.shaderQualifiers.layoutPrimitiveCulling = true; return; } #endif error(loc, "unrecognized layout identifier, or qualifier requires assignment (e.g., binding = 4)", id.c_str(), ""); } // Put the id's layout qualifier value into the public type, for qualifiers having a number set. // This is before we know any type information for error checking. void TParseContext::setLayoutQualifier(const TSourceLoc& loc, TPublicType& publicType, TString& id, const TIntermTyped* node) { const char* feature = "layout-id value"; const char* nonLiteralFeature = "non-literal layout-id value"; integerCheck(node, feature); const TIntermConstantUnion* constUnion = node->getAsConstantUnion(); int value; bool nonLiteral = false; if (constUnion) { value = constUnion->getConstArray()[0].getIConst(); if (! constUnion->isLiteral()) { requireProfile(loc, ECoreProfile | ECompatibilityProfile, nonLiteralFeature); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, nonLiteralFeature); } } else { // grammar should have give out the error message value = 0; nonLiteral = true; } if (value < 0) { error(loc, "cannot be negative", feature, ""); return; } std::transform(id.begin(), id.end(), id.begin(), ::tolower); if (id == "offset") { // "offset" can be for either // - uniform offsets // - atomic_uint offsets const char* feature = "offset"; if (spvVersion.spv == 0) { requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, feature); const char* exts[2] = { E_GL_ARB_enhanced_layouts, E_GL_ARB_shader_atomic_counters }; profileRequires(loc, ECoreProfile | ECompatibilityProfile, 420, 2, exts, feature); profileRequires(loc, EEsProfile, 310, nullptr, feature); } publicType.qualifier.layoutOffset = value; publicType.qualifier.explicitOffset = true; if (nonLiteral) error(loc, "needs a literal integer", "offset", ""); return; } else if (id == "align") { const char* feature = "uniform buffer-member align"; if (spvVersion.spv == 0) { requireProfile(loc, ECoreProfile | ECompatibilityProfile, feature); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature); } // "The specified alignment must be a power of 2, or a compile-time error results." if (! IsPow2(value)) error(loc, "must be a power of 2", "align", ""); else publicType.qualifier.layoutAlign = value; if (nonLiteral) error(loc, "needs a literal integer", "align", ""); return; } else if (id == "location") { profileRequires(loc, EEsProfile, 300, nullptr, "location"); const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; // GL_ARB_explicit_uniform_location requires 330 or GL_ARB_explicit_attrib_location we do not need to add it here profileRequires(loc, ~EEsProfile, 330, 2, exts, "location"); if ((unsigned int)value >= TQualifier::layoutLocationEnd) error(loc, "location is too large", id.c_str(), ""); else publicType.qualifier.layoutLocation = value; if (nonLiteral) error(loc, "needs a literal integer", "location", ""); return; } else if (id == "set") { if ((unsigned int)value >= TQualifier::layoutSetEnd) error(loc, "set is too large", id.c_str(), ""); else publicType.qualifier.layoutSet = value; if (value != 0) requireVulkan(loc, "descriptor set"); if (nonLiteral) error(loc, "needs a literal integer", "set", ""); return; } else if (id == "binding") { #ifndef GLSLANG_WEB profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, "binding"); profileRequires(loc, EEsProfile, 310, nullptr, "binding"); #endif if ((unsigned int)value >= TQualifier::layoutBindingEnd) error(loc, "binding is too large", id.c_str(), ""); else publicType.qualifier.layoutBinding = value; if (nonLiteral) error(loc, "needs a literal integer", "binding", ""); return; } if (id == "constant_id") { requireSpv(loc, "constant_id"); if (value >= (int)TQualifier::layoutSpecConstantIdEnd) { error(loc, "specialization-constant id is too large", id.c_str(), ""); } else { publicType.qualifier.layoutSpecConstantId = value; publicType.qualifier.specConstant = true; if (! intermediate.addUsedConstantId(value)) error(loc, "specialization-constant id already used", id.c_str(), ""); } if (nonLiteral) error(loc, "needs a literal integer", "constant_id", ""); return; } #ifndef GLSLANG_WEB if (id == "component") { requireProfile(loc, ECoreProfile | ECompatibilityProfile, "component"); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, "component"); if ((unsigned)value >= TQualifier::layoutComponentEnd) error(loc, "component is too large", id.c_str(), ""); else publicType.qualifier.layoutComponent = value; if (nonLiteral) error(loc, "needs a literal integer", "component", ""); return; } if (id.compare(0, 4, "xfb_") == 0) { // "Any shader making any static use (after preprocessing) of any of these // *xfb_* qualifiers will cause the shader to be in a transform feedback // capturing mode and hence responsible for describing the transform feedback // setup." intermediate.setXfbMode(); const char* feature = "transform feedback qualifier"; requireStage(loc, (EShLanguageMask)(EShLangVertexMask | EShLangGeometryMask | EShLangTessControlMask | EShLangTessEvaluationMask), feature); requireProfile(loc, ECoreProfile | ECompatibilityProfile, feature); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature); if (id == "xfb_buffer") { // "It is a compile-time error to specify an *xfb_buffer* that is greater than // the implementation-dependent constant gl_MaxTransformFeedbackBuffers." if (value >= resources.maxTransformFeedbackBuffers) error(loc, "buffer is too large:", id.c_str(), "gl_MaxTransformFeedbackBuffers is %d", resources.maxTransformFeedbackBuffers); if (value >= (int)TQualifier::layoutXfbBufferEnd) error(loc, "buffer is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbBufferEnd-1); else publicType.qualifier.layoutXfbBuffer = value; if (nonLiteral) error(loc, "needs a literal integer", "xfb_buffer", ""); return; } else if (id == "xfb_offset") { if (value >= (int)TQualifier::layoutXfbOffsetEnd) error(loc, "offset is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbOffsetEnd-1); else publicType.qualifier.layoutXfbOffset = value; if (nonLiteral) error(loc, "needs a literal integer", "xfb_offset", ""); return; } else if (id == "xfb_stride") { // "The resulting stride (implicit or explicit), when divided by 4, must be less than or equal to the // implementation-dependent constant gl_MaxTransformFeedbackInterleavedComponents." if (value > 4 * resources.maxTransformFeedbackInterleavedComponents) { error(loc, "1/4 stride is too large:", id.c_str(), "gl_MaxTransformFeedbackInterleavedComponents is %d", resources.maxTransformFeedbackInterleavedComponents); } if (value >= (int)TQualifier::layoutXfbStrideEnd) error(loc, "stride is too large:", id.c_str(), "internal max is %d", TQualifier::layoutXfbStrideEnd-1); else publicType.qualifier.layoutXfbStride = value; if (nonLiteral) error(loc, "needs a literal integer", "xfb_stride", ""); return; } } if (id == "input_attachment_index") { requireVulkan(loc, "input_attachment_index"); if (value >= (int)TQualifier::layoutAttachmentEnd) error(loc, "attachment index is too large", id.c_str(), ""); else publicType.qualifier.layoutAttachment = value; if (nonLiteral) error(loc, "needs a literal integer", "input_attachment_index", ""); return; } if (id == "num_views") { requireExtensions(loc, Num_OVR_multiview_EXTs, OVR_multiview_EXTs, "num_views"); publicType.shaderQualifiers.numViews = value; if (nonLiteral) error(loc, "needs a literal integer", "num_views", ""); return; } if (language == EShLangVertex || language == EShLangTessControl || language == EShLangTessEvaluation || language == EShLangGeometry) { if (id == "secondary_view_offset") { requireExtensions(loc, 1, &E_GL_NV_stereo_view_rendering, "stereo view rendering"); publicType.qualifier.layoutSecondaryViewportRelativeOffset = value; if (nonLiteral) error(loc, "needs a literal integer", "secondary_view_offset", ""); return; } } if (id == "buffer_reference_align") { requireExtensions(loc, 1, &E_GL_EXT_buffer_reference, "buffer_reference_align"); if (! IsPow2(value)) error(loc, "must be a power of 2", "buffer_reference_align", ""); else publicType.qualifier.layoutBufferReferenceAlign = (unsigned int)std::log2(value); if (nonLiteral) error(loc, "needs a literal integer", "buffer_reference_align", ""); return; } #endif switch (language) { #ifndef GLSLANG_WEB case EShLangTessControl: if (id == "vertices") { if (value == 0) error(loc, "must be greater than 0", "vertices", ""); else publicType.shaderQualifiers.vertices = value; if (nonLiteral) error(loc, "needs a literal integer", "vertices", ""); return; } break; case EShLangGeometry: if (id == "invocations") { profileRequires(loc, ECompatibilityProfile | ECoreProfile, 400, nullptr, "invocations"); if (value == 0) error(loc, "must be at least 1", "invocations", ""); else publicType.shaderQualifiers.invocations = value; if (nonLiteral) error(loc, "needs a literal integer", "invocations", ""); return; } if (id == "max_vertices") { publicType.shaderQualifiers.vertices = value; if (value > resources.maxGeometryOutputVertices) error(loc, "too large, must be less than gl_MaxGeometryOutputVertices", "max_vertices", ""); if (nonLiteral) error(loc, "needs a literal integer", "max_vertices", ""); return; } if (id == "stream") { requireProfile(loc, ~EEsProfile, "selecting output stream"); publicType.qualifier.layoutStream = value; if (value > 0) intermediate.setMultiStream(); if (nonLiteral) error(loc, "needs a literal integer", "stream", ""); return; } break; case EShLangFragment: if (id == "index") { requireProfile(loc, ECompatibilityProfile | ECoreProfile | EEsProfile, "index layout qualifier on fragment output"); const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; profileRequires(loc, ECompatibilityProfile | ECoreProfile, 330, 2, exts, "index layout qualifier on fragment output"); profileRequires(loc, EEsProfile ,310, E_GL_EXT_blend_func_extended, "index layout qualifier on fragment output"); // "It is also a compile-time error if a fragment shader sets a layout index to less than 0 or greater than 1." if (value < 0 || value > 1) { value = 0; error(loc, "value must be 0 or 1", "index", ""); } publicType.qualifier.layoutIndex = value; if (nonLiteral) error(loc, "needs a literal integer", "index", ""); return; } break; case EShLangMeshNV: if (id == "max_vertices") { requireExtensions(loc, 1, &E_GL_NV_mesh_shader, "max_vertices"); publicType.shaderQualifiers.vertices = value; if (value > resources.maxMeshOutputVerticesNV) error(loc, "too large, must be less than gl_MaxMeshOutputVerticesNV", "max_vertices", ""); if (nonLiteral) error(loc, "needs a literal integer", "max_vertices", ""); return; } if (id == "max_primitives") { requireExtensions(loc, 1, &E_GL_NV_mesh_shader, "max_primitives"); publicType.shaderQualifiers.primitives = value; if (value > resources.maxMeshOutputPrimitivesNV) error(loc, "too large, must be less than gl_MaxMeshOutputPrimitivesNV", "max_primitives", ""); if (nonLiteral) error(loc, "needs a literal integer", "max_primitives", ""); return; } // Fall through case EShLangTaskNV: // Fall through #endif case EShLangCompute: if (id.compare(0, 11, "local_size_") == 0) { #ifndef GLSLANG_WEB if (language == EShLangMeshNV || language == EShLangTaskNV) { requireExtensions(loc, 1, &E_GL_NV_mesh_shader, "gl_WorkGroupSize"); } else { profileRequires(loc, EEsProfile, 310, 0, "gl_WorkGroupSize"); profileRequires(loc, ~EEsProfile, 430, E_GL_ARB_compute_shader, "gl_WorkGroupSize"); } #endif if (nonLiteral) error(loc, "needs a literal integer", "local_size", ""); if (id.size() == 12 && value == 0) { error(loc, "must be at least 1", id.c_str(), ""); return; } if (id == "local_size_x") { publicType.shaderQualifiers.localSize[0] = value; publicType.shaderQualifiers.localSizeNotDefault[0] = true; return; } if (id == "local_size_y") { publicType.shaderQualifiers.localSize[1] = value; publicType.shaderQualifiers.localSizeNotDefault[1] = true; return; } if (id == "local_size_z") { publicType.shaderQualifiers.localSize[2] = value; publicType.shaderQualifiers.localSizeNotDefault[2] = true; return; } if (spvVersion.spv != 0) { if (id == "local_size_x_id") { publicType.shaderQualifiers.localSizeSpecId[0] = value; return; } if (id == "local_size_y_id") { publicType.shaderQualifiers.localSizeSpecId[1] = value; return; } if (id == "local_size_z_id") { publicType.shaderQualifiers.localSizeSpecId[2] = value; return; } } } break; default: break; } error(loc, "there is no such layout identifier for this stage taking an assigned value", id.c_str(), ""); } // Merge any layout qualifier information from src into dst, leaving everything else in dst alone // // "More than one layout qualifier may appear in a single declaration. // Additionally, the same layout-qualifier-name can occur multiple times // within a layout qualifier or across multiple layout qualifiers in the // same declaration. When the same layout-qualifier-name occurs // multiple times, in a single declaration, the last occurrence overrides // the former occurrence(s). Further, if such a layout-qualifier-name // will effect subsequent declarations or other observable behavior, it // is only the last occurrence that will have any effect, behaving as if // the earlier occurrence(s) within the declaration are not present. // This is also true for overriding layout-qualifier-names, where one // overrides the other (e.g., row_major vs. column_major); only the last // occurrence has any effect." void TParseContext::mergeObjectLayoutQualifiers(TQualifier& dst, const TQualifier& src, bool inheritOnly) { if (src.hasMatrix()) dst.layoutMatrix = src.layoutMatrix; if (src.hasPacking()) dst.layoutPacking = src.layoutPacking; #ifndef GLSLANG_WEB if (src.hasStream()) dst.layoutStream = src.layoutStream; if (src.hasFormat()) dst.layoutFormat = src.layoutFormat; if (src.hasXfbBuffer()) dst.layoutXfbBuffer = src.layoutXfbBuffer; if (src.hasBufferReferenceAlign()) dst.layoutBufferReferenceAlign = src.layoutBufferReferenceAlign; #endif if (src.hasAlign()) dst.layoutAlign = src.layoutAlign; if (! inheritOnly) { if (src.hasLocation()) dst.layoutLocation = src.layoutLocation; if (src.hasOffset()) dst.layoutOffset = src.layoutOffset; if (src.hasSet()) dst.layoutSet = src.layoutSet; if (src.layoutBinding != TQualifier::layoutBindingEnd) dst.layoutBinding = src.layoutBinding; if (src.hasSpecConstantId()) dst.layoutSpecConstantId = src.layoutSpecConstantId; #ifndef GLSLANG_WEB if (src.hasComponent()) dst.layoutComponent = src.layoutComponent; if (src.hasIndex()) dst.layoutIndex = src.layoutIndex; if (src.hasXfbStride()) dst.layoutXfbStride = src.layoutXfbStride; if (src.hasXfbOffset()) dst.layoutXfbOffset = src.layoutXfbOffset; if (src.hasAttachment()) dst.layoutAttachment = src.layoutAttachment; if (src.layoutPushConstant) dst.layoutPushConstant = true; if (src.layoutBufferReference) dst.layoutBufferReference = true; if (src.layoutPassthrough) dst.layoutPassthrough = true; if (src.layoutViewportRelative) dst.layoutViewportRelative = true; if (src.layoutSecondaryViewportRelativeOffset != -2048) dst.layoutSecondaryViewportRelativeOffset = src.layoutSecondaryViewportRelativeOffset; if (src.layoutShaderRecord) dst.layoutShaderRecord = true; if (src.pervertexNV) dst.pervertexNV = true; #endif } } // Do error layout error checking given a full variable/block declaration. void TParseContext::layoutObjectCheck(const TSourceLoc& loc, const TSymbol& symbol) { const TType& type = symbol.getType(); const TQualifier& qualifier = type.getQualifier(); // first, cross check WRT to just the type layoutTypeCheck(loc, type); // now, any remaining error checking based on the object itself if (qualifier.hasAnyLocation()) { switch (qualifier.storage) { case EvqUniform: case EvqBuffer: if (symbol.getAsVariable() == nullptr) error(loc, "can only be used on variable declaration", "location", ""); break; default: break; } } // user-variable location check, which are required for SPIR-V in/out: // - variables have it directly, // - blocks have it on each member (already enforced), so check first one if (spvVersion.spv > 0 && !parsingBuiltins && qualifier.builtIn == EbvNone && !qualifier.hasLocation() && !intermediate.getAutoMapLocations()) { switch (qualifier.storage) { case EvqVaryingIn: case EvqVaryingOut: if (!type.getQualifier().isTaskMemory() && (type.getBasicType() != EbtBlock || (!(*type.getStruct())[0].type->getQualifier().hasLocation() && (*type.getStruct())[0].type->getQualifier().builtIn == EbvNone))) error(loc, "SPIR-V requires location for user input/output", "location", ""); break; default: break; } } // Check packing and matrix if (qualifier.hasUniformLayout()) { switch (qualifier.storage) { case EvqUniform: case EvqBuffer: if (type.getBasicType() != EbtBlock) { if (qualifier.hasMatrix()) error(loc, "cannot specify matrix layout on a variable declaration", "layout", ""); if (qualifier.hasPacking()) error(loc, "cannot specify packing on a variable declaration", "layout", ""); // "The offset qualifier can only be used on block members of blocks..." if (qualifier.hasOffset() && !type.isAtomic()) error(loc, "cannot specify on a variable declaration", "offset", ""); // "The align qualifier can only be used on blocks or block members..." if (qualifier.hasAlign()) error(loc, "cannot specify on a variable declaration", "align", ""); if (qualifier.isPushConstant()) error(loc, "can only specify on a uniform block", "push_constant", ""); if (qualifier.isShaderRecord()) error(loc, "can only specify on a buffer block", "shaderRecordNV", ""); } break; default: // these were already filtered by layoutTypeCheck() (or its callees) break; } } } // "For some blocks declared as arrays, the location can only be applied at the block level: // When a block is declared as an array where additional locations are needed for each member // for each block array element, it is a compile-time error to specify locations on the block // members. That is, when locations would be under specified by applying them on block members, // they are not allowed on block members. For arrayed interfaces (those generally having an // extra level of arrayness due to interface expansion), the outer array is stripped before // applying this rule." void TParseContext::layoutMemberLocationArrayCheck(const TSourceLoc& loc, bool memberWithLocation, TArraySizes* arraySizes) { if (memberWithLocation && arraySizes != nullptr) { if (arraySizes->getNumDims() > (currentBlockQualifier.isArrayedIo(language) ? 1 : 0)) error(loc, "cannot use in a block array where new locations are needed for each block element", "location", ""); } } // Do layout error checking with respect to a type. void TParseContext::layoutTypeCheck(const TSourceLoc& loc, const TType& type) { const TQualifier& qualifier = type.getQualifier(); // first, intra-layout qualifier-only error checking layoutQualifierCheck(loc, qualifier); // now, error checking combining type and qualifier if (qualifier.hasAnyLocation()) { if (qualifier.hasLocation()) { if (qualifier.storage == EvqVaryingOut && language == EShLangFragment) { if (qualifier.layoutLocation >= (unsigned int)resources.maxDrawBuffers) error(loc, "too large for fragment output", "location", ""); } } if (qualifier.hasComponent()) { // "It is a compile-time error if this sequence of components gets larger than 3." if (qualifier.layoutComponent + type.getVectorSize() * (type.getBasicType() == EbtDouble ? 2 : 1) > 4) error(loc, "type overflows the available 4 components", "component", ""); // "It is a compile-time error to apply the component qualifier to a matrix, a structure, a block, or an array containing any of these." if (type.isMatrix() || type.getBasicType() == EbtBlock || type.getBasicType() == EbtStruct) error(loc, "cannot apply to a matrix, structure, or block", "component", ""); // " It is a compile-time error to use component 1 or 3 as the beginning of a double or dvec2." if (type.getBasicType() == EbtDouble) if (qualifier.layoutComponent & 1) error(loc, "doubles cannot start on an odd-numbered component", "component", ""); } switch (qualifier.storage) { case EvqVaryingIn: case EvqVaryingOut: if (type.getBasicType() == EbtBlock) profileRequires(loc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, "location qualifier on in/out block"); if (type.getQualifier().isTaskMemory()) error(loc, "cannot apply to taskNV in/out blocks", "location", ""); break; case EvqUniform: case EvqBuffer: if (type.getBasicType() == EbtBlock) error(loc, "cannot apply to uniform or buffer block", "location", ""); break; #ifndef GLSLANG_WEB case EvqPayload: case EvqPayloadIn: case EvqHitAttr: case EvqCallableData: case EvqCallableDataIn: break; #endif default: error(loc, "can only apply to uniform, buffer, in, or out storage qualifiers", "location", ""); break; } bool typeCollision; int repeated = intermediate.addUsedLocation(qualifier, type, typeCollision); if (repeated >= 0 && ! typeCollision) error(loc, "overlapping use of location", "location", "%d", repeated); // "fragment-shader outputs ... if two variables are placed within the same // location, they must have the same underlying type (floating-point or integer)" if (typeCollision && language == EShLangFragment && qualifier.isPipeOutput()) error(loc, "fragment outputs sharing the same location must be the same basic type", "location", "%d", repeated); } #ifndef GLSLANG_WEB if (qualifier.hasXfbOffset() && qualifier.hasXfbBuffer()) { int repeated = intermediate.addXfbBufferOffset(type); if (repeated >= 0) error(loc, "overlapping offsets at", "xfb_offset", "offset %d in buffer %d", repeated, qualifier.layoutXfbBuffer); if (type.isUnsizedArray()) error(loc, "unsized array", "xfb_offset", "in buffer %d", qualifier.layoutXfbBuffer); // "The offset must be a multiple of the size of the first component of the first // qualified variable or block member, or a compile-time error results. Further, if applied to an aggregate // containing a double or 64-bit integer, the offset must also be a multiple of 8..." if ((type.containsBasicType(EbtDouble) || type.containsBasicType(EbtInt64) || type.containsBasicType(EbtUint64)) && ! IsMultipleOfPow2(qualifier.layoutXfbOffset, 8)) error(loc, "type contains double or 64-bit integer; xfb_offset must be a multiple of 8", "xfb_offset", ""); else if ((type.containsBasicType(EbtBool) || type.containsBasicType(EbtFloat) || type.containsBasicType(EbtInt) || type.containsBasicType(EbtUint)) && ! IsMultipleOfPow2(qualifier.layoutXfbOffset, 4)) error(loc, "must be a multiple of size of first component", "xfb_offset", ""); // ..., if applied to an aggregate containing a half float or 16-bit integer, the offset must also be a multiple of 2..." else if ((type.contains16BitFloat() || type.containsBasicType(EbtInt16) || type.containsBasicType(EbtUint16)) && !IsMultipleOfPow2(qualifier.layoutXfbOffset, 2)) error(loc, "type contains half float or 16-bit integer; xfb_offset must be a multiple of 2", "xfb_offset", ""); } if (qualifier.hasXfbStride() && qualifier.hasXfbBuffer()) { if (! intermediate.setXfbBufferStride(qualifier.layoutXfbBuffer, qualifier.layoutXfbStride)) error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer); } #endif if (qualifier.hasBinding()) { // Binding checking, from the spec: // // "If the binding point for any uniform or shader storage block instance is less than zero, or greater than or // equal to the implementation-dependent maximum number of uniform buffer bindings, a compile-time // error will occur. When the binding identifier is used with a uniform or shader storage block instanced as // an array of size N, all elements of the array from binding through binding + N - 1 must be within this // range." // if (! type.isOpaque() && type.getBasicType() != EbtBlock) error(loc, "requires block, or sampler/image, or atomic-counter type", "binding", ""); if (type.getBasicType() == EbtSampler) { int lastBinding = qualifier.layoutBinding; if (type.isArray()) { if (spvVersion.vulkan > 0) lastBinding += 1; else { if (type.isSizedArray()) lastBinding += type.getCumulativeArraySize(); else { lastBinding += 1; #ifndef GLSLANG_WEB if (spvVersion.vulkan == 0) warn(loc, "assuming binding count of one for compile-time checking of binding numbers for unsized array", "[]", ""); #endif } } } #ifndef GLSLANG_WEB if (spvVersion.vulkan == 0 && lastBinding >= resources.maxCombinedTextureImageUnits) error(loc, "sampler binding not less than gl_MaxCombinedTextureImageUnits", "binding", type.isArray() ? "(using array)" : ""); #endif } if (type.isAtomic()) { if (qualifier.layoutBinding >= (unsigned int)resources.maxAtomicCounterBindings) { error(loc, "atomic_uint binding is too large; see gl_MaxAtomicCounterBindings", "binding", ""); return; } } } else if (!intermediate.getAutoMapBindings()) { // some types require bindings // atomic_uint if (type.isAtomic()) error(loc, "layout(binding=X) is required", "atomic_uint", ""); // SPIR-V if (spvVersion.spv > 0) { if (qualifier.isUniformOrBuffer()) { if (type.getBasicType() == EbtBlock && !qualifier.isPushConstant() && !qualifier.isShaderRecord() && !qualifier.hasAttachment() && !qualifier.hasBufferReference()) error(loc, "uniform/buffer blocks require layout(binding=X)", "binding", ""); else if (spvVersion.vulkan > 0 && type.getBasicType() == EbtSampler) error(loc, "sampler/texture/image requires layout(binding=X)", "binding", ""); } } } // some things can't have arrays of arrays if (type.isArrayOfArrays()) { if (spvVersion.vulkan > 0) { if (type.isOpaque() || (type.getQualifier().isUniformOrBuffer() && type.getBasicType() == EbtBlock)) warn(loc, "Generating SPIR-V array-of-arrays, but Vulkan only supports single array level for this resource", "[][]", ""); } } // "The offset qualifier can only be used on block members of blocks..." if (qualifier.hasOffset()) { if (type.getBasicType() == EbtBlock) error(loc, "only applies to block members, not blocks", "offset", ""); } // Image format if (qualifier.hasFormat()) { if (! type.isImage()) error(loc, "only apply to images", TQualifier::getLayoutFormatString(qualifier.getFormat()), ""); else { if (type.getSampler().type == EbtFloat && qualifier.getFormat() > ElfFloatGuard) error(loc, "does not apply to floating point images", TQualifier::getLayoutFormatString(qualifier.getFormat()), ""); if (type.getSampler().type == EbtInt && (qualifier.getFormat() < ElfFloatGuard || qualifier.getFormat() > ElfIntGuard)) error(loc, "does not apply to signed integer images", TQualifier::getLayoutFormatString(qualifier.getFormat()), ""); if (type.getSampler().type == EbtUint && qualifier.getFormat() < ElfIntGuard) error(loc, "does not apply to unsigned integer images", TQualifier::getLayoutFormatString(qualifier.getFormat()), ""); if (isEsProfile()) { // "Except for image variables qualified with the format qualifiers r32f, r32i, and r32ui, image variables must // specify either memory qualifier readonly or the memory qualifier writeonly." if (! (qualifier.getFormat() == ElfR32f || qualifier.getFormat() == ElfR32i || qualifier.getFormat() == ElfR32ui)) { if (! qualifier.isReadOnly() && ! qualifier.isWriteOnly()) error(loc, "format requires readonly or writeonly memory qualifier", TQualifier::getLayoutFormatString(qualifier.getFormat()), ""); } } } } else if (type.isImage() && ! qualifier.isWriteOnly()) { const char *explanation = "image variables not declared 'writeonly' and without a format layout qualifier"; requireProfile(loc, ECoreProfile | ECompatibilityProfile, explanation); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 0, E_GL_EXT_shader_image_load_formatted, explanation); } if (qualifier.isPushConstant() && type.getBasicType() != EbtBlock) error(loc, "can only be used with a block", "push_constant", ""); if (qualifier.hasBufferReference() && type.getBasicType() != EbtBlock) error(loc, "can only be used with a block", "buffer_reference", ""); if (qualifier.isShaderRecord() && type.getBasicType() != EbtBlock) error(loc, "can only be used with a block", "shaderRecordNV", ""); // input attachment if (type.isSubpass()) { if (! qualifier.hasAttachment()) error(loc, "requires an input_attachment_index layout qualifier", "subpass", ""); } else { if (qualifier.hasAttachment()) error(loc, "can only be used with a subpass", "input_attachment_index", ""); } // specialization-constant id if (qualifier.hasSpecConstantId()) { if (type.getQualifier().storage != EvqConst) error(loc, "can only be applied to 'const'-qualified scalar", "constant_id", ""); if (! type.isScalar()) error(loc, "can only be applied to a scalar", "constant_id", ""); switch (type.getBasicType()) { case EbtInt8: case EbtUint8: case EbtInt16: case EbtUint16: case EbtInt: case EbtUint: case EbtInt64: case EbtUint64: case EbtBool: case EbtFloat: case EbtDouble: case EbtFloat16: break; default: error(loc, "cannot be applied to this type", "constant_id", ""); break; } } } // Do layout error checking that can be done within a layout qualifier proper, not needing to know // if there are blocks, atomic counters, variables, etc. void TParseContext::layoutQualifierCheck(const TSourceLoc& loc, const TQualifier& qualifier) { if (qualifier.storage == EvqShared && qualifier.hasLayout()) error(loc, "cannot apply layout qualifiers to a shared variable", "shared", ""); // "It is a compile-time error to use *component* without also specifying the location qualifier (order does not matter)." if (qualifier.hasComponent() && ! qualifier.hasLocation()) error(loc, "must specify 'location' to use 'component'", "component", ""); if (qualifier.hasAnyLocation()) { // "As with input layout qualifiers, all shaders except compute shaders // allow *location* layout qualifiers on output variable declarations, // output block declarations, and output block member declarations." switch (qualifier.storage) { #ifndef GLSLANG_WEB case EvqVaryingIn: { const char* feature = "location qualifier on input"; if (isEsProfile() && version < 310) requireStage(loc, EShLangVertex, feature); else requireStage(loc, (EShLanguageMask)~EShLangComputeMask, feature); if (language == EShLangVertex) { const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; profileRequires(loc, ~EEsProfile, 330, 2, exts, feature); profileRequires(loc, EEsProfile, 300, nullptr, feature); } else { profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature); profileRequires(loc, EEsProfile, 310, nullptr, feature); } break; } case EvqVaryingOut: { const char* feature = "location qualifier on output"; if (isEsProfile() && version < 310) requireStage(loc, EShLangFragment, feature); else requireStage(loc, (EShLanguageMask)~EShLangComputeMask, feature); if (language == EShLangFragment) { const char* exts[2] = { E_GL_ARB_separate_shader_objects, E_GL_ARB_explicit_attrib_location }; profileRequires(loc, ~EEsProfile, 330, 2, exts, feature); profileRequires(loc, EEsProfile, 300, nullptr, feature); } else { profileRequires(loc, ~EEsProfile, 410, E_GL_ARB_separate_shader_objects, feature); profileRequires(loc, EEsProfile, 310, nullptr, feature); } break; } #endif case EvqUniform: case EvqBuffer: { const char* feature = "location qualifier on uniform or buffer"; requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile | ENoProfile, feature); profileRequires(loc, ~EEsProfile, 330, E_GL_ARB_explicit_attrib_location, feature); profileRequires(loc, ~EEsProfile, 430, E_GL_ARB_explicit_uniform_location, feature); profileRequires(loc, EEsProfile, 310, nullptr, feature); break; } default: break; } if (qualifier.hasIndex()) { if (qualifier.storage != EvqVaryingOut) error(loc, "can only be used on an output", "index", ""); if (! qualifier.hasLocation()) error(loc, "can only be used with an explicit location", "index", ""); } } if (qualifier.hasBinding()) { if (! qualifier.isUniformOrBuffer() && !qualifier.isTaskMemory()) error(loc, "requires uniform or buffer storage qualifier", "binding", ""); } if (qualifier.hasStream()) { if (!qualifier.isPipeOutput()) error(loc, "can only be used on an output", "stream", ""); } if (qualifier.hasXfb()) { if (!qualifier.isPipeOutput()) error(loc, "can only be used on an output", "xfb layout qualifier", ""); } if (qualifier.hasUniformLayout()) { if (! qualifier.isUniformOrBuffer() && !qualifier.isTaskMemory()) { if (qualifier.hasMatrix() || qualifier.hasPacking()) error(loc, "matrix or packing qualifiers can only be used on a uniform or buffer", "layout", ""); if (qualifier.hasOffset() || qualifier.hasAlign()) error(loc, "offset/align can only be used on a uniform or buffer", "layout", ""); } } if (qualifier.isPushConstant()) { if (qualifier.storage != EvqUniform) error(loc, "can only be used with a uniform", "push_constant", ""); if (qualifier.hasSet()) error(loc, "cannot be used with push_constant", "set", ""); } if (qualifier.hasBufferReference()) { if (qualifier.storage != EvqBuffer) error(loc, "can only be used with buffer", "buffer_reference", ""); } if (qualifier.isShaderRecord()) { if (qualifier.storage != EvqBuffer) error(loc, "can only be used with a buffer", "shaderRecordNV", ""); if (qualifier.hasBinding()) error(loc, "cannot be used with shaderRecordNV", "binding", ""); if (qualifier.hasSet()) error(loc, "cannot be used with shaderRecordNV", "set", ""); } if (qualifier.storage == EvqHitAttr && qualifier.hasLayout()) { error(loc, "cannot apply layout qualifiers to hitAttributeNV variable", "hitAttributeNV", ""); } } // For places that can't have shader-level layout qualifiers void TParseContext::checkNoShaderLayouts(const TSourceLoc& loc, const TShaderQualifiers& shaderQualifiers) { #ifndef GLSLANG_WEB const char* message = "can only apply to a standalone qualifier"; if (shaderQualifiers.geometry != ElgNone) error(loc, message, TQualifier::getGeometryString(shaderQualifiers.geometry), ""); if (shaderQualifiers.spacing != EvsNone) error(loc, message, TQualifier::getVertexSpacingString(shaderQualifiers.spacing), ""); if (shaderQualifiers.order != EvoNone) error(loc, message, TQualifier::getVertexOrderString(shaderQualifiers.order), ""); if (shaderQualifiers.pointMode) error(loc, message, "point_mode", ""); if (shaderQualifiers.invocations != TQualifier::layoutNotSet) error(loc, message, "invocations", ""); for (int i = 0; i < 3; ++i) { if (shaderQualifiers.localSize[i] > 1) error(loc, message, "local_size", ""); if (shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) error(loc, message, "local_size id", ""); } if (shaderQualifiers.vertices != TQualifier::layoutNotSet) { if (language == EShLangGeometry || language == EShLangMeshNV) error(loc, message, "max_vertices", ""); else if (language == EShLangTessControl) error(loc, message, "vertices", ""); else assert(0); } if (shaderQualifiers.earlyFragmentTests) error(loc, message, "early_fragment_tests", ""); if (shaderQualifiers.postDepthCoverage) error(loc, message, "post_depth_coverage", ""); if (shaderQualifiers.primitives != TQualifier::layoutNotSet) { if (language == EShLangMeshNV) error(loc, message, "max_primitives", ""); else assert(0); } if (shaderQualifiers.hasBlendEquation()) error(loc, message, "blend equation", ""); if (shaderQualifiers.numViews != TQualifier::layoutNotSet) error(loc, message, "num_views", ""); if (shaderQualifiers.interlockOrdering != EioNone) error(loc, message, TQualifier::getInterlockOrderingString(shaderQualifiers.interlockOrdering), ""); if (shaderQualifiers.layoutPrimitiveCulling) error(loc, "can only be applied as standalone", "primitive_culling", ""); #endif } // Correct and/or advance an object's offset layout qualifier. void TParseContext::fixOffset(const TSourceLoc& loc, TSymbol& symbol) { const TQualifier& qualifier = symbol.getType().getQualifier(); #ifndef GLSLANG_WEB if (symbol.getType().isAtomic()) { if (qualifier.hasBinding() && (int)qualifier.layoutBinding < resources.maxAtomicCounterBindings) { // Set the offset int offset; if (qualifier.hasOffset()) offset = qualifier.layoutOffset; else offset = atomicUintOffsets[qualifier.layoutBinding]; if (offset % 4 != 0) error(loc, "atomic counters offset should align based on 4:", "offset", "%d", offset); symbol.getWritableType().getQualifier().layoutOffset = offset; // Check for overlap int numOffsets = 4; if (symbol.getType().isArray()) { if (symbol.getType().isSizedArray() && !symbol.getType().getArraySizes()->isInnerUnsized()) numOffsets *= symbol.getType().getCumulativeArraySize(); else { // "It is a compile-time error to declare an unsized array of atomic_uint." error(loc, "array must be explicitly sized", "atomic_uint", ""); } } int repeated = intermediate.addUsedOffsets(qualifier.layoutBinding, offset, numOffsets); if (repeated >= 0) error(loc, "atomic counters sharing the same offset:", "offset", "%d", repeated); // Bump the default offset atomicUintOffsets[qualifier.layoutBinding] = offset + numOffsets; } } #endif } // // Look up a function name in the symbol table, and make sure it is a function. // // Return the function symbol if found, otherwise nullptr. // const TFunction* TParseContext::findFunction(const TSourceLoc& loc, const TFunction& call, bool& builtIn) { if (symbolTable.isFunctionNameVariable(call.getName())) { error(loc, "can't use function syntax on variable", call.getName().c_str(), ""); return nullptr; } #ifdef GLSLANG_WEB return findFunctionExact(loc, call, builtIn); #endif const TFunction* function = nullptr; // debugPrintfEXT has var args and is in the symbol table as "debugPrintfEXT()", // mangled to "debugPrintfEXT(" if (call.getName() == "debugPrintfEXT") { TSymbol* symbol = symbolTable.find("debugPrintfEXT(", &builtIn); if (symbol) return symbol->getAsFunction(); } bool explicitTypesEnabled = extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types) || extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int8) || extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int16) || extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int32) || extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_int64) || extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_float16) || extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_float32) || extensionTurnedOn(E_GL_EXT_shader_explicit_arithmetic_types_float64); if (isEsProfile()) function = (extensionTurnedOn(E_GL_EXT_shader_implicit_conversions) && version >= 310) ? findFunction120(loc, call, builtIn) : findFunctionExact(loc, call, builtIn); else if (version < 120) function = findFunctionExact(loc, call, builtIn); else if (version < 400) function = extensionTurnedOn(E_GL_ARB_gpu_shader_fp64) ? findFunction400(loc, call, builtIn) : findFunction120(loc, call, builtIn); else if (explicitTypesEnabled) function = findFunctionExplicitTypes(loc, call, builtIn); else function = findFunction400(loc, call, builtIn); return function; } // Function finding algorithm for ES and desktop 110. const TFunction* TParseContext::findFunctionExact(const TSourceLoc& loc, const TFunction& call, bool& builtIn) { TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); if (symbol == nullptr) { error(loc, "no matching overloaded function found", call.getName().c_str(), ""); return nullptr; } return symbol->getAsFunction(); } // Function finding algorithm for desktop versions 120 through 330. const TFunction* TParseContext::findFunction120(const TSourceLoc& loc, const TFunction& call, bool& builtIn) { // first, look for an exact match TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); if (symbol) return symbol->getAsFunction(); // exact match not found, look through a list of overloaded functions of the same name // "If no exact match is found, then [implicit conversions] will be applied to find a match. Mismatched types // on input parameters (in or inout or default) must have a conversion from the calling argument type to the // formal parameter type. Mismatched types on output parameters (out or inout) must have a conversion // from the formal parameter type to the calling argument type. When argument conversions are used to find // a match, it is a semantic error if there are multiple ways to apply these conversions to make the call match // more than one function." const TFunction* candidate = nullptr; TVector candidateList; symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); for (auto it = candidateList.begin(); it != candidateList.end(); ++it) { const TFunction& function = *(*it); // to even be a potential match, number of arguments has to match if (call.getParamCount() != function.getParamCount()) continue; bool possibleMatch = true; for (int i = 0; i < function.getParamCount(); ++i) { // same types is easy if (*function[i].type == *call[i].type) continue; // We have a mismatch in type, see if it is implicitly convertible if (function[i].type->isArray() || call[i].type->isArray() || ! function[i].type->sameElementShape(*call[i].type)) possibleMatch = false; else { // do direction-specific checks for conversion of basic type if (function[i].type->getQualifier().isParamInput()) { if (! intermediate.canImplicitlyPromote(call[i].type->getBasicType(), function[i].type->getBasicType())) possibleMatch = false; } if (function[i].type->getQualifier().isParamOutput()) { if (! intermediate.canImplicitlyPromote(function[i].type->getBasicType(), call[i].type->getBasicType())) possibleMatch = false; } } if (! possibleMatch) break; } if (possibleMatch) { if (candidate) { // our second match, meaning ambiguity error(loc, "ambiguous function signature match: multiple signatures match under implicit type conversion", call.getName().c_str(), ""); } else candidate = &function; } } if (candidate == nullptr) error(loc, "no matching overloaded function found", call.getName().c_str(), ""); return candidate; } // Function finding algorithm for desktop version 400 and above. // // "When function calls are resolved, an exact type match for all the arguments // is sought. If an exact match is found, all other functions are ignored, and // the exact match is used. If no exact match is found, then the implicit // conversions in section 4.1.10 Implicit Conversions will be applied to find // a match. Mismatched types on input parameters (in or inout or default) must // have a conversion from the calling argument type to the formal parameter type. // Mismatched types on output parameters (out or inout) must have a conversion // from the formal parameter type to the calling argument type. // // "If implicit conversions can be used to find more than one matching function, // a single best-matching function is sought. To determine a best match, the // conversions between calling argument and formal parameter types are compared // for each function argument and pair of matching functions. After these // comparisons are performed, each pair of matching functions are compared. // A function declaration A is considered a better match than function // declaration B if // // * for at least one function argument, the conversion for that argument in A // is better than the corresponding conversion in B; and // * there is no function argument for which the conversion in B is better than // the corresponding conversion in A. // // "If a single function declaration is considered a better match than every // other matching function declaration, it will be used. Otherwise, a // compile-time semantic error for an ambiguous overloaded function call occurs. // // "To determine whether the conversion for a single argument in one match is // better than that for another match, the following rules are applied, in order: // // 1. An exact match is better than a match involving any implicit conversion. // 2. A match involving an implicit conversion from float to double is better // than a match involving any other implicit conversion. // 3. A match involving an implicit conversion from either int or uint to float // is better than a match involving an implicit conversion from either int // or uint to double. // // "If none of the rules above apply to a particular pair of conversions, neither // conversion is considered better than the other." // const TFunction* TParseContext::findFunction400(const TSourceLoc& loc, const TFunction& call, bool& builtIn) { // first, look for an exact match TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); if (symbol) return symbol->getAsFunction(); // no exact match, use the generic selector, parameterized by the GLSL rules // create list of candidates to send TVector candidateList; symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); // can 'from' convert to 'to'? const auto convertible = [this,builtIn](const TType& from, const TType& to, TOperator, int) -> bool { if (from == to) return true; if (from.coopMatParameterOK(to)) return true; // Allow a sized array to be passed through an unsized array parameter, for coopMatLoad/Store functions if (builtIn && from.isArray() && to.isUnsizedArray()) { TType fromElementType(from, 0); TType toElementType(to, 0); if (fromElementType == toElementType) return true; } if (from.isArray() || to.isArray() || ! from.sameElementShape(to)) return false; if (from.isCoopMat() && to.isCoopMat()) return from.sameCoopMatBaseType(to); return intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType()); }; // Is 'to2' a better conversion than 'to1'? // Ties should not be considered as better. // Assumes 'convertible' already said true. const auto better = [](const TType& from, const TType& to1, const TType& to2) -> bool { // 1. exact match if (from == to2) return from != to1; if (from == to1) return false; // 2. float -> double is better if (from.getBasicType() == EbtFloat) { if (to2.getBasicType() == EbtDouble && to1.getBasicType() != EbtDouble) return true; } // 3. -> float is better than -> double return to2.getBasicType() == EbtFloat && to1.getBasicType() == EbtDouble; }; // for ambiguity reporting bool tie = false; // send to the generic selector const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie); if (bestMatch == nullptr) error(loc, "no matching overloaded function found", call.getName().c_str(), ""); else if (tie) error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), ""); return bestMatch; } // "To determine whether the conversion for a single argument in one match // is better than that for another match, the conversion is assigned of the // three ranks ordered from best to worst: // 1. Exact match: no conversion. // 2. Promotion: integral or floating-point promotion. // 3. Conversion: integral conversion, floating-point conversion, // floating-integral conversion. // A conversion C1 is better than a conversion C2 if the rank of C1 is // better than the rank of C2." const TFunction* TParseContext::findFunctionExplicitTypes(const TSourceLoc& loc, const TFunction& call, bool& builtIn) { // first, look for an exact match TSymbol* symbol = symbolTable.find(call.getMangledName(), &builtIn); if (symbol) return symbol->getAsFunction(); // no exact match, use the generic selector, parameterized by the GLSL rules // create list of candidates to send TVector candidateList; symbolTable.findFunctionNameList(call.getMangledName(), candidateList, builtIn); // can 'from' convert to 'to'? const auto convertible = [this,builtIn](const TType& from, const TType& to, TOperator, int) -> bool { if (from == to) return true; if (from.coopMatParameterOK(to)) return true; // Allow a sized array to be passed through an unsized array parameter, for coopMatLoad/Store functions if (builtIn && from.isArray() && to.isUnsizedArray()) { TType fromElementType(from, 0); TType toElementType(to, 0); if (fromElementType == toElementType) return true; } if (from.isArray() || to.isArray() || ! from.sameElementShape(to)) return false; if (from.isCoopMat() && to.isCoopMat()) return from.sameCoopMatBaseType(to); return intermediate.canImplicitlyPromote(from.getBasicType(), to.getBasicType()); }; // Is 'to2' a better conversion than 'to1'? // Ties should not be considered as better. // Assumes 'convertible' already said true. const auto better = [this](const TType& from, const TType& to1, const TType& to2) -> bool { // 1. exact match if (from == to2) return from != to1; if (from == to1) return false; // 2. Promotion (integral, floating-point) is better TBasicType from_type = from.getBasicType(); TBasicType to1_type = to1.getBasicType(); TBasicType to2_type = to2.getBasicType(); bool isPromotion1 = (intermediate.isIntegralPromotion(from_type, to1_type) || intermediate.isFPPromotion(from_type, to1_type)); bool isPromotion2 = (intermediate.isIntegralPromotion(from_type, to2_type) || intermediate.isFPPromotion(from_type, to2_type)); if (isPromotion2) return !isPromotion1; if(isPromotion1) return false; // 3. Conversion (integral, floating-point , floating-integral) bool isConversion1 = (intermediate.isIntegralConversion(from_type, to1_type) || intermediate.isFPConversion(from_type, to1_type) || intermediate.isFPIntegralConversion(from_type, to1_type)); bool isConversion2 = (intermediate.isIntegralConversion(from_type, to2_type) || intermediate.isFPConversion(from_type, to2_type) || intermediate.isFPIntegralConversion(from_type, to2_type)); return isConversion2 && !isConversion1; }; // for ambiguity reporting bool tie = false; // send to the generic selector const TFunction* bestMatch = selectFunction(candidateList, call, convertible, better, tie); if (bestMatch == nullptr) error(loc, "no matching overloaded function found", call.getName().c_str(), ""); else if (tie) error(loc, "ambiguous best function under implicit type conversion", call.getName().c_str(), ""); return bestMatch; } // When a declaration includes a type, but not a variable name, it can be used // to establish defaults. void TParseContext::declareTypeDefaults(const TSourceLoc& loc, const TPublicType& publicType) { #ifndef GLSLANG_WEB if (publicType.basicType == EbtAtomicUint && publicType.qualifier.hasBinding()) { if (publicType.qualifier.layoutBinding >= (unsigned int)resources.maxAtomicCounterBindings) { error(loc, "atomic_uint binding is too large", "binding", ""); return; } if(publicType.qualifier.hasOffset()) { atomicUintOffsets[publicType.qualifier.layoutBinding] = publicType.qualifier.layoutOffset; } return; } if (publicType.qualifier.hasLayout() && !publicType.qualifier.hasBufferReference()) warn(loc, "useless application of layout qualifier", "layout", ""); #endif } // // Do everything necessary to handle a variable (non-block) declaration. // Either redeclaring a variable, or making a new one, updating the symbol // table, and all error checking. // // Returns a subtree node that computes an initializer, if needed. // Returns nullptr if there is no code to execute for initialization. // // 'publicType' is the type part of the declaration (to the left) // 'arraySizes' is the arrayness tagged on the identifier (to the right) // TIntermNode* TParseContext::declareVariable(const TSourceLoc& loc, TString& identifier, const TPublicType& publicType, TArraySizes* arraySizes, TIntermTyped* initializer) { // Make a fresh type that combines the characteristics from the individual // identifier syntax and the declaration-type syntax. TType type(publicType); type.transferArraySizes(arraySizes); type.copyArrayInnerSizes(publicType.arraySizes); arrayOfArrayVersionCheck(loc, type.getArraySizes()); if (initializer) { if (type.getBasicType() == EbtRayQuery) { error(loc, "ray queries can only be initialized by using the rayQueryInitializeEXT intrinsic:", "=", identifier.c_str()); } } if (type.isCoopMat()) { intermediate.setUseVulkanMemoryModel(); intermediate.setUseStorageBuffer(); if (!publicType.typeParameters || publicType.typeParameters->getNumDims() != 4) { error(loc, "expected four type parameters", identifier.c_str(), ""); } if (publicType.typeParameters) { if (isTypeFloat(publicType.basicType) && publicType.typeParameters->getDimSize(0) != 16 && publicType.typeParameters->getDimSize(0) != 32 && publicType.typeParameters->getDimSize(0) != 64) { error(loc, "expected 16, 32, or 64 bits for first type parameter", identifier.c_str(), ""); } if (isTypeInt(publicType.basicType) && publicType.typeParameters->getDimSize(0) != 8 && publicType.typeParameters->getDimSize(0) != 32) { error(loc, "expected 8 or 32 bits for first type parameter", identifier.c_str(), ""); } } } else { if (publicType.typeParameters && publicType.typeParameters->getNumDims() != 0) { error(loc, "unexpected type parameters", identifier.c_str(), ""); } } if (voidErrorCheck(loc, identifier, type.getBasicType())) return nullptr; if (initializer) rValueErrorCheck(loc, "initializer", initializer); else nonInitConstCheck(loc, identifier, type); samplerCheck(loc, type, identifier, initializer); transparentOpaqueCheck(loc, type, identifier); #ifndef GLSLANG_WEB atomicUintCheck(loc, type, identifier); accStructCheck(loc, type, identifier); checkAndResizeMeshViewDim(loc, type, /*isBlockMember*/ false); #endif if (type.getQualifier().storage == EvqConst && type.containsReference()) { error(loc, "variables with reference type can't have qualifier 'const'", "qualifier", ""); } if (type.getQualifier().storage != EvqUniform && type.getQualifier().storage != EvqBuffer) { if (type.contains16BitFloat()) requireFloat16Arithmetic(loc, "qualifier", "float16 types can only be in uniform block or buffer storage"); if (type.contains16BitInt()) requireInt16Arithmetic(loc, "qualifier", "(u)int16 types can only be in uniform block or buffer storage"); if (type.contains8BitInt()) requireInt8Arithmetic(loc, "qualifier", "(u)int8 types can only be in uniform block or buffer storage"); } if (type.getQualifier().storage == EvqShared && type.containsCoopMat()) error(loc, "qualifier", "Cooperative matrix types must not be used in shared memory", ""); if (identifier != "gl_FragCoord" && (publicType.shaderQualifiers.originUpperLeft || publicType.shaderQualifiers.pixelCenterInteger)) error(loc, "can only apply origin_upper_left and pixel_center_origin to gl_FragCoord", "layout qualifier", ""); if (identifier != "gl_FragDepth" && publicType.shaderQualifiers.getDepth() != EldNone) error(loc, "can only apply depth layout to gl_FragDepth", "layout qualifier", ""); // Check for redeclaration of built-ins and/or attempting to declare a reserved name TSymbol* symbol = redeclareBuiltinVariable(loc, identifier, type.getQualifier(), publicType.shaderQualifiers); if (symbol == nullptr) reservedErrorCheck(loc, identifier); inheritGlobalDefaults(type.getQualifier()); // Declare the variable if (type.isArray()) { // Check that implicit sizing is only where allowed. arraySizesCheck(loc, type.getQualifier(), type.getArraySizes(), initializer, false); if (! arrayQualifierError(loc, type.getQualifier()) && ! arrayError(loc, type)) declareArray(loc, identifier, type, symbol); if (initializer) { profileRequires(loc, ENoProfile, 120, E_GL_3DL_array_objects, "initializer"); profileRequires(loc, EEsProfile, 300, nullptr, "initializer"); } } else { // non-array case if (symbol == nullptr) symbol = declareNonArray(loc, identifier, type); else if (type != symbol->getType()) error(loc, "cannot change the type of", "redeclaration", symbol->getName().c_str()); } if (symbol == nullptr) return nullptr; // Deal with initializer TIntermNode* initNode = nullptr; if (symbol != nullptr && initializer) { TVariable* variable = symbol->getAsVariable(); if (! variable) { error(loc, "initializer requires a variable, not a member", identifier.c_str(), ""); return nullptr; } initNode = executeInitializer(loc, initializer, variable); } // look for errors in layout qualifier use layoutObjectCheck(loc, *symbol); // fix up fixOffset(loc, *symbol); return initNode; } // Pick up global defaults from the provide global defaults into dst. void TParseContext::inheritGlobalDefaults(TQualifier& dst) const { #ifndef GLSLANG_WEB if (dst.storage == EvqVaryingOut) { if (! dst.hasStream() && language == EShLangGeometry) dst.layoutStream = globalOutputDefaults.layoutStream; if (! dst.hasXfbBuffer()) dst.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; } #endif } // // Make an internal-only variable whose name is for debug purposes only // and won't be searched for. Callers will only use the return value to use // the variable, not the name to look it up. It is okay if the name // is the same as other names; there won't be any conflict. // TVariable* TParseContext::makeInternalVariable(const char* name, const TType& type) const { TString* nameString = NewPoolTString(name); TVariable* variable = new TVariable(nameString, type); symbolTable.makeInternalVariable(*variable); return variable; } // // Declare a non-array variable, the main point being there is no redeclaration // for resizing allowed. // // Return the successfully declared variable. // TVariable* TParseContext::declareNonArray(const TSourceLoc& loc, const TString& identifier, const TType& type) { // make a new variable TVariable* variable = new TVariable(&identifier, type); #ifndef GLSLANG_WEB ioArrayCheck(loc, type, identifier); #endif // add variable to symbol table if (symbolTable.insert(*variable)) { if (symbolTable.atGlobalLevel()) trackLinkage(*variable); return variable; } error(loc, "redefinition", variable->getName().c_str(), ""); return nullptr; } // // Handle all types of initializers from the grammar. // // Returning nullptr just means there is no code to execute to handle the // initializer, which will, for example, be the case for constant initializers. // TIntermNode* TParseContext::executeInitializer(const TSourceLoc& loc, TIntermTyped* initializer, TVariable* variable) { // // Identifier must be of type constant, a global, or a temporary, and // starting at version 120, desktop allows uniforms to have initializers. // TStorageQualifier qualifier = variable->getType().getQualifier().storage; if (! (qualifier == EvqTemporary || qualifier == EvqGlobal || qualifier == EvqConst || (qualifier == EvqUniform && !isEsProfile() && version >= 120))) { error(loc, " cannot initialize this type of qualifier ", variable->getType().getStorageQualifierString(), ""); return nullptr; } arrayObjectCheck(loc, variable->getType(), "array initializer"); // // If the initializer was from braces { ... }, we convert the whole subtree to a // constructor-style subtree, allowing the rest of the code to operate // identically for both kinds of initializers. // // Type can't be deduced from the initializer list, so a skeletal type to // follow has to be passed in. Constness and specialization-constness // should be deduced bottom up, not dictated by the skeletal type. // TType skeletalType; skeletalType.shallowCopy(variable->getType()); skeletalType.getQualifier().makeTemporary(); #ifndef GLSLANG_WEB initializer = convertInitializerList(loc, skeletalType, initializer); #endif if (! initializer) { // error recovery; don't leave const without constant values if (qualifier == EvqConst) variable->getWritableType().getQualifier().makeTemporary(); return nullptr; } // Fix outer arrayness if variable is unsized, getting size from the initializer if (initializer->getType().isSizedArray() && variable->getType().isUnsizedArray()) variable->getWritableType().changeOuterArraySize(initializer->getType().getOuterArraySize()); // Inner arrayness can also get set by an initializer if (initializer->getType().isArrayOfArrays() && variable->getType().isArrayOfArrays() && initializer->getType().getArraySizes()->getNumDims() == variable->getType().getArraySizes()->getNumDims()) { // adopt unsized sizes from the initializer's sizes for (int d = 1; d < variable->getType().getArraySizes()->getNumDims(); ++d) { if (variable->getType().getArraySizes()->getDimSize(d) == UnsizedArraySize) { variable->getWritableType().getArraySizes()->setDimSize(d, initializer->getType().getArraySizes()->getDimSize(d)); } } } // Uniforms require a compile-time constant initializer if (qualifier == EvqUniform && ! initializer->getType().getQualifier().isFrontEndConstant()) { error(loc, "uniform initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); variable->getWritableType().getQualifier().makeTemporary(); return nullptr; } // Global consts require a constant initializer (specialization constant is okay) if (qualifier == EvqConst && symbolTable.atGlobalLevel() && ! initializer->getType().getQualifier().isConstant()) { error(loc, "global const initializers must be constant", "=", "'%s'", variable->getType().getCompleteString().c_str()); variable->getWritableType().getQualifier().makeTemporary(); return nullptr; } // Const variables require a constant initializer, depending on version if (qualifier == EvqConst) { if (! initializer->getType().getQualifier().isConstant()) { const char* initFeature = "non-constant initializer"; requireProfile(loc, ~EEsProfile, initFeature); profileRequires(loc, ~EEsProfile, 420, E_GL_ARB_shading_language_420pack, initFeature); variable->getWritableType().getQualifier().storage = EvqConstReadOnly; qualifier = EvqConstReadOnly; } } else { // Non-const global variables in ES need a const initializer. // // "In declarations of global variables with no storage qualifier or with a const // qualifier any initializer must be a constant expression." if (symbolTable.atGlobalLevel() && ! initializer->getType().getQualifier().isConstant()) { const char* initFeature = "non-constant global initializer (needs GL_EXT_shader_non_constant_global_initializers)"; if (isEsProfile()) { if (relaxedErrors() && ! extensionTurnedOn(E_GL_EXT_shader_non_constant_global_initializers)) warn(loc, "not allowed in this version", initFeature, ""); else profileRequires(loc, EEsProfile, 0, E_GL_EXT_shader_non_constant_global_initializers, initFeature); } } } if (qualifier == EvqConst || qualifier == EvqUniform) { // Compile-time tagging of the variable with its constant value... initializer = intermediate.addConversion(EOpAssign, variable->getType(), initializer); if (! initializer || ! initializer->getType().getQualifier().isConstant() || variable->getType() != initializer->getType()) { error(loc, "non-matching or non-convertible constant type for const initializer", variable->getType().getStorageQualifierString(), ""); variable->getWritableType().getQualifier().makeTemporary(); return nullptr; } // We either have a folded constant in getAsConstantUnion, or we have to use // the initializer's subtree in the AST to represent the computation of a // specialization constant. assert(initializer->getAsConstantUnion() || initializer->getType().getQualifier().isSpecConstant()); if (initializer->getAsConstantUnion()) variable->setConstArray(initializer->getAsConstantUnion()->getConstArray()); else { // It's a specialization constant. variable->getWritableType().getQualifier().makeSpecConstant(); // Keep the subtree that computes the specialization constant with the variable. // Later, a symbol node will adopt the subtree from the variable. variable->setConstSubtree(initializer); } } else { // normal assigning of a value to a variable... specializationCheck(loc, initializer->getType(), "initializer"); TIntermSymbol* intermSymbol = intermediate.addSymbol(*variable, loc); TIntermTyped* initNode = intermediate.addAssign(EOpAssign, intermSymbol, initializer, loc); if (! initNode) assignError(loc, "=", intermSymbol->getCompleteString(), initializer->getCompleteString()); return initNode; } return nullptr; } // // Reprocess any initializer-list (the "{ ... }" syntax) parts of the // initializer. // // Need to hierarchically assign correct types and implicit // conversions. Will do this mimicking the same process used for // creating a constructor-style initializer, ensuring we get the // same form. However, it has to in parallel walk the 'type' // passed in, as type cannot be deduced from an initializer list. // TIntermTyped* TParseContext::convertInitializerList(const TSourceLoc& loc, const TType& type, TIntermTyped* initializer) { // Will operate recursively. Once a subtree is found that is constructor style, // everything below it is already good: Only the "top part" of the initializer // can be an initializer list, where "top part" can extend for several (or all) levels. // see if we have bottomed out in the tree within the initializer-list part TIntermAggregate* initList = initializer->getAsAggregate(); if (! initList || initList->getOp() != EOpNull) return initializer; // Of the initializer-list set of nodes, need to process bottom up, // so recurse deep, then process on the way up. // Go down the tree here... if (type.isArray()) { // The type's array might be unsized, which could be okay, so base sizes on the size of the aggregate. // Later on, initializer execution code will deal with array size logic. TType arrayType; arrayType.shallowCopy(type); // sharing struct stuff is fine arrayType.copyArraySizes(*type.getArraySizes()); // but get a fresh copy of the array information, to edit below // edit array sizes to fill in unsized dimensions arrayType.changeOuterArraySize((int)initList->getSequence().size()); TIntermTyped* firstInit = initList->getSequence()[0]->getAsTyped(); if (arrayType.isArrayOfArrays() && firstInit->getType().isArray() && arrayType.getArraySizes()->getNumDims() == firstInit->getType().getArraySizes()->getNumDims() + 1) { for (int d = 1; d < arrayType.getArraySizes()->getNumDims(); ++d) { if (arrayType.getArraySizes()->getDimSize(d) == UnsizedArraySize) arrayType.getArraySizes()->setDimSize(d, firstInit->getType().getArraySizes()->getDimSize(d - 1)); } } TType elementType(arrayType, 0); // dereferenced type for (size_t i = 0; i < initList->getSequence().size(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, elementType, initList->getSequence()[i]->getAsTyped()); if (initList->getSequence()[i] == nullptr) return nullptr; } return addConstructor(loc, initList, arrayType); } else if (type.isStruct()) { if (type.getStruct()->size() != initList->getSequence().size()) { error(loc, "wrong number of structure members", "initializer list", ""); return nullptr; } for (size_t i = 0; i < type.getStruct()->size(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, *(*type.getStruct())[i].type, initList->getSequence()[i]->getAsTyped()); if (initList->getSequence()[i] == nullptr) return nullptr; } } else if (type.isMatrix()) { if (type.getMatrixCols() != (int)initList->getSequence().size()) { error(loc, "wrong number of matrix columns:", "initializer list", type.getCompleteString().c_str()); return nullptr; } TType vectorType(type, 0); // dereferenced type for (int i = 0; i < type.getMatrixCols(); ++i) { initList->getSequence()[i] = convertInitializerList(loc, vectorType, initList->getSequence()[i]->getAsTyped()); if (initList->getSequence()[i] == nullptr) return nullptr; } } else if (type.isVector()) { if (type.getVectorSize() != (int)initList->getSequence().size()) { error(loc, "wrong vector size (or rows in a matrix column):", "initializer list", type.getCompleteString().c_str()); return nullptr; } } else { error(loc, "unexpected initializer-list type:", "initializer list", type.getCompleteString().c_str()); return nullptr; } // Now that the subtree is processed, process this node as if the // initializer list is a set of arguments to a constructor. TIntermNode* emulatedConstructorArguments; if (initList->getSequence().size() == 1) emulatedConstructorArguments = initList->getSequence()[0]; else emulatedConstructorArguments = initList; return addConstructor(loc, emulatedConstructorArguments, type); } // // Test for the correctness of the parameters passed to various constructor functions // and also convert them to the right data type, if allowed and required. // // 'node' is what to construct from. // 'type' is what type to construct. // // Returns nullptr for an error or the constructed node (aggregate or typed) for no error. // TIntermTyped* TParseContext::addConstructor(const TSourceLoc& loc, TIntermNode* node, const TType& type) { if (node == nullptr || node->getAsTyped() == nullptr) return nullptr; rValueErrorCheck(loc, "constructor", node->getAsTyped()); TIntermAggregate* aggrNode = node->getAsAggregate(); TOperator op = intermediate.mapTypeToConstructorOp(type); // Combined texture-sampler constructors are completely semantic checked // in constructorTextureSamplerError() if (op == EOpConstructTextureSampler) { if (aggrNode->getSequence()[1]->getAsTyped()->getType().getSampler().shadow) { // Transfer depth into the texture (SPIR-V image) type, as a hint // for tools to know this texture/image is a depth image. aggrNode->getSequence()[0]->getAsTyped()->getWritableType().getSampler().shadow = true; } return intermediate.setAggregateOperator(aggrNode, op, type, loc); } TTypeList::const_iterator memberTypes; if (op == EOpConstructStruct) memberTypes = type.getStruct()->begin(); TType elementType; if (type.isArray()) { TType dereferenced(type, 0); elementType.shallowCopy(dereferenced); } else elementType.shallowCopy(type); bool singleArg; if (aggrNode) { if (aggrNode->getOp() != EOpNull) singleArg = true; else singleArg = false; } else singleArg = true; TIntermTyped *newNode; if (singleArg) { // If structure constructor or array constructor is being called // for only one parameter inside the structure, we need to call constructAggregate function once. if (type.isArray()) newNode = constructAggregate(node, elementType, 1, node->getLoc()); else if (op == EOpConstructStruct) newNode = constructAggregate(node, *(*memberTypes).type, 1, node->getLoc()); else newNode = constructBuiltIn(type, op, node->getAsTyped(), node->getLoc(), false); if (newNode && (type.isArray() || op == EOpConstructStruct)) newNode = intermediate.setAggregateOperator(newNode, EOpConstructStruct, type, loc); return newNode; } // // Handle list of arguments. // TIntermSequence &sequenceVector = aggrNode->getSequence(); // Stores the information about the parameter to the constructor // if the structure constructor contains more than one parameter, then construct // each parameter int paramCount = 0; // keeps track of the constructor parameter number being checked // for each parameter to the constructor call, check to see if the right type is passed or convert them // to the right type if possible (and allowed). // for structure constructors, just check if the right type is passed, no conversion is allowed. for (TIntermSequence::iterator p = sequenceVector.begin(); p != sequenceVector.end(); p++, paramCount++) { if (type.isArray()) newNode = constructAggregate(*p, elementType, paramCount+1, node->getLoc()); else if (op == EOpConstructStruct) newNode = constructAggregate(*p, *(memberTypes[paramCount]).type, paramCount+1, node->getLoc()); else newNode = constructBuiltIn(type, op, (*p)->getAsTyped(), node->getLoc(), true); if (newNode) *p = newNode; else return nullptr; } return intermediate.setAggregateOperator(aggrNode, op, type, loc); } // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value // for the parameter to the constructor (passed to this function). Essentially, it converts // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a // float, then float is converted to int. // // Returns nullptr for an error or the constructed node. // TIntermTyped* TParseContext::constructBuiltIn(const TType& type, TOperator op, TIntermTyped* node, const TSourceLoc& loc, bool subset) { // If we are changing a matrix in both domain of basic type and to a non matrix, // do the shape change first (by default, below, basic type is changed before shape). // This avoids requesting a matrix of a new type that is going to be discarded anyway. // TODO: This could be generalized to more type combinations, but that would require // more extensive testing and full algorithm rework. For now, the need to do two changes makes // the recursive call work, and avoids the most egregious case of creating integer matrices. if (node->getType().isMatrix() && (type.isScalar() || type.isVector()) && type.isFloatingDomain() != node->getType().isFloatingDomain()) { TType transitionType(node->getBasicType(), glslang::EvqTemporary, type.getVectorSize(), 0, 0, node->isVector()); TOperator transitionOp = intermediate.mapTypeToConstructorOp(transitionType); node = constructBuiltIn(transitionType, transitionOp, node, loc, false); } TIntermTyped* newNode; TOperator basicOp; // // First, convert types as needed. // switch (op) { case EOpConstructVec2: case EOpConstructVec3: case EOpConstructVec4: case EOpConstructMat2x2: case EOpConstructMat2x3: case EOpConstructMat2x4: case EOpConstructMat3x2: case EOpConstructMat3x3: case EOpConstructMat3x4: case EOpConstructMat4x2: case EOpConstructMat4x3: case EOpConstructMat4x4: case EOpConstructFloat: basicOp = EOpConstructFloat; break; case EOpConstructIVec2: case EOpConstructIVec3: case EOpConstructIVec4: case EOpConstructInt: basicOp = EOpConstructInt; break; case EOpConstructUVec2: if (node->getType().getBasicType() == EbtReference) { requireExtensions(loc, 1, &E_GL_EXT_buffer_reference_uvec2, "reference conversion to uvec2"); TIntermTyped* newNode = intermediate.addBuiltInFunctionCall(node->getLoc(), EOpConvPtrToUvec2, true, node, type); return newNode; } case EOpConstructUVec3: case EOpConstructUVec4: case EOpConstructUint: basicOp = EOpConstructUint; break; case EOpConstructBVec2: case EOpConstructBVec3: case EOpConstructBVec4: case EOpConstructBool: basicOp = EOpConstructBool; break; #ifndef GLSLANG_WEB case EOpConstructDVec2: case EOpConstructDVec3: case EOpConstructDVec4: case EOpConstructDMat2x2: case EOpConstructDMat2x3: case EOpConstructDMat2x4: case EOpConstructDMat3x2: case EOpConstructDMat3x3: case EOpConstructDMat3x4: case EOpConstructDMat4x2: case EOpConstructDMat4x3: case EOpConstructDMat4x4: case EOpConstructDouble: basicOp = EOpConstructDouble; break; case EOpConstructF16Vec2: case EOpConstructF16Vec3: case EOpConstructF16Vec4: case EOpConstructF16Mat2x2: case EOpConstructF16Mat2x3: case EOpConstructF16Mat2x4: case EOpConstructF16Mat3x2: case EOpConstructF16Mat3x3: case EOpConstructF16Mat3x4: case EOpConstructF16Mat4x2: case EOpConstructF16Mat4x3: case EOpConstructF16Mat4x4: case EOpConstructFloat16: basicOp = EOpConstructFloat16; // 8/16-bit storage extensions don't support constructing composites of 8/16-bit types, // so construct a 32-bit type and convert if (!intermediate.getArithemeticFloat16Enabled()) { TType tempType(EbtFloat, EvqTemporary, type.getVectorSize()); newNode = node; if (tempType != newNode->getType()) { TOperator aggregateOp; if (op == EOpConstructFloat16) aggregateOp = EOpConstructFloat; else aggregateOp = (TOperator)(EOpConstructVec2 + op - EOpConstructF16Vec2); newNode = intermediate.setAggregateOperator(newNode, aggregateOp, tempType, node->getLoc()); } newNode = intermediate.addConversion(EbtFloat16, newNode); return newNode; } break; case EOpConstructI8Vec2: case EOpConstructI8Vec3: case EOpConstructI8Vec4: case EOpConstructInt8: basicOp = EOpConstructInt8; // 8/16-bit storage extensions don't support constructing composites of 8/16-bit types, // so construct a 32-bit type and convert if (!intermediate.getArithemeticInt8Enabled()) { TType tempType(EbtInt, EvqTemporary, type.getVectorSize()); newNode = node; if (tempType != newNode->getType()) { TOperator aggregateOp; if (op == EOpConstructInt8) aggregateOp = EOpConstructInt; else aggregateOp = (TOperator)(EOpConstructIVec2 + op - EOpConstructI8Vec2); newNode = intermediate.setAggregateOperator(newNode, aggregateOp, tempType, node->getLoc()); } newNode = intermediate.addConversion(EbtInt8, newNode); return newNode; } break; case EOpConstructU8Vec2: case EOpConstructU8Vec3: case EOpConstructU8Vec4: case EOpConstructUint8: basicOp = EOpConstructUint8; // 8/16-bit storage extensions don't support constructing composites of 8/16-bit types, // so construct a 32-bit type and convert if (!intermediate.getArithemeticInt8Enabled()) { TType tempType(EbtUint, EvqTemporary, type.getVectorSize()); newNode = node; if (tempType != newNode->getType()) { TOperator aggregateOp; if (op == EOpConstructUint8) aggregateOp = EOpConstructUint; else aggregateOp = (TOperator)(EOpConstructUVec2 + op - EOpConstructU8Vec2); newNode = intermediate.setAggregateOperator(newNode, aggregateOp, tempType, node->getLoc()); } newNode = intermediate.addConversion(EbtUint8, newNode); return newNode; } break; case EOpConstructI16Vec2: case EOpConstructI16Vec3: case EOpConstructI16Vec4: case EOpConstructInt16: basicOp = EOpConstructInt16; // 8/16-bit storage extensions don't support constructing composites of 8/16-bit types, // so construct a 32-bit type and convert if (!intermediate.getArithemeticInt16Enabled()) { TType tempType(EbtInt, EvqTemporary, type.getVectorSize()); newNode = node; if (tempType != newNode->getType()) { TOperator aggregateOp; if (op == EOpConstructInt16) aggregateOp = EOpConstructInt; else aggregateOp = (TOperator)(EOpConstructIVec2 + op - EOpConstructI16Vec2); newNode = intermediate.setAggregateOperator(newNode, aggregateOp, tempType, node->getLoc()); } newNode = intermediate.addConversion(EbtInt16, newNode); return newNode; } break; case EOpConstructU16Vec2: case EOpConstructU16Vec3: case EOpConstructU16Vec4: case EOpConstructUint16: basicOp = EOpConstructUint16; // 8/16-bit storage extensions don't support constructing composites of 8/16-bit types, // so construct a 32-bit type and convert if (!intermediate.getArithemeticInt16Enabled()) { TType tempType(EbtUint, EvqTemporary, type.getVectorSize()); newNode = node; if (tempType != newNode->getType()) { TOperator aggregateOp; if (op == EOpConstructUint16) aggregateOp = EOpConstructUint; else aggregateOp = (TOperator)(EOpConstructUVec2 + op - EOpConstructU16Vec2); newNode = intermediate.setAggregateOperator(newNode, aggregateOp, tempType, node->getLoc()); } newNode = intermediate.addConversion(EbtUint16, newNode); return newNode; } break; case EOpConstructI64Vec2: case EOpConstructI64Vec3: case EOpConstructI64Vec4: case EOpConstructInt64: basicOp = EOpConstructInt64; break; case EOpConstructUint64: if (type.isScalar() && node->getType().isReference()) { TIntermTyped* newNode = intermediate.addBuiltInFunctionCall(node->getLoc(), EOpConvPtrToUint64, true, node, type); return newNode; } // fall through case EOpConstructU64Vec2: case EOpConstructU64Vec3: case EOpConstructU64Vec4: basicOp = EOpConstructUint64; break; case EOpConstructNonuniform: // Make a nonuniform copy of node newNode = intermediate.addBuiltInFunctionCall(node->getLoc(), EOpCopyObject, true, node, type); return newNode; case EOpConstructReference: // construct reference from reference if (node->getType().isReference()) { newNode = intermediate.addBuiltInFunctionCall(node->getLoc(), EOpConstructReference, true, node, type); return newNode; // construct reference from uint64 } else if (node->getType().isScalar() && node->getType().getBasicType() == EbtUint64) { TIntermTyped* newNode = intermediate.addBuiltInFunctionCall(node->getLoc(), EOpConvUint64ToPtr, true, node, type); return newNode; // construct reference from uvec2 } else if (node->getType().isVector() && node->getType().getBasicType() == EbtUint && node->getVectorSize() == 2) { requireExtensions(loc, 1, &E_GL_EXT_buffer_reference_uvec2, "uvec2 conversion to reference"); TIntermTyped* newNode = intermediate.addBuiltInFunctionCall(node->getLoc(), EOpConvUvec2ToPtr, true, node, type); return newNode; } else { return nullptr; } case EOpConstructCooperativeMatrix: if (!node->getType().isCoopMat()) { if (type.getBasicType() != node->getType().getBasicType()) { node = intermediate.addConversion(type.getBasicType(), node); if (node == nullptr) return nullptr; } node = intermediate.setAggregateOperator(node, EOpConstructCooperativeMatrix, type, node->getLoc()); } else { TOperator op = EOpNull; switch (type.getBasicType()) { default: assert(0); break; case EbtInt: switch (node->getType().getBasicType()) { case EbtFloat: op = EOpConvFloatToInt; break; case EbtFloat16: op = EOpConvFloat16ToInt; break; case EbtUint8: op = EOpConvUint8ToInt; break; case EbtInt8: op = EOpConvInt8ToInt; break; case EbtUint: op = EOpConvUintToInt; break; default: assert(0); } break; case EbtUint: switch (node->getType().getBasicType()) { case EbtFloat: op = EOpConvFloatToUint; break; case EbtFloat16: op = EOpConvFloat16ToUint; break; case EbtUint8: op = EOpConvUint8ToUint; break; case EbtInt8: op = EOpConvInt8ToUint; break; case EbtInt: op = EOpConvIntToUint; break; case EbtUint: op = EOpConvUintToInt8; break; default: assert(0); } break; case EbtInt8: switch (node->getType().getBasicType()) { case EbtFloat: op = EOpConvFloatToInt8; break; case EbtFloat16: op = EOpConvFloat16ToInt8; break; case EbtUint8: op = EOpConvUint8ToInt8; break; case EbtInt: op = EOpConvIntToInt8; break; case EbtUint: op = EOpConvUintToInt8; break; default: assert(0); } break; case EbtUint8: switch (node->getType().getBasicType()) { case EbtFloat: op = EOpConvFloatToUint8; break; case EbtFloat16: op = EOpConvFloat16ToUint8; break; case EbtInt8: op = EOpConvInt8ToUint8; break; case EbtInt: op = EOpConvIntToUint8; break; case EbtUint: op = EOpConvUintToUint8; break; default: assert(0); } break; case EbtFloat: switch (node->getType().getBasicType()) { case EbtFloat16: op = EOpConvFloat16ToFloat; break; case EbtInt8: op = EOpConvInt8ToFloat; break; case EbtUint8: op = EOpConvUint8ToFloat; break; case EbtInt: op = EOpConvIntToFloat; break; case EbtUint: op = EOpConvUintToFloat; break; default: assert(0); } break; case EbtFloat16: switch (node->getType().getBasicType()) { case EbtFloat: op = EOpConvFloatToFloat16; break; case EbtInt8: op = EOpConvInt8ToFloat16; break; case EbtUint8: op = EOpConvUint8ToFloat16; break; case EbtInt: op = EOpConvIntToFloat16; break; case EbtUint: op = EOpConvUintToFloat16; break; default: assert(0); } break; } node = intermediate.addUnaryNode(op, node, node->getLoc(), type); // If it's a (non-specialization) constant, it must be folded. if (node->getAsUnaryNode()->getOperand()->getAsConstantUnion()) return node->getAsUnaryNode()->getOperand()->getAsConstantUnion()->fold(op, node->getType()); } return node; #endif // GLSLANG_WEB default: error(loc, "unsupported construction", "", ""); return nullptr; } newNode = intermediate.addUnaryMath(basicOp, node, node->getLoc()); if (newNode == nullptr) { error(loc, "can't convert", "constructor", ""); return nullptr; } // // Now, if there still isn't an operation to do the construction, and we need one, add one. // // Otherwise, skip out early. if (subset || (newNode != node && newNode->getType() == type)) return newNode; // setAggregateOperator will insert a new node for the constructor, as needed. return intermediate.setAggregateOperator(newNode, op, type, loc); } // This function tests for the type of the parameters to the structure or array constructor. Raises // an error message if the expected type does not match the parameter passed to the constructor. // // Returns nullptr for an error or the input node itself if the expected and the given parameter types match. // TIntermTyped* TParseContext::constructAggregate(TIntermNode* node, const TType& type, int paramCount, const TSourceLoc& loc) { TIntermTyped* converted = intermediate.addConversion(EOpConstructStruct, type, node->getAsTyped()); if (! converted || converted->getType() != type) { error(loc, "", "constructor", "cannot convert parameter %d from '%s' to '%s'", paramCount, node->getAsTyped()->getType().getCompleteString().c_str(), type.getCompleteString().c_str()); return nullptr; } return converted; } // If a memory qualifier is present in 'to', also make it present in 'from'. void TParseContext::inheritMemoryQualifiers(const TQualifier& from, TQualifier& to) { #ifndef GLSLANG_WEB if (from.isReadOnly()) to.readonly = from.readonly; if (from.isWriteOnly()) to.writeonly = from.writeonly; if (from.coherent) to.coherent = from.coherent; if (from.volatil) to.volatil = from.volatil; if (from.restrict) to.restrict = from.restrict; #endif } // // Do everything needed to add an interface block. // void TParseContext::declareBlock(const TSourceLoc& loc, TTypeList& typeList, const TString* instanceName, TArraySizes* arraySizes) { blockStageIoCheck(loc, currentBlockQualifier); blockQualifierCheck(loc, currentBlockQualifier, instanceName != nullptr); if (arraySizes != nullptr) { arraySizesCheck(loc, currentBlockQualifier, arraySizes, nullptr, false); arrayOfArrayVersionCheck(loc, arraySizes); if (arraySizes->getNumDims() > 1) requireProfile(loc, ~EEsProfile, "array-of-array of block"); } // Inherit and check member storage qualifiers WRT to the block-level qualifier. for (unsigned int member = 0; member < typeList.size(); ++member) { TType& memberType = *typeList[member].type; TQualifier& memberQualifier = memberType.getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; globalQualifierFixCheck(memberLoc, memberQualifier); if (memberQualifier.storage != EvqTemporary && memberQualifier.storage != EvqGlobal && memberQualifier.storage != currentBlockQualifier.storage) error(memberLoc, "member storage qualifier cannot contradict block storage qualifier", memberType.getFieldName().c_str(), ""); memberQualifier.storage = currentBlockQualifier.storage; #ifndef GLSLANG_WEB inheritMemoryQualifiers(currentBlockQualifier, memberQualifier); if (currentBlockQualifier.perPrimitiveNV) memberQualifier.perPrimitiveNV = currentBlockQualifier.perPrimitiveNV; if (currentBlockQualifier.perViewNV) memberQualifier.perViewNV = currentBlockQualifier.perViewNV; if (currentBlockQualifier.perTaskNV) memberQualifier.perTaskNV = currentBlockQualifier.perTaskNV; #endif if ((currentBlockQualifier.storage == EvqUniform || currentBlockQualifier.storage == EvqBuffer) && (memberQualifier.isInterpolation() || memberQualifier.isAuxiliary())) error(memberLoc, "member of uniform or buffer block cannot have an auxiliary or interpolation qualifier", memberType.getFieldName().c_str(), ""); if (memberType.isArray()) arraySizesCheck(memberLoc, currentBlockQualifier, memberType.getArraySizes(), nullptr, member == typeList.size() - 1); if (memberQualifier.hasOffset()) { if (spvVersion.spv == 0) { profileRequires(memberLoc, ~EEsProfile, 440, E_GL_ARB_enhanced_layouts, "\"offset\" on block member"); profileRequires(memberLoc, EEsProfile, 300, E_GL_ARB_enhanced_layouts, "\"offset\" on block member"); } } if (memberType.containsOpaque()) error(memberLoc, "member of block cannot be or contain a sampler, image, or atomic_uint type", typeList[member].type->getFieldName().c_str(), ""); if (memberType.containsCoopMat()) error(memberLoc, "member of block cannot be or contain a cooperative matrix type", typeList[member].type->getFieldName().c_str(), ""); } // This might be a redeclaration of a built-in block. If so, redeclareBuiltinBlock() will // do all the rest. if (! symbolTable.atBuiltInLevel() && builtInName(*blockName)) { redeclareBuiltinBlock(loc, typeList, *blockName, instanceName, arraySizes); return; } // Not a redeclaration of a built-in; check that all names are user names. reservedErrorCheck(loc, *blockName); if (instanceName) reservedErrorCheck(loc, *instanceName); for (unsigned int member = 0; member < typeList.size(); ++member) reservedErrorCheck(typeList[member].loc, typeList[member].type->getFieldName()); // Make default block qualification, and adjust the member qualifications TQualifier defaultQualification; switch (currentBlockQualifier.storage) { case EvqUniform: defaultQualification = globalUniformDefaults; break; case EvqBuffer: defaultQualification = globalBufferDefaults; break; case EvqVaryingIn: defaultQualification = globalInputDefaults; break; case EvqVaryingOut: defaultQualification = globalOutputDefaults; break; default: defaultQualification.clear(); break; } // Special case for "push_constant uniform", which has a default of std430, // contrary to normal uniform defaults, and can't have a default tracked for it. if ((currentBlockQualifier.isPushConstant() && !currentBlockQualifier.hasPacking()) || (currentBlockQualifier.isShaderRecord() && !currentBlockQualifier.hasPacking())) currentBlockQualifier.layoutPacking = ElpStd430; // Special case for "taskNV in/out", which has a default of std430, if (currentBlockQualifier.isTaskMemory() && !currentBlockQualifier.hasPacking()) currentBlockQualifier.layoutPacking = ElpStd430; // fix and check for member layout qualifiers mergeObjectLayoutQualifiers(defaultQualification, currentBlockQualifier, true); // "The align qualifier can only be used on blocks or block members, and only for blocks declared with std140 or std430 layouts." if (currentBlockQualifier.hasAlign()) { if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430 && defaultQualification.layoutPacking != ElpScalar) { error(loc, "can only be used with std140, std430, or scalar layout packing", "align", ""); defaultQualification.layoutAlign = -1; } } bool memberWithLocation = false; bool memberWithoutLocation = false; bool memberWithPerViewQualifier = false; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; #ifndef GLSLANG_WEB if (memberQualifier.hasStream()) { if (defaultQualification.layoutStream != memberQualifier.layoutStream) error(memberLoc, "member cannot contradict block", "stream", ""); } // "This includes a block's inheritance of the // current global default buffer, a block member's inheritance of the block's // buffer, and the requirement that any *xfb_buffer* declared on a block // member must match the buffer inherited from the block." if (memberQualifier.hasXfbBuffer()) { if (defaultQualification.layoutXfbBuffer != memberQualifier.layoutXfbBuffer) error(memberLoc, "member cannot contradict block (or what block inherited from global)", "xfb_buffer", ""); } #endif if (memberQualifier.hasPacking()) error(memberLoc, "member of block cannot have a packing layout qualifier", typeList[member].type->getFieldName().c_str(), ""); if (memberQualifier.hasLocation()) { const char* feature = "location on block member"; switch (currentBlockQualifier.storage) { #ifndef GLSLANG_WEB case EvqVaryingIn: case EvqVaryingOut: requireProfile(memberLoc, ECoreProfile | ECompatibilityProfile | EEsProfile, feature); profileRequires(memberLoc, ECoreProfile | ECompatibilityProfile, 440, E_GL_ARB_enhanced_layouts, feature); profileRequires(memberLoc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, feature); memberWithLocation = true; break; #endif default: error(memberLoc, "can only use in an in/out block", feature, ""); break; } } else memberWithoutLocation = true; // "The offset qualifier can only be used on block members of blocks declared with std140 or std430 layouts." // "The align qualifier can only be used on blocks or block members, and only for blocks declared with std140 or std430 layouts." if (memberQualifier.hasAlign() || memberQualifier.hasOffset()) { if (defaultQualification.layoutPacking != ElpStd140 && defaultQualification.layoutPacking != ElpStd430 && defaultQualification.layoutPacking != ElpScalar) error(memberLoc, "can only be used with std140, std430, or scalar layout packing", "offset/align", ""); } if (memberQualifier.isPerView()) { memberWithPerViewQualifier = true; } TQualifier newMemberQualification = defaultQualification; mergeQualifiers(memberLoc, newMemberQualification, memberQualifier, false); memberQualifier = newMemberQualification; } layoutMemberLocationArrayCheck(loc, memberWithLocation, arraySizes); #ifndef GLSLANG_WEB // Ensure that the block has an XfbBuffer assigned. This is needed // because if the block has a XfbOffset assigned, then it is // assumed that it has implicitly assigned the current global // XfbBuffer, and because it's members need to be assigned a // XfbOffset if they lack it. if (currentBlockQualifier.storage == EvqVaryingOut && globalOutputDefaults.hasXfbBuffer()) { if (!currentBlockQualifier.hasXfbBuffer() && currentBlockQualifier.hasXfbOffset()) currentBlockQualifier.layoutXfbBuffer = globalOutputDefaults.layoutXfbBuffer; } #endif // Process the members fixBlockLocations(loc, currentBlockQualifier, typeList, memberWithLocation, memberWithoutLocation); fixXfbOffsets(currentBlockQualifier, typeList); fixBlockUniformOffsets(currentBlockQualifier, typeList); fixBlockUniformLayoutMatrix(currentBlockQualifier, &typeList, nullptr); fixBlockUniformLayoutPacking(currentBlockQualifier, &typeList, nullptr); for (unsigned int member = 0; member < typeList.size(); ++member) layoutTypeCheck(typeList[member].loc, *typeList[member].type); #ifndef GLSLANG_WEB if (memberWithPerViewQualifier) { for (unsigned int member = 0; member < typeList.size(); ++member) { checkAndResizeMeshViewDim(typeList[member].loc, *typeList[member].type, /*isBlockMember*/ true); } } #endif // reverse merge, so that currentBlockQualifier now has all layout information // (can't use defaultQualification directly, it's missing other non-layout-default-class qualifiers) mergeObjectLayoutQualifiers(currentBlockQualifier, defaultQualification, true); // // Build and add the interface block as a new type named 'blockName' // TType blockType(&typeList, *blockName, currentBlockQualifier); if (arraySizes != nullptr) blockType.transferArraySizes(arraySizes); #ifndef GLSLANG_WEB if (arraySizes == nullptr) ioArrayCheck(loc, blockType, instanceName ? *instanceName : *blockName); if (currentBlockQualifier.hasBufferReference()) { if (currentBlockQualifier.storage != EvqBuffer) error(loc, "can only be used with buffer", "buffer_reference", ""); // Create the block reference type. If it was forward-declared, detect that // as a referent struct type with no members. Replace the referent type with // blockType. TType blockNameType(EbtReference, blockType, *blockName); TVariable* blockNameVar = new TVariable(blockName, blockNameType, true); if (! symbolTable.insert(*blockNameVar)) { TSymbol* existingName = symbolTable.find(*blockName); if (existingName->getType().isReference() && existingName->getType().getReferentType()->getStruct() && existingName->getType().getReferentType()->getStruct()->size() == 0 && existingName->getType().getQualifier().storage == blockType.getQualifier().storage) { existingName->getType().getReferentType()->deepCopy(blockType); } else { error(loc, "block name cannot be redefined", blockName->c_str(), ""); } } if (!instanceName) { return; } } else #endif { // // Don't make a user-defined type out of block name; that will cause an error // if the same block name gets reused in a different interface. // // "Block names have no other use within a shader // beyond interface matching; it is a compile-time error to use a block name at global scope for anything // other than as a block name (e.g., use of a block name for a global variable name or function name is // currently reserved)." // // Use the symbol table to prevent normal reuse of the block's name, as a variable entry, // whose type is EbtBlock, but without all the structure; that will come from the type // the instances point to. // TType blockNameType(EbtBlock, blockType.getQualifier().storage); TVariable* blockNameVar = new TVariable(blockName, blockNameType); if (! symbolTable.insert(*blockNameVar)) { TSymbol* existingName = symbolTable.find(*blockName); if (existingName->getType().getBasicType() == EbtBlock) { if (existingName->getType().getQualifier().storage == blockType.getQualifier().storage) { error(loc, "Cannot reuse block name within the same interface:", blockName->c_str(), blockType.getStorageQualifierString()); return; } } else { error(loc, "block name cannot redefine a non-block name", blockName->c_str(), ""); return; } } } // Add the variable, as anonymous or named instanceName. // Make an anonymous variable if no name was provided. if (! instanceName) instanceName = NewPoolTString(""); TVariable& variable = *new TVariable(instanceName, blockType); if (! symbolTable.insert(variable)) { if (*instanceName == "") error(loc, "nameless block contains a member that already has a name at global scope", blockName->c_str(), ""); else error(loc, "block instance name redefinition", variable.getName().c_str(), ""); return; } // Check for general layout qualifier errors layoutObjectCheck(loc, variable); #ifndef GLSLANG_WEB // fix up if (isIoResizeArray(blockType)) { ioArraySymbolResizeList.push_back(&variable); checkIoArraysConsistency(loc, true); } else fixIoArraySize(loc, variable.getWritableType()); #endif // Save it in the AST for linker use. trackLinkage(variable); } // Do all block-declaration checking regarding the combination of in/out/uniform/buffer // with a particular stage. void TParseContext::blockStageIoCheck(const TSourceLoc& loc, const TQualifier& qualifier) { const char *extsrt[2] = { E_GL_NV_ray_tracing, E_GL_EXT_ray_tracing }; switch (qualifier.storage) { case EvqUniform: profileRequires(loc, EEsProfile, 300, nullptr, "uniform block"); profileRequires(loc, ENoProfile, 140, E_GL_ARB_uniform_buffer_object, "uniform block"); if (currentBlockQualifier.layoutPacking == ElpStd430 && ! currentBlockQualifier.isPushConstant()) requireExtensions(loc, 1, &E_GL_EXT_scalar_block_layout, "std430 requires the buffer storage qualifier"); break; case EvqBuffer: requireProfile(loc, EEsProfile | ECoreProfile | ECompatibilityProfile, "buffer block"); profileRequires(loc, ECoreProfile | ECompatibilityProfile, 430, E_GL_ARB_shader_storage_buffer_object, "buffer block"); profileRequires(loc, EEsProfile, 310, nullptr, "buffer block"); break; case EvqVaryingIn: profileRequires(loc, ~EEsProfile, 150, E_GL_ARB_separate_shader_objects, "input block"); // It is a compile-time error to have an input block in a vertex shader or an output block in a fragment shader // "Compute shaders do not permit user-defined input variables..." requireStage(loc, (EShLanguageMask)(EShLangTessControlMask|EShLangTessEvaluationMask|EShLangGeometryMask| EShLangFragmentMask|EShLangMeshNVMask), "input block"); if (language == EShLangFragment) { profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, "fragment input block"); } else if (language == EShLangMeshNV && ! qualifier.isTaskMemory()) { error(loc, "input blocks cannot be used in a mesh shader", "out", ""); } break; case EvqVaryingOut: profileRequires(loc, ~EEsProfile, 150, E_GL_ARB_separate_shader_objects, "output block"); requireStage(loc, (EShLanguageMask)(EShLangVertexMask|EShLangTessControlMask|EShLangTessEvaluationMask| EShLangGeometryMask|EShLangMeshNVMask|EShLangTaskNVMask), "output block"); // ES 310 can have a block before shader_io is turned on, so skip this test for built-ins if (language == EShLangVertex && ! parsingBuiltins) { profileRequires(loc, EEsProfile, 320, Num_AEP_shader_io_blocks, AEP_shader_io_blocks, "vertex output block"); } else if (language == EShLangMeshNV && qualifier.isTaskMemory()) { error(loc, "can only use on input blocks in mesh shader", "taskNV", ""); } else if (language == EShLangTaskNV && ! qualifier.isTaskMemory()) { error(loc, "output blocks cannot be used in a task shader", "out", ""); } break; #ifndef GLSLANG_WEB case EvqPayload: profileRequires(loc, ~EEsProfile, 460, 2, extsrt, "rayPayloadNV block"); requireStage(loc, (EShLanguageMask)(EShLangRayGenMask | EShLangAnyHitMask | EShLangClosestHitMask | EShLangMissMask), "rayPayloadNV block"); break; case EvqPayloadIn: profileRequires(loc, ~EEsProfile, 460, 2, extsrt, "rayPayloadInNV block"); requireStage(loc, (EShLanguageMask)(EShLangAnyHitMask | EShLangClosestHitMask | EShLangMissMask), "rayPayloadInNV block"); break; case EvqHitAttr: profileRequires(loc, ~EEsProfile, 460, 2, extsrt, "hitAttributeNV block"); requireStage(loc, (EShLanguageMask)(EShLangIntersectMask | EShLangAnyHitMask | EShLangClosestHitMask), "hitAttributeNV block"); break; case EvqCallableData: profileRequires(loc, ~EEsProfile, 460, 2, extsrt, "callableDataNV block"); requireStage(loc, (EShLanguageMask)(EShLangRayGenMask | EShLangClosestHitMask | EShLangMissMask | EShLangCallableMask), "callableDataNV block"); break; case EvqCallableDataIn: profileRequires(loc, ~EEsProfile, 460, 2, extsrt, "callableDataInNV block"); requireStage(loc, (EShLanguageMask)(EShLangCallableMask), "callableDataInNV block"); break; #endif default: error(loc, "only uniform, buffer, in, or out blocks are supported", blockName->c_str(), ""); break; } } // Do all block-declaration checking regarding its qualifiers. void TParseContext::blockQualifierCheck(const TSourceLoc& loc, const TQualifier& qualifier, bool /*instanceName*/) { // The 4.5 specification says: // // interface-block : // layout-qualifieropt interface-qualifier block-name { member-list } instance-nameopt ; // // interface-qualifier : // in // out // patch in // patch out // uniform // buffer // // Note however memory qualifiers aren't included, yet the specification also says // // "...memory qualifiers may also be used in the declaration of shader storage blocks..." if (qualifier.isInterpolation()) error(loc, "cannot use interpolation qualifiers on an interface block", "flat/smooth/noperspective", ""); if (qualifier.centroid) error(loc, "cannot use centroid qualifier on an interface block", "centroid", ""); if (qualifier.isSample()) error(loc, "cannot use sample qualifier on an interface block", "sample", ""); if (qualifier.invariant) error(loc, "cannot use invariant qualifier on an interface block", "invariant", ""); if (qualifier.isPushConstant()) intermediate.addPushConstantCount(); if (qualifier.isShaderRecord()) intermediate.addShaderRecordCount(); if (qualifier.isTaskMemory()) intermediate.addTaskNVCount(); } // // "For a block, this process applies to the entire block, or until the first member // is reached that has a location layout qualifier. When a block member is declared with a location // qualifier, its location comes from that qualifier: The member's location qualifier overrides the block-level // declaration. Subsequent members are again assigned consecutive locations, based on the newest location, // until the next member declared with a location qualifier. The values used for locations do not have to be // declared in increasing order." void TParseContext::fixBlockLocations(const TSourceLoc& loc, TQualifier& qualifier, TTypeList& typeList, bool memberWithLocation, bool memberWithoutLocation) { // "If a block has no block-level location layout qualifier, it is required that either all or none of its members // have a location layout qualifier, or a compile-time error results." if (! qualifier.hasLocation() && memberWithLocation && memberWithoutLocation) error(loc, "either the block needs a location, or all members need a location, or no members have a location", "location", ""); else { if (memberWithLocation) { // remove any block-level location and make it per *every* member int nextLocation = 0; // by the rule above, initial value is not relevant if (qualifier.hasAnyLocation()) { nextLocation = qualifier.layoutLocation; qualifier.layoutLocation = TQualifier::layoutLocationEnd; if (qualifier.hasComponent()) { // "It is a compile-time error to apply the *component* qualifier to a ... block" error(loc, "cannot apply to a block", "component", ""); } if (qualifier.hasIndex()) { error(loc, "cannot apply to a block", "index", ""); } } for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; if (! memberQualifier.hasLocation()) { if (nextLocation >= (int)TQualifier::layoutLocationEnd) error(memberLoc, "location is too large", "location", ""); memberQualifier.layoutLocation = nextLocation; memberQualifier.layoutComponent = TQualifier::layoutComponentEnd; } nextLocation = memberQualifier.layoutLocation + intermediate.computeTypeLocationSize( *typeList[member].type, language); } } } } void TParseContext::fixXfbOffsets(TQualifier& qualifier, TTypeList& typeList) { #ifndef GLSLANG_WEB // "If a block is qualified with xfb_offset, all its // members are assigned transform feedback buffer offsets. If a block is not qualified with xfb_offset, any // members of that block not qualified with an xfb_offset will not be assigned transform feedback buffer // offsets." if (! qualifier.hasXfbBuffer() || ! qualifier.hasXfbOffset()) return; int nextOffset = qualifier.layoutXfbOffset; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); bool contains64BitType = false; bool contains32BitType = false; bool contains16BitType = false; int memberSize = intermediate.computeTypeXfbSize(*typeList[member].type, contains64BitType, contains32BitType, contains16BitType); // see if we need to auto-assign an offset to this member if (! memberQualifier.hasXfbOffset()) { // "if applied to an aggregate containing a double or 64-bit integer, the offset must also be a multiple of 8" if (contains64BitType) RoundToPow2(nextOffset, 8); else if (contains32BitType) RoundToPow2(nextOffset, 4); else if (contains16BitType) RoundToPow2(nextOffset, 2); memberQualifier.layoutXfbOffset = nextOffset; } else nextOffset = memberQualifier.layoutXfbOffset; nextOffset += memberSize; } // The above gave all block members an offset, so we can take it off the block now, // which will avoid double counting the offset usage. qualifier.layoutXfbOffset = TQualifier::layoutXfbOffsetEnd; #endif } // Calculate and save the offset of each block member, using the recursively // defined block offset rules and the user-provided offset and align. // // Also, compute and save the total size of the block. For the block's size, arrayness // is not taken into account, as each element is backed by a separate buffer. // void TParseContext::fixBlockUniformOffsets(TQualifier& qualifier, TTypeList& typeList) { if (!qualifier.isUniformOrBuffer() && !qualifier.isTaskMemory()) return; if (qualifier.layoutPacking != ElpStd140 && qualifier.layoutPacking != ElpStd430 && qualifier.layoutPacking != ElpScalar) return; int offset = 0; int memberSize; for (unsigned int member = 0; member < typeList.size(); ++member) { TQualifier& memberQualifier = typeList[member].type->getQualifier(); const TSourceLoc& memberLoc = typeList[member].loc; // "When align is applied to an array, it effects only the start of the array, not the array's internal stride." // modify just the children's view of matrix layout, if there is one for this member TLayoutMatrix subMatrixLayout = typeList[member].type->getQualifier().layoutMatrix; int dummyStride; int memberAlignment = intermediate.getMemberAlignment(*typeList[member].type, memberSize, dummyStride, qualifier.layoutPacking, subMatrixLayout != ElmNone ? subMatrixLayout == ElmRowMajor : qualifier.layoutMatrix == ElmRowMajor); if (memberQualifier.hasOffset()) { // "The specified offset must be a multiple // of the base alignment of the type of the block member it qualifies, or a compile-time error results." if (! IsMultipleOfPow2(memberQualifier.layoutOffset, memberAlignment)) error(memberLoc, "must be a multiple of the member's alignment", "offset", ""); // GLSL: "It is a compile-time error to specify an offset that is smaller than the offset of the previous // member in the block or that lies within the previous member of the block" if (spvVersion.spv == 0) { if (memberQualifier.layoutOffset < offset) error(memberLoc, "cannot lie in previous members", "offset", ""); // "The offset qualifier forces the qualified member to start at or after the specified // integral-constant expression, which will be its byte offset from the beginning of the buffer. // "The actual offset of a member is computed as // follows: If offset was declared, start with that offset, otherwise start with the next available offset." offset = std::max(offset, memberQualifier.layoutOffset); } else { // TODO: Vulkan: "It is a compile-time error to have any offset, explicit or assigned, // that lies within another member of the block." offset = memberQualifier.layoutOffset; } } // "The actual alignment of a member will be the greater of the specified align alignment and the standard // (e.g., std140) base alignment for the member's type." if (memberQualifier.hasAlign()) memberAlignment = std::max(memberAlignment, memberQualifier.layoutAlign); // "If the resulting offset is not a multiple of the actual alignment, // increase it to the first offset that is a multiple of // the actual alignment." RoundToPow2(offset, memberAlignment); typeList[member].type->getQualifier().layoutOffset = offset; offset += memberSize; } } // // Spread LayoutMatrix to uniform block member, if a uniform block member is a struct, // we need spread LayoutMatrix to this struct member too. and keep this rule for recursive. // void TParseContext::fixBlockUniformLayoutMatrix(TQualifier& qualifier, TTypeList* originTypeList, TTypeList* tmpTypeList) { assert(tmpTypeList == nullptr || originTypeList->size() == tmpTypeList->size()); for (unsigned int member = 0; member < originTypeList->size(); ++member) { if (qualifier.layoutPacking != ElpNone) { if (tmpTypeList == nullptr) { if (((*originTypeList)[member].type->isMatrix() || (*originTypeList)[member].type->getBasicType() == EbtStruct) && (*originTypeList)[member].type->getQualifier().layoutMatrix == ElmNone) { (*originTypeList)[member].type->getQualifier().layoutMatrix = qualifier.layoutMatrix; } } else { if (((*tmpTypeList)[member].type->isMatrix() || (*tmpTypeList)[member].type->getBasicType() == EbtStruct) && (*tmpTypeList)[member].type->getQualifier().layoutMatrix == ElmNone) { (*tmpTypeList)[member].type->getQualifier().layoutMatrix = qualifier.layoutMatrix; } } } if ((*originTypeList)[member].type->getBasicType() == EbtStruct) { TQualifier* memberQualifier = nullptr; // block member can be declare a matrix style, so it should be update to the member's style if ((*originTypeList)[member].type->getQualifier().layoutMatrix == ElmNone) { memberQualifier = &qualifier; } else { memberQualifier = &((*originTypeList)[member].type->getQualifier()); } const TType* tmpType = tmpTypeList == nullptr ? (*originTypeList)[member].type->clone() : (*tmpTypeList)[member].type; fixBlockUniformLayoutMatrix(*memberQualifier, (*originTypeList)[member].type->getWritableStruct(), tmpType->getWritableStruct()); const TTypeList* structure = recordStructCopy(matrixFixRecord, (*originTypeList)[member].type, tmpType); if (tmpTypeList == nullptr) { (*originTypeList)[member].type->setStruct(const_cast(structure)); } if (tmpTypeList != nullptr) { (*tmpTypeList)[member].type->setStruct(const_cast(structure)); } } } } // // Spread LayoutPacking to block member, if a block member is a struct, we need spread LayoutPacking to // this struct member too. and keep this rule for recursive. // void TParseContext::fixBlockUniformLayoutPacking(TQualifier& qualifier, TTypeList* originTypeList, TTypeList* tmpTypeList) { assert(tmpTypeList == nullptr || originTypeList->size() == tmpTypeList->size()); for (unsigned int member = 0; member < originTypeList->size(); ++member) { if (qualifier.layoutPacking != ElpNone) { if (tmpTypeList == nullptr) { if ((*originTypeList)[member].type->getQualifier().layoutPacking == ElpNone) { (*originTypeList)[member].type->getQualifier().layoutPacking = qualifier.layoutPacking; } } else { if ((*tmpTypeList)[member].type->getQualifier().layoutPacking == ElpNone) { (*tmpTypeList)[member].type->getQualifier().layoutPacking = qualifier.layoutPacking; } } } if ((*originTypeList)[member].type->getBasicType() == EbtStruct) { // Deep copy the type in pool. // Because, struct use in different block may have different layout qualifier. // We have to new a object to distinguish between them. const TType* tmpType = tmpTypeList == nullptr ? (*originTypeList)[member].type->clone() : (*tmpTypeList)[member].type; fixBlockUniformLayoutPacking(qualifier, (*originTypeList)[member].type->getWritableStruct(), tmpType->getWritableStruct()); const TTypeList* structure = recordStructCopy(packingFixRecord, (*originTypeList)[member].type, tmpType); if (tmpTypeList == nullptr) { (*originTypeList)[member].type->setStruct(const_cast(structure)); } if (tmpTypeList != nullptr) { (*tmpTypeList)[member].type->setStruct(const_cast(structure)); } } } } // For an identifier that is already declared, add more qualification to it. void TParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, const TString& identifier) { TSymbol* symbol = symbolTable.find(identifier); // A forward declaration of a block reference looks to the grammar like adding // a qualifier to an existing symbol. Detect this and create the block reference // type with an empty type list, which will be filled in later in // TParseContext::declareBlock. if (!symbol && qualifier.hasBufferReference()) { TTypeList typeList; TType blockType(&typeList, identifier, qualifier);; TType blockNameType(EbtReference, blockType, identifier); TVariable* blockNameVar = new TVariable(&identifier, blockNameType, true); if (! symbolTable.insert(*blockNameVar)) { error(loc, "block name cannot redefine a non-block name", blockName->c_str(), ""); } return; } if (! symbol) { error(loc, "identifier not previously declared", identifier.c_str(), ""); return; } if (symbol->getAsFunction()) { error(loc, "cannot re-qualify a function name", identifier.c_str(), ""); return; } if (qualifier.isAuxiliary() || qualifier.isMemory() || qualifier.isInterpolation() || qualifier.hasLayout() || qualifier.storage != EvqTemporary || qualifier.precision != EpqNone) { error(loc, "cannot add storage, auxiliary, memory, interpolation, layout, or precision qualifier to an existing variable", identifier.c_str(), ""); return; } // For read-only built-ins, add a new symbol for holding the modified qualifier. // This will bring up an entire block, if a block type has to be modified (e.g., gl_Position inside a block) if (symbol->isReadOnly()) symbol = symbolTable.copyUp(symbol); if (qualifier.invariant) { if (intermediate.inIoAccessed(identifier)) error(loc, "cannot change qualification after use", "invariant", ""); symbol->getWritableType().getQualifier().invariant = true; invariantCheck(loc, symbol->getType().getQualifier()); } else if (qualifier.isNoContraction()) { if (intermediate.inIoAccessed(identifier)) error(loc, "cannot change qualification after use", "precise", ""); symbol->getWritableType().getQualifier().setNoContraction(); } else if (qualifier.specConstant) { symbol->getWritableType().getQualifier().makeSpecConstant(); if (qualifier.hasSpecConstantId()) symbol->getWritableType().getQualifier().layoutSpecConstantId = qualifier.layoutSpecConstantId; } else warn(loc, "unknown requalification", "", ""); } void TParseContext::addQualifierToExisting(const TSourceLoc& loc, TQualifier qualifier, TIdentifierList& identifiers) { for (unsigned int i = 0; i < identifiers.size(); ++i) addQualifierToExisting(loc, qualifier, *identifiers[i]); } // Make sure 'invariant' isn't being applied to a non-allowed object. void TParseContext::invariantCheck(const TSourceLoc& loc, const TQualifier& qualifier) { if (! qualifier.invariant) return; bool pipeOut = qualifier.isPipeOutput(); bool pipeIn = qualifier.isPipeInput(); if (version >= 300 || (!isEsProfile() && version >= 420)) { if (! pipeOut) error(loc, "can only apply to an output", "invariant", ""); } else { if ((language == EShLangVertex && pipeIn) || (! pipeOut && ! pipeIn)) error(loc, "can only apply to an output, or to an input in a non-vertex stage\n", "invariant", ""); } } // // Updating default qualifier for the case of a declaration with just a qualifier, // no type, block, or identifier. // void TParseContext::updateStandaloneQualifierDefaults(const TSourceLoc& loc, const TPublicType& publicType) { #ifndef GLSLANG_WEB if (publicType.shaderQualifiers.vertices != TQualifier::layoutNotSet) { assert(language == EShLangTessControl || language == EShLangGeometry || language == EShLangMeshNV); const char* id = (language == EShLangTessControl) ? "vertices" : "max_vertices"; if (publicType.qualifier.storage != EvqVaryingOut) error(loc, "can only apply to 'out'", id, ""); if (! intermediate.setVertices(publicType.shaderQualifiers.vertices)) error(loc, "cannot change previously set layout value", id, ""); if (language == EShLangTessControl) checkIoArraysConsistency(loc); } if (publicType.shaderQualifiers.primitives != TQualifier::layoutNotSet) { assert(language == EShLangMeshNV); const char* id = "max_primitives"; if (publicType.qualifier.storage != EvqVaryingOut) error(loc, "can only apply to 'out'", id, ""); if (! intermediate.setPrimitives(publicType.shaderQualifiers.primitives)) error(loc, "cannot change previously set layout value", id, ""); } if (publicType.shaderQualifiers.invocations != TQualifier::layoutNotSet) { if (publicType.qualifier.storage != EvqVaryingIn) error(loc, "can only apply to 'in'", "invocations", ""); if (! intermediate.setInvocations(publicType.shaderQualifiers.invocations)) error(loc, "cannot change previously set layout value", "invocations", ""); } if (publicType.shaderQualifiers.geometry != ElgNone) { if (publicType.qualifier.storage == EvqVaryingIn) { switch (publicType.shaderQualifiers.geometry) { case ElgPoints: case ElgLines: case ElgLinesAdjacency: case ElgTriangles: case ElgTrianglesAdjacency: case ElgQuads: case ElgIsolines: if (language == EShLangMeshNV) { error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); break; } if (intermediate.setInputPrimitive(publicType.shaderQualifiers.geometry)) { if (language == EShLangGeometry) checkIoArraysConsistency(loc); } else error(loc, "cannot change previously set input primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); break; default: error(loc, "cannot apply to input", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); } } else if (publicType.qualifier.storage == EvqVaryingOut) { switch (publicType.shaderQualifiers.geometry) { case ElgLines: case ElgTriangles: if (language != EShLangMeshNV) { error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); break; } // Fall through case ElgPoints: case ElgLineStrip: case ElgTriangleStrip: if (! intermediate.setOutputPrimitive(publicType.shaderQualifiers.geometry)) error(loc, "cannot change previously set output primitive", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); break; default: error(loc, "cannot apply to 'out'", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), ""); } } else error(loc, "cannot apply to:", TQualifier::getGeometryString(publicType.shaderQualifiers.geometry), GetStorageQualifierString(publicType.qualifier.storage)); } if (publicType.shaderQualifiers.spacing != EvsNone) { if (publicType.qualifier.storage == EvqVaryingIn) { if (! intermediate.setVertexSpacing(publicType.shaderQualifiers.spacing)) error(loc, "cannot change previously set vertex spacing", TQualifier::getVertexSpacingString(publicType.shaderQualifiers.spacing), ""); } else error(loc, "can only apply to 'in'", TQualifier::getVertexSpacingString(publicType.shaderQualifiers.spacing), ""); } if (publicType.shaderQualifiers.order != EvoNone) { if (publicType.qualifier.storage == EvqVaryingIn) { if (! intermediate.setVertexOrder(publicType.shaderQualifiers.order)) error(loc, "cannot change previously set vertex order", TQualifier::getVertexOrderString(publicType.shaderQualifiers.order), ""); } else error(loc, "can only apply to 'in'", TQualifier::getVertexOrderString(publicType.shaderQualifiers.order), ""); } if (publicType.shaderQualifiers.pointMode) { if (publicType.qualifier.storage == EvqVaryingIn) intermediate.setPointMode(); else error(loc, "can only apply to 'in'", "point_mode", ""); } #endif for (int i = 0; i < 3; ++i) { if (publicType.shaderQualifiers.localSizeNotDefault[i]) { if (publicType.qualifier.storage == EvqVaryingIn) { if (! intermediate.setLocalSize(i, publicType.shaderQualifiers.localSize[i])) error(loc, "cannot change previously set size", "local_size", ""); else { int max = 0; if (language == EShLangCompute) { switch (i) { case 0: max = resources.maxComputeWorkGroupSizeX; break; case 1: max = resources.maxComputeWorkGroupSizeY; break; case 2: max = resources.maxComputeWorkGroupSizeZ; break; default: break; } if (intermediate.getLocalSize(i) > (unsigned int)max) error(loc, "too large; see gl_MaxComputeWorkGroupSize", "local_size", ""); } #ifndef GLSLANG_WEB else if (language == EShLangMeshNV) { switch (i) { case 0: max = resources.maxMeshWorkGroupSizeX_NV; break; case 1: max = resources.maxMeshWorkGroupSizeY_NV; break; case 2: max = resources.maxMeshWorkGroupSizeZ_NV; break; default: break; } if (intermediate.getLocalSize(i) > (unsigned int)max) error(loc, "too large; see gl_MaxMeshWorkGroupSizeNV", "local_size", ""); } else if (language == EShLangTaskNV) { switch (i) { case 0: max = resources.maxTaskWorkGroupSizeX_NV; break; case 1: max = resources.maxTaskWorkGroupSizeY_NV; break; case 2: max = resources.maxTaskWorkGroupSizeZ_NV; break; default: break; } if (intermediate.getLocalSize(i) > (unsigned int)max) error(loc, "too large; see gl_MaxTaskWorkGroupSizeNV", "local_size", ""); } #endif else { assert(0); } // Fix the existing constant gl_WorkGroupSize with this new information. TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); if (workGroupSize != nullptr) workGroupSize->getWritableConstArray()[i].setUConst(intermediate.getLocalSize(i)); } } else error(loc, "can only apply to 'in'", "local_size", ""); } if (publicType.shaderQualifiers.localSizeSpecId[i] != TQualifier::layoutNotSet) { if (publicType.qualifier.storage == EvqVaryingIn) { if (! intermediate.setLocalSizeSpecId(i, publicType.shaderQualifiers.localSizeSpecId[i])) error(loc, "cannot change previously set size", "local_size", ""); } else error(loc, "can only apply to 'in'", "local_size id", ""); // Set the workgroup built-in variable as a specialization constant TVariable* workGroupSize = getEditableVariable("gl_WorkGroupSize"); if (workGroupSize != nullptr) workGroupSize->getWritableType().getQualifier().specConstant = true; } } #ifndef GLSLANG_WEB if (publicType.shaderQualifiers.earlyFragmentTests) { if (publicType.qualifier.storage == EvqVaryingIn) intermediate.setEarlyFragmentTests(); else error(loc, "can only apply to 'in'", "early_fragment_tests", ""); } if (publicType.shaderQualifiers.postDepthCoverage) { if (publicType.qualifier.storage == EvqVaryingIn) intermediate.setPostDepthCoverage(); else error(loc, "can only apply to 'in'", "post_coverage_coverage", ""); } if (publicType.shaderQualifiers.hasBlendEquation()) { if (publicType.qualifier.storage != EvqVaryingOut) error(loc, "can only apply to 'out'", "blend equation", ""); } if (publicType.shaderQualifiers.interlockOrdering) { if (publicType.qualifier.storage == EvqVaryingIn) { if (!intermediate.setInterlockOrdering(publicType.shaderQualifiers.interlockOrdering)) error(loc, "cannot change previously set fragment shader interlock ordering", TQualifier::getInterlockOrderingString(publicType.shaderQualifiers.interlockOrdering), ""); } else error(loc, "can only apply to 'in'", TQualifier::getInterlockOrderingString(publicType.shaderQualifiers.interlockOrdering), ""); } if (publicType.shaderQualifiers.layoutDerivativeGroupQuads && publicType.shaderQualifiers.layoutDerivativeGroupLinear) { error(loc, "cannot be both specified", "derivative_group_quadsNV and derivative_group_linearNV", ""); } if (publicType.shaderQualifiers.layoutDerivativeGroupQuads) { if (publicType.qualifier.storage == EvqVaryingIn) { if ((intermediate.getLocalSize(0) & 1) || (intermediate.getLocalSize(1) & 1)) error(loc, "requires local_size_x and local_size_y to be multiple of two", "derivative_group_quadsNV", ""); else intermediate.setLayoutDerivativeMode(LayoutDerivativeGroupQuads); } else error(loc, "can only apply to 'in'", "derivative_group_quadsNV", ""); } if (publicType.shaderQualifiers.layoutDerivativeGroupLinear) { if (publicType.qualifier.storage == EvqVaryingIn) { if((intermediate.getLocalSize(0) * intermediate.getLocalSize(1) * intermediate.getLocalSize(2)) % 4 != 0) error(loc, "requires total group size to be multiple of four", "derivative_group_linearNV", ""); else intermediate.setLayoutDerivativeMode(LayoutDerivativeGroupLinear); } else error(loc, "can only apply to 'in'", "derivative_group_linearNV", ""); } // Check mesh out array sizes, once all the necessary out qualifiers are defined. if ((language == EShLangMeshNV) && (intermediate.getVertices() != TQualifier::layoutNotSet) && (intermediate.getPrimitives() != TQualifier::layoutNotSet) && (intermediate.getOutputPrimitive() != ElgNone)) { checkIoArraysConsistency(loc); } if (publicType.shaderQualifiers.layoutPrimitiveCulling) { if (publicType.qualifier.storage != EvqTemporary) error(loc, "layout qualifier can not have storage qualifiers", "primitive_culling","", ""); else { intermediate.setLayoutPrimitiveCulling(); } // Exit early as further checks are not valid return; } #endif const TQualifier& qualifier = publicType.qualifier; if (qualifier.isAuxiliary() || qualifier.isMemory() || qualifier.isInterpolation() || qualifier.precision != EpqNone) error(loc, "cannot use auxiliary, memory, interpolation, or precision qualifier in a default qualifier declaration (declaration with no type)", "qualifier", ""); // "The offset qualifier can only be used on block members of blocks..." // "The align qualifier can only be used on blocks or block members..." if (qualifier.hasOffset() || qualifier.hasAlign()) error(loc, "cannot use offset or align qualifiers in a default qualifier declaration (declaration with no type)", "layout qualifier", ""); layoutQualifierCheck(loc, qualifier); switch (qualifier.storage) { case EvqUniform: if (qualifier.hasMatrix()) globalUniformDefaults.layoutMatrix = qualifier.layoutMatrix; if (qualifier.hasPacking()) globalUniformDefaults.layoutPacking = qualifier.layoutPacking; break; case EvqBuffer: if (qualifier.hasMatrix()) globalBufferDefaults.layoutMatrix = qualifier.layoutMatrix; if (qualifier.hasPacking()) globalBufferDefaults.layoutPacking = qualifier.layoutPacking; break; case EvqVaryingIn: break; case EvqVaryingOut: #ifndef GLSLANG_WEB if (qualifier.hasStream()) globalOutputDefaults.layoutStream = qualifier.layoutStream; if (qualifier.hasXfbBuffer()) globalOutputDefaults.layoutXfbBuffer = qualifier.layoutXfbBuffer; if (globalOutputDefaults.hasXfbBuffer() && qualifier.hasXfbStride()) { if (! intermediate.setXfbBufferStride(globalOutputDefaults.layoutXfbBuffer, qualifier.layoutXfbStride)) error(loc, "all stride settings must match for xfb buffer", "xfb_stride", "%d", qualifier.layoutXfbBuffer); } #endif break; default: error(loc, "default qualifier requires 'uniform', 'buffer', 'in', or 'out' storage qualification", "", ""); return; } if (qualifier.hasBinding()) error(loc, "cannot declare a default, include a type or full declaration", "binding", ""); if (qualifier.hasAnyLocation()) error(loc, "cannot declare a default, use a full declaration", "location/component/index", ""); if (qualifier.hasXfbOffset()) error(loc, "cannot declare a default, use a full declaration", "xfb_offset", ""); if (qualifier.isPushConstant()) error(loc, "cannot declare a default, can only be used on a block", "push_constant", ""); if (qualifier.hasBufferReference()) error(loc, "cannot declare a default, can only be used on a block", "buffer_reference", ""); if (qualifier.hasSpecConstantId()) error(loc, "cannot declare a default, can only be used on a scalar", "constant_id", ""); if (qualifier.isShaderRecord()) error(loc, "cannot declare a default, can only be used on a block", "shaderRecordNV", ""); } // // Take the sequence of statements that has been built up since the last case/default, // put it on the list of top-level nodes for the current (inner-most) switch statement, // and follow that by the case/default we are on now. (See switch topology comment on // TIntermSwitch.) // void TParseContext::wrapupSwitchSubsequence(TIntermAggregate* statements, TIntermNode* branchNode) { TIntermSequence* switchSequence = switchSequenceStack.back(); if (statements) { if (switchSequence->size() == 0) error(statements->getLoc(), "cannot have statements before first case/default label", "switch", ""); statements->setOperator(EOpSequence); switchSequence->push_back(statements); } if (branchNode) { // check all previous cases for the same label (or both are 'default') for (unsigned int s = 0; s < switchSequence->size(); ++s) { TIntermBranch* prevBranch = (*switchSequence)[s]->getAsBranchNode(); if (prevBranch) { TIntermTyped* prevExpression = prevBranch->getExpression(); TIntermTyped* newExpression = branchNode->getAsBranchNode()->getExpression(); if (prevExpression == nullptr && newExpression == nullptr) error(branchNode->getLoc(), "duplicate label", "default", ""); else if (prevExpression != nullptr && newExpression != nullptr && prevExpression->getAsConstantUnion() && newExpression->getAsConstantUnion() && prevExpression->getAsConstantUnion()->getConstArray()[0].getIConst() == newExpression->getAsConstantUnion()->getConstArray()[0].getIConst()) error(branchNode->getLoc(), "duplicated value", "case", ""); } } switchSequence->push_back(branchNode); } } // // Turn the top-level node sequence built up of wrapupSwitchSubsequence9) // into a switch node. // TIntermNode* TParseContext::addSwitch(const TSourceLoc& loc, TIntermTyped* expression, TIntermAggregate* lastStatements) { profileRequires(loc, EEsProfile, 300, nullptr, "switch statements"); profileRequires(loc, ENoProfile, 130, nullptr, "switch statements"); wrapupSwitchSubsequence(lastStatements, nullptr); if (expression == nullptr || (expression->getBasicType() != EbtInt && expression->getBasicType() != EbtUint) || expression->getType().isArray() || expression->getType().isMatrix() || expression->getType().isVector()) error(loc, "condition must be a scalar integer expression", "switch", ""); // If there is nothing to do, drop the switch but still execute the expression TIntermSequence* switchSequence = switchSequenceStack.back(); if (switchSequence->size() == 0) return expression; if (lastStatements == nullptr) { // This was originally an ERRROR, because early versions of the specification said // "it is an error to have no statement between a label and the end of the switch statement." // The specifications were updated to remove this (being ill-defined what a "statement" was), // so, this became a warning. However, 3.0 tests still check for the error. if (isEsProfile() && version <= 300 && ! relaxedErrors()) error(loc, "last case/default label not followed by statements", "switch", ""); else warn(loc, "last case/default label not followed by statements", "switch", ""); // emulate a break for error recovery lastStatements = intermediate.makeAggregate(intermediate.addBranch(EOpBreak, loc)); lastStatements->setOperator(EOpSequence); switchSequence->push_back(lastStatements); } TIntermAggregate* body = new TIntermAggregate(EOpSequence); body->getSequence() = *switchSequenceStack.back(); body->setLoc(loc); TIntermSwitch* switchNode = new TIntermSwitch(expression, body); switchNode->setLoc(loc); return switchNode; } // // When a struct used in block, and has it's own layout packing, layout matrix, // record the origin structure of a struct to map, and Record the structure copy to the copy table, // const TTypeList* TParseContext::recordStructCopy(TStructRecord& record, const TType* originType, const TType* tmpType) { size_t memberCount = tmpType->getStruct()->size(); size_t originHash = 0, tmpHash = 0; std::hash hasher; for (size_t i = 0; i < memberCount; i++) { size_t originMemberHash = hasher(originType->getStruct()->at(i).type->getQualifier().layoutPacking + originType->getStruct()->at(i).type->getQualifier().layoutMatrix); size_t tmpMemberHash = hasher(tmpType->getStruct()->at(i).type->getQualifier().layoutPacking + tmpType->getStruct()->at(i).type->getQualifier().layoutMatrix); originHash = hasher((originHash ^ originMemberHash) << 1); tmpHash = hasher((tmpHash ^ tmpMemberHash) << 1); } const TTypeList* originStruct = originType->getStruct(); const TTypeList* tmpStruct = tmpType->getStruct(); if (originHash != tmpHash) { auto fixRecords = record.find(originStruct); if (fixRecords != record.end()) { auto fixRecord = fixRecords->second.find(tmpHash); if (fixRecord != fixRecords->second.end()) { return fixRecord->second; } else { record[originStruct][tmpHash] = tmpStruct; return tmpStruct; } } else { record[originStruct] = std::map(); record[originStruct][tmpHash] = tmpStruct; return tmpStruct; } } return originStruct; } } // end namespace glslang