// basisu_comp.cpp // Copyright (C) 2019 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_comp.h" #include "basisu_enc.h" #include #define BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN 0 #define DEBUG_CROP_TEXTURE_TO_64x64 (0) #define DEBUG_RESIZE_TEXTURE (0) #define DEBUG_EXTRACT_SINGLE_BLOCK (0) namespace basisu { basis_compressor::basis_compressor() : m_total_blocks(0), m_auto_global_sel_pal(false), m_basis_file_size(0), m_basis_bits_per_texel(0), m_any_source_image_has_alpha(false) { debug_printf("basis_compressor::basis_compressor\n"); } bool basis_compressor::init(const basis_compressor_params ¶ms) { debug_printf("basis_compressor::init\n"); m_params = params; if (m_params.m_debug) { debug_printf("basis_compressor::init:\n"); #define PRINT_BOOL_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); #define PRINT_INT_VALUE(v) debug_printf("%s: %i %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); #define PRINT_UINT_VALUE(v) debug_printf("%s: %u %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); #define PRINT_FLOAT_VALUE(v) debug_printf("%s: %f %u\n", BASISU_STRINGIZE2(v), static_cast(m_params.v), m_params.v.was_changed()); debug_printf("Has global selector codebook: %i\n", m_params.m_pSel_codebook != nullptr); debug_printf("Source images: %u, source filenames: %u, source alpha filenames: %i\n", (uint32_t)m_params.m_source_images.size(), (uint32_t)m_params.m_source_filenames.size(), (uint32_t)m_params.m_source_alpha_filenames.size()); PRINT_BOOL_VALUE(m_y_flip); PRINT_BOOL_VALUE(m_debug); PRINT_BOOL_VALUE(m_debug_images); PRINT_BOOL_VALUE(m_global_sel_pal); PRINT_BOOL_VALUE(m_auto_global_sel_pal); PRINT_BOOL_VALUE(m_compression_level); PRINT_BOOL_VALUE(m_no_hybrid_sel_cb); PRINT_BOOL_VALUE(m_perceptual); PRINT_BOOL_VALUE(m_no_endpoint_rdo); PRINT_BOOL_VALUE(m_no_selector_rdo); PRINT_BOOL_VALUE(m_read_source_images); PRINT_BOOL_VALUE(m_write_output_basis_files); PRINT_BOOL_VALUE(m_compute_stats); PRINT_BOOL_VALUE(m_check_for_alpha) PRINT_BOOL_VALUE(m_force_alpha) PRINT_BOOL_VALUE(m_seperate_rg_to_color_alpha); PRINT_BOOL_VALUE(m_multithreading); PRINT_BOOL_VALUE(m_disable_hierarchical_endpoint_codebooks); PRINT_FLOAT_VALUE(m_hybrid_sel_cb_quality_thresh); PRINT_INT_VALUE(m_global_pal_bits); PRINT_INT_VALUE(m_global_mod_bits); PRINT_FLOAT_VALUE(m_endpoint_rdo_thresh); PRINT_FLOAT_VALUE(m_selector_rdo_thresh); PRINT_BOOL_VALUE(m_mip_gen); PRINT_BOOL_VALUE(m_mip_renormalize); PRINT_BOOL_VALUE(m_mip_wrapping); PRINT_BOOL_VALUE(m_mip_srgb); PRINT_FLOAT_VALUE(m_mip_premultiplied); PRINT_FLOAT_VALUE(m_mip_scale); PRINT_INT_VALUE(m_mip_smallest_dimension); debug_printf("m_mip_filter: %s\n", m_params.m_mip_filter.c_str()); debug_printf("m_max_endpoint_clusters: %u\n", m_params.m_max_endpoint_clusters); debug_printf("m_max_selector_clusters: %u\n", m_params.m_max_selector_clusters); debug_printf("m_quality_level: %i\n", m_params.m_quality_level); debug_printf("m_tex_type: %u\n", m_params.m_tex_type); debug_printf("m_userdata0: 0x%X, m_userdata1: 0x%X\n", m_params.m_userdata0, m_params.m_userdata1); debug_printf("m_us_per_frame: %i (%f fps)\n", m_params.m_us_per_frame, m_params.m_us_per_frame ? 1.0f / (m_params.m_us_per_frame / 1000000.0f) : 0); #undef PRINT_BOOL_VALUE #undef PRINT_INT_VALUE #undef PRINT_UINT_VALUE #undef PRINT_FLOAT_VALUE } if ((m_params.m_read_source_images) && (!m_params.m_source_filenames.size())) { assert(0); return false; } return true; } basis_compressor::error_code basis_compressor::process() { debug_printf("basis_compressor::process\n"); if (!read_source_images()) return cECFailedReadingSourceImages; if (!validate_texture_type_constraints()) return cECFailedValidating; if (!process_frontend()) return cECFailedFrontEnd; if (!extract_frontend_texture_data()) return cECFailedFontendExtract; if (!process_backend()) return cECFailedBackend; if (!create_basis_file_and_transcode()) return cECFailedCreateBasisFile; if (!write_output_files_and_compute_stats()) return cECFailedWritingOutput; return cECSuccess; } bool basis_compressor::generate_mipmaps(const image &img, std::vector &mips, bool has_alpha) { debug_printf("basis_compressor::generate_mipmaps\n"); uint32_t total_levels = 1; uint32_t w = img.get_width(), h = img.get_height(); while (maximum(w, h) > (uint32_t)m_params.m_mip_smallest_dimension) { w = maximum(w >> 1U, 1U); h = maximum(h >> 1U, 1U); total_levels++; } #if BASISU_USE_STB_IMAGE_RESIZE_FOR_MIPMAP_GEN // Requires stb_image_resize stbir_filter filter = STBIR_FILTER_DEFAULT; if (m_params.m_mip_filter == "box") filter = STBIR_FILTER_BOX; else if (m_params.m_mip_filter == "triangle") filter = STBIR_FILTER_TRIANGLE; else if (m_params.m_mip_filter == "cubic") filter = STBIR_FILTER_CUBICBSPLINE; else if (m_params.m_mip_filter == "catmull") filter = STBIR_FILTER_CATMULLROM; else if (m_params.m_mip_filter == "mitchell") filter = STBIR_FILTER_MITCHELL; for (uint32_t level = 1; level < total_levels; level++) { const uint32_t level_width = maximum(1, img.get_width() >> level); const uint32_t level_height = maximum(1, img.get_height() >> level); image &level_img = *enlarge_vector(mips, 1); level_img.resize(level_width, level_height); int result = stbir_resize_uint8_generic( (const uint8_t *)img.get_ptr(), img.get_width(), img.get_height(), img.get_pitch() * sizeof(color_rgba), (uint8_t *)level_img.get_ptr(), level_img.get_width(), level_img.get_height(), level_img.get_pitch() * sizeof(color_rgba), has_alpha ? 4 : 3, has_alpha ? 3 : STBIR_ALPHA_CHANNEL_NONE, m_params.m_mip_premultiplied ? STBIR_FLAG_ALPHA_PREMULTIPLIED : 0, m_params.m_mip_wrapping ? STBIR_EDGE_WRAP : STBIR_EDGE_CLAMP, filter, m_params.m_mip_srgb ? STBIR_COLORSPACE_SRGB : STBIR_COLORSPACE_LINEAR, nullptr); if (result == 0) { error_printf("basis_compressor::generate_mipmaps: stbir_resize_uint8_generic() failed!\n"); return false; } if (m_params.m_mip_renormalize) level_img.renormalize_normal_map(); } #else for (uint32_t level = 1; level < total_levels; level++) { const uint32_t level_width = maximum(1, img.get_width() >> level); const uint32_t level_height = maximum(1, img.get_height() >> level); image &level_img = *enlarge_vector(mips, 1); level_img.resize(level_width, level_height); bool status = image_resample(img, level_img, m_params.m_mip_srgb, m_params.m_mip_filter.c_str(), m_params.m_mip_scale, m_params.m_mip_wrapping, 0, has_alpha ? 4 : 3); if (!status) { error_printf("basis_compressor::generate_mipmaps: image_resample() failed!\n"); return false; } if (m_params.m_mip_renormalize) level_img.renormalize_normal_map(); } #endif return true; } bool basis_compressor::read_source_images() { debug_printf("basis_compressor::read_source_images\n"); const uint32_t total_source_files = m_params.m_read_source_images ? (uint32_t)m_params.m_source_filenames.size() : (uint32_t)m_params.m_source_images.size(); if (!total_source_files) return false; m_stats.resize(0); m_slice_descs.resize(0); m_slice_images.resize(0); m_total_blocks = 0; uint32_t total_macroblocks = 0; m_any_source_image_has_alpha = false; std::vector source_images; std::vector source_filenames; // First load all source images, and determine if any have an alpha channel. for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++) { const char *pSource_filename = ""; image file_image; if (m_params.m_read_source_images) { pSource_filename = m_params.m_source_filenames[source_file_index].c_str(); // Load the source image if (!load_png(pSource_filename, file_image)) { error_printf("Failed reading source image: %s\n", pSource_filename); return false; } printf("Read source image \"%s\", %ux%u\n", pSource_filename, file_image.get_width(), file_image.get_height()); // Optionally load another image and put a grayscale version of it into the alpha channel. if ((source_file_index < m_params.m_source_alpha_filenames.size()) && (m_params.m_source_alpha_filenames[source_file_index].size())) { const char *pSource_alpha_image = m_params.m_source_alpha_filenames[source_file_index].c_str(); image alpha_data; if (!load_png(pSource_alpha_image, alpha_data)) { error_printf("Failed reading source image: %s\n", pSource_alpha_image); return false; } printf("Read source alpha image \"%s\", %ux%u\n", pSource_alpha_image, alpha_data.get_width(), alpha_data.get_height()); alpha_data.crop(file_image.get_width(), file_image.get_height()); for (uint32_t y = 0; y < file_image.get_height(); y++) for (uint32_t x = 0; x < file_image.get_width(); x++) file_image(x, y).a = (uint8_t)alpha_data(x, y).get_709_luma(); } } else { file_image = m_params.m_source_images[source_file_index]; } if (m_params.m_seperate_rg_to_color_alpha) { // Used for XY normal maps in RG - puts X in color, Y in alpha for (uint32_t y = 0; y < file_image.get_height(); y++) for (uint32_t x = 0; x < file_image.get_width(); x++) { const color_rgba &c = file_image(x, y); file_image(x, y).set_noclamp_rgba(c.r, c.r, c.r, c.g); } } bool has_alpha = false; if ((m_params.m_force_alpha) || (m_params.m_seperate_rg_to_color_alpha)) has_alpha = true; else if (!m_params.m_check_for_alpha) file_image.set_alpha(255); else if (file_image.has_alpha()) has_alpha = true; if (has_alpha) m_any_source_image_has_alpha = true; debug_printf("Source image index %u filename %s %ux%u has alpha: %u\n", source_file_index, pSource_filename, file_image.get_width(), file_image.get_height(), has_alpha); if (m_params.m_y_flip) file_image.flip_y(); #if DEBUG_EXTRACT_SINGLE_BLOCK image block_image(4, 4); const uint32_t block_x = 0; const uint32_t block_y = 0; block_image.blit(block_x * 4, block_y * 4, 4, 4, 0, 0, file_image, 0); file_image = block_image; #endif #if DEBUG_CROP_TEXTURE_TO_64x64 file_image.resize(64, 64); #endif #if DEBUG_RESIZE_TEXTURE image temp_img((file_image.get_width() + 1) / 2, (file_image.get_height() + 1) / 2); image_resample(file_image, temp_img, m_params.m_perceptual, "kaiser"); temp_img.swap(file_image); #endif if ((!file_image.get_width()) || (!file_image.get_height())) { error_printf("basis_compressor::read_source_images: Source image has a zero width and/or height!\n"); return false; } if ((file_image.get_width() > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION) || (file_image.get_height() > BASISU_MAX_SUPPORTED_TEXTURE_DIMENSION)) { error_printf("basis_compressor::read_source_images: Source image is too large!\n"); return false; } source_images.push_back(file_image); source_filenames.push_back(pSource_filename); } debug_printf("Any source image has alpha: %u\n", m_any_source_image_has_alpha); for (uint32_t source_file_index = 0; source_file_index < total_source_files; source_file_index++) { image &file_image = source_images[source_file_index]; const std::string &source_filename = source_filenames[source_file_index]; std::vector slices; slices.reserve(32); slices.push_back(file_image); if (m_params.m_mip_gen) { if (!generate_mipmaps(file_image, slices, m_any_source_image_has_alpha)) return false; } uint_vec mip_indices(slices.size()); for (uint32_t i = 0; i < slices.size(); i++) mip_indices[i] = i; if (m_any_source_image_has_alpha) { // If source has alpha, then even mips will have RGB, and odd mips will have alpha in RGB. std::vector alpha_slices; uint_vec new_mip_indices; alpha_slices.reserve(slices.size() * 2); for (uint32_t i = 0; i < slices.size(); i++) { image lvl_rgb(slices[i]); image lvl_a(lvl_rgb); for (uint32_t y = 0; y < lvl_a.get_height(); y++) { for (uint32_t x = 0; x < lvl_a.get_width(); x++) { uint8_t a = lvl_a(x, y).a; lvl_a(x, y).set_noclamp_rgba(a, a, a, 255); } } lvl_rgb.set_alpha(255); alpha_slices.push_back(lvl_rgb); new_mip_indices.push_back(i); alpha_slices.push_back(lvl_a); new_mip_indices.push_back(i); } slices.swap(alpha_slices); mip_indices.swap(new_mip_indices); } assert(slices.size() == mip_indices.size()); for (uint32_t slice_index = 0; slice_index < slices.size(); slice_index++) { const bool is_alpha_slice = m_any_source_image_has_alpha && ((slice_index & 1) != 0); image &slice_image = slices[slice_index]; const uint32_t orig_width = slice_image.get_width(); const uint32_t orig_height = slice_image.get_height(); // Enlarge the source image to 4x4 block boundaries, duplicating edge pixels if necessary to avoid introducing extra colors into blocks. slice_image.crop_dup_borders(slice_image.get_block_width(4) * 4, slice_image.get_block_height(4) * 4); if (m_params.m_debug_images) { save_png(string_format("basis_debug_source_image_%u_%u.png", source_file_index, slice_index).c_str(), slice_image); } enlarge_vector(m_stats, 1); enlarge_vector(m_slice_images, 1); enlarge_vector(m_slice_descs, 1); const uint32_t dest_image_index = (uint32_t)m_stats.size() - 1; m_stats[dest_image_index].m_filename = source_filename.c_str(); m_stats[dest_image_index].m_width = orig_width; m_stats[dest_image_index].m_height = orig_height; m_slice_images[dest_image_index] = slice_image; debug_printf("****** Slice %u: mip %u, alpha_slice: %u, filename: \"%s\", original: %ux%u actual: %ux%u\n", m_slice_descs.size() - 1, mip_indices[slice_index], is_alpha_slice, source_filename.c_str(), orig_width, orig_height, slice_image.get_width(), slice_image.get_height()); basisu_backend_slice_desc &slice_desc = m_slice_descs[dest_image_index]; slice_desc.m_first_block_index = m_total_blocks; slice_desc.m_orig_width = orig_width; slice_desc.m_orig_height = orig_height; slice_desc.m_width = slice_image.get_width(); slice_desc.m_height = slice_image.get_height(); slice_desc.m_num_blocks_x = slice_image.get_block_width(4); slice_desc.m_num_blocks_y = slice_image.get_block_height(4); slice_desc.m_num_macroblocks_x = (slice_desc.m_num_blocks_x + 1) >> 1; slice_desc.m_num_macroblocks_y = (slice_desc.m_num_blocks_y + 1) >> 1; slice_desc.m_source_file_index = source_file_index; slice_desc.m_mip_index = mip_indices[slice_index]; slice_desc.m_alpha = is_alpha_slice; slice_desc.m_iframe = false; if (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames) { slice_desc.m_iframe = (source_file_index == 0); } m_total_blocks += slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y; total_macroblocks += slice_desc.m_num_macroblocks_x * slice_desc.m_num_macroblocks_y; } // slice_index } // source_file_index debug_printf("Total blocks: %u, Total macroblocks: %u\n", m_total_blocks, total_macroblocks); // Make sure we don't have too many slices if (m_slice_descs.size() > BASISU_MAX_SLICES) { error_printf("Too many slices!\n"); return false; } // Basic sanity check on the slices for (uint32_t i = 1; i < m_slice_descs.size(); i++) { const basisu_backend_slice_desc &prev_slice_desc = m_slice_descs[i - 1]; const basisu_backend_slice_desc &slice_desc = m_slice_descs[i]; // Make sure images are in order int image_delta = (int)slice_desc.m_source_file_index - (int)prev_slice_desc.m_source_file_index; if (image_delta > 1) return false; // Make sure mipmap levels are in order if (!image_delta) { int level_delta = (int)slice_desc.m_mip_index - (int)prev_slice_desc.m_mip_index; if (level_delta > 1) return false; } } printf("Total basis file slices: %u\n", (uint32_t)m_slice_descs.size()); for (uint32_t i = 0; i < m_slice_descs.size(); i++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[i]; printf("Slice: %u, alpha: %u, orig width/height: %ux%u, width/height: %ux%u, first_block: %u, image_index: %u, mip_level: %u, iframe: %u\n", i, slice_desc.m_alpha, slice_desc.m_orig_width, slice_desc.m_orig_height, slice_desc.m_width, slice_desc.m_height, slice_desc.m_first_block_index, slice_desc.m_source_file_index, slice_desc.m_mip_index, slice_desc.m_iframe); if (m_any_source_image_has_alpha) { // Alpha slices must be at odd slice indices if (slice_desc.m_alpha) { if ((i & 1) == 0) return false; const basisu_backend_slice_desc &prev_slice_desc = m_slice_descs[i - 1]; // Make sure previous slice has this image's color data if (prev_slice_desc.m_source_file_index != slice_desc.m_source_file_index) return false; if (prev_slice_desc.m_alpha) return false; if (prev_slice_desc.m_mip_index != slice_desc.m_mip_index) return false; if (prev_slice_desc.m_num_blocks_x != slice_desc.m_num_blocks_x) return false; if (prev_slice_desc.m_num_blocks_y != slice_desc.m_num_blocks_y) return false; } else if (i & 1) return false; } else if (slice_desc.m_alpha) { return false; } if ((slice_desc.m_orig_width > slice_desc.m_width) || (slice_desc.m_orig_height > slice_desc.m_height)) return false; if ((slice_desc.m_source_file_index == 0) && (m_params.m_tex_type == basist::cBASISTexTypeVideoFrames)) { if (!slice_desc.m_iframe) return false; } } return true; } // Do some basic validation for 2D arrays, cubemaps, video, and volumes. bool basis_compressor::validate_texture_type_constraints() { debug_printf("basis_compressor::validate_texture_type_constraints\n"); // In 2D mode anything goes (each image may have a different resolution and # of mipmap levels). if (m_params.m_tex_type == basist::cBASISTexType2D) return true; uint32_t total_basis_images = 0; for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index]; total_basis_images = maximum(total_basis_images, slice_desc.m_source_file_index + 1); } if (m_params.m_tex_type == basist::cBASISTexTypeCubemapArray) { // For cubemaps, validate that the total # of Basis images is a multiple of 6. if ((total_basis_images % 6) != 0) { error_printf("basis_compressor::validate_texture_type_constraints: For cubemaps the total number of input images is not a multiple of 6!\n"); return false; } } // Now validate that all the mip0's have the same dimensions, and that each image has the same # of mipmap levels. uint_vec image_mipmap_levels(total_basis_images); int width = -1, height = -1; for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index]; image_mipmap_levels[slice_desc.m_source_file_index] = maximum(image_mipmap_levels[slice_desc.m_source_file_index], slice_desc.m_mip_index + 1); if (slice_desc.m_mip_index != 0) continue; if (width < 0) { width = slice_desc.m_orig_width; height = slice_desc.m_orig_height; } else if ((width != (int)slice_desc.m_orig_width) || (height != (int)slice_desc.m_orig_height)) { error_printf("basis_compressor::validate_texture_type_constraints: The source image resolutions are not all equal!\n"); return false; } } for (size_t i = 1; i < image_mipmap_levels.size(); i++) { if (image_mipmap_levels[0] != image_mipmap_levels[i]) { error_printf("basis_compressor::validate_texture_type_constraints: Each image must have the same number of mipmap levels!\n"); return false; } } return true; } bool basis_compressor::process_frontend() { debug_printf("basis_compressor::process_frontend\n"); m_source_blocks.resize(m_total_blocks); for (uint32_t slice_index = 0; slice_index < m_slice_images.size(); slice_index++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index]; const uint32_t num_blocks_x = slice_desc.m_num_blocks_x; const uint32_t num_blocks_y = slice_desc.m_num_blocks_y; const image &source_image = m_slice_images[slice_index]; for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) source_image.extract_block_clamped(m_source_blocks[slice_desc.m_first_block_index + block_x + block_y * num_blocks_x].get_ptr(), block_x * 4, block_y * 4, 4, 4); } #if 0 // TODO basis_etc1_pack_params pack_params; pack_params.m_quality = cETCQualityMedium; pack_params.m_perceptual = m_params.m_perceptual; pack_params.m_use_color4 = false; pack_etc1_block_context pack_context; std::unordered_set endpoint_hash; std::unordered_set selector_hash; for (uint32_t i = 0; i < m_source_blocks.size(); i++) { etc_block blk; pack_etc1_block(blk, m_source_blocks[i].get_ptr(), pack_params, pack_context); const color_rgba c0(blk.get_block_color(0, false)); endpoint_hash.insert((c0.r | (c0.g << 5) | (c0.b << 10)) | (blk.get_inten_table(0) << 16)); const color_rgba c1(blk.get_block_color(1, false)); endpoint_hash.insert((c1.r | (c1.g << 5) | (c1.b << 10)) | (blk.get_inten_table(1) << 16)); selector_hash.insert(blk.get_raw_selector_bits()); } const uint32_t total_unique_endpoints = (uint32_t)endpoint_hash.size(); const uint32_t total_unique_selectors = (uint32_t)selector_hash.size(); if (m_params.m_debug) { debug_printf("Unique endpoints: %u, unique selectors: %u\n", total_unique_endpoints, total_unique_selectors); } #endif const double total_texels = m_total_blocks * 16.0f; int endpoint_clusters = m_params.m_max_endpoint_clusters; int selector_clusters = m_params.m_max_selector_clusters; if (endpoint_clusters > basisu_frontend::cMaxEndpointClusters) { error_printf("Too many endpoint clusters! (%u but max is %u)\n", endpoint_clusters, basisu_frontend::cMaxEndpointClusters); return false; } if (selector_clusters > basisu_frontend::cMaxSelectorClusters) { error_printf("Too many selector clusters! (%u but max is %u)\n", selector_clusters, basisu_frontend::cMaxSelectorClusters); return false; } if (m_params.m_quality_level != -1) { const float quality = saturate(m_params.m_quality_level / 255.0f); const float bits_per_endpoint_cluster = 14.0f; const float max_desired_endpoint_cluster_bits_per_texel = 1.0f; // .15f int max_endpoints = static_cast((max_desired_endpoint_cluster_bits_per_texel * total_texels) / bits_per_endpoint_cluster); const float mid = 128.0f / 255.0f; float color_endpoint_quality = quality; const float endpoint_split_point = 0.5f; if (color_endpoint_quality <= mid) { color_endpoint_quality = lerp(0.0f, endpoint_split_point, powf(color_endpoint_quality / mid, .65f)); max_endpoints = clamp(max_endpoints, 256, 3072); max_endpoints = minimum(max_endpoints, m_total_blocks); if (max_endpoints < 64) max_endpoints = 64; endpoint_clusters = clamp((uint32_t)(.5f + lerp(32, static_cast(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters); } else { color_endpoint_quality = powf((color_endpoint_quality - mid) / (1.0f - mid), 1.6f); max_endpoints = clamp(max_endpoints, 256, 8192); max_endpoints = minimum(max_endpoints, m_total_blocks); if (max_endpoints < 3072) max_endpoints = 3072; endpoint_clusters = clamp((uint32_t)(.5f + lerp(3072, static_cast(max_endpoints), color_endpoint_quality)), 32, basisu_frontend::cMaxEndpointClusters); } float bits_per_selector_cluster = m_params.m_global_sel_pal ? 21.0f : 14.0f; const float max_desired_selector_cluster_bits_per_texel = 1.0f; // .15f int max_selectors = static_cast((max_desired_selector_cluster_bits_per_texel * total_texels) / bits_per_selector_cluster); max_selectors = clamp(max_selectors, 256, basisu_frontend::cMaxSelectorClusters); max_selectors = minimum(max_selectors, m_total_blocks); float color_selector_quality = quality; //color_selector_quality = powf(color_selector_quality, 1.65f); color_selector_quality = powf(color_selector_quality, 2.62f); if (max_selectors < 96) max_selectors = 96; selector_clusters = clamp((uint32_t)(.5f + lerp(96, static_cast(max_selectors), color_selector_quality)), 8, basisu_frontend::cMaxSelectorClusters); debug_printf("Max endpoints: %u, max selectors: %u\n", endpoint_clusters, selector_clusters); if (m_params.m_quality_level >= 223) { if (!m_params.m_selector_rdo_thresh.was_changed()) { if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= .25f; if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= .25f; } } else if (m_params.m_quality_level >= 192) { if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= .5f; if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= .5f; } else if (m_params.m_quality_level >= 160) { if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= .75f; if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= .75f; } else if (m_params.m_quality_level >= 129) { float l = (quality - 129 / 255.0f) / ((160 - 129) / 255.0f); if (!m_params.m_endpoint_rdo_thresh.was_changed()) m_params.m_endpoint_rdo_thresh *= lerp(1.0f, .75f, l); if (!m_params.m_selector_rdo_thresh.was_changed()) m_params.m_selector_rdo_thresh *= lerp(1.0f, .75f, l); } } m_auto_global_sel_pal = false; if (!m_params.m_global_sel_pal && m_params.m_auto_global_sel_pal) { const float bits_per_selector_cluster = 31.0f; double selector_codebook_bpp_est = (bits_per_selector_cluster * selector_clusters) / total_texels; debug_printf("selector_codebook_bpp_est: %f\n", selector_codebook_bpp_est); const float force_global_sel_pal_bpp_threshold = .15f; if ((total_texels <= 128.0f*128.0f) && (selector_codebook_bpp_est > force_global_sel_pal_bpp_threshold)) { m_auto_global_sel_pal = true; debug_printf("Auto global selector palette enabled\n"); } } basisu_frontend::params p; p.m_num_source_blocks = m_total_blocks; p.m_pSource_blocks = &m_source_blocks[0]; p.m_max_endpoint_clusters = endpoint_clusters; p.m_max_selector_clusters = selector_clusters; p.m_perceptual = m_params.m_perceptual; p.m_debug_stats = m_params.m_debug; p.m_debug_images = m_params.m_debug_images; p.m_compression_level = m_params.m_compression_level; p.m_tex_type = m_params.m_tex_type; p.m_multithreaded = m_params.m_multithreading; p.m_disable_hierarchical_endpoint_codebooks = m_params.m_disable_hierarchical_endpoint_codebooks; p.m_pJob_pool = m_params.m_pJob_pool; if ((m_params.m_global_sel_pal) || (m_auto_global_sel_pal)) { p.m_pGlobal_sel_codebook = m_params.m_pSel_codebook; p.m_num_global_sel_codebook_pal_bits = m_params.m_global_pal_bits; p.m_num_global_sel_codebook_mod_bits = m_params.m_global_mod_bits; p.m_use_hybrid_selector_codebooks = !m_params.m_no_hybrid_sel_cb; p.m_hybrid_codebook_quality_thresh = m_params.m_hybrid_sel_cb_quality_thresh; } if (!m_frontend.init(p)) { error_printf("basisu_frontend::init() failed!\n"); return false; } m_frontend.compress(); if (m_params.m_debug_images) { for (uint32_t i = 0; i < m_slice_descs.size(); i++) { char filename[1024]; #ifdef _WIN32 sprintf_s(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i); #else snprintf(filename, sizeof(filename), "rdo_frontend_output_output_blocks_%u.png", i); #endif m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, true); #ifdef _WIN32 sprintf_s(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i); #else snprintf(filename, sizeof(filename), "rdo_frontend_output_api_%u.png", i); #endif m_frontend.dump_debug_image(filename, m_slice_descs[i].m_first_block_index, m_slice_descs[i].m_num_blocks_x, m_slice_descs[i].m_num_blocks_y, false); } } return true; } bool basis_compressor::extract_frontend_texture_data() { debug_printf("basis_compressor::extract_frontend_texture_data\n"); m_frontend_output_textures.resize(m_slice_descs.size()); m_best_etc1s_images.resize(m_slice_descs.size()); m_best_etc1s_images_unpacked.resize(m_slice_descs.size()); for (uint32_t i = 0; i < m_slice_descs.size(); i++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[i]; const uint32_t num_blocks_x = slice_desc.m_num_blocks_x; const uint32_t num_blocks_y = slice_desc.m_num_blocks_y; const uint32_t width = num_blocks_x * 4; const uint32_t height = num_blocks_y * 4; m_frontend_output_textures[i].init(texture_format::cETC1, width, height); for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) memcpy(m_frontend_output_textures[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_output_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block)); #if 0 if (m_params.m_debug_images) { char filename[1024]; sprintf_s(filename, sizeof(filename), "rdo_etc_frontend_%u_", i); write_etc1_vis_images(m_frontend_output_textures[i], filename); } #endif m_best_etc1s_images[i].init(texture_format::cETC1, width, height); for (uint32_t block_y = 0; block_y < num_blocks_y; block_y++) for (uint32_t block_x = 0; block_x < num_blocks_x; block_x++) memcpy(m_best_etc1s_images[i].get_block_ptr(block_x, block_y, 0), &m_frontend.get_etc1s_block(slice_desc.m_first_block_index + block_x + block_y * num_blocks_x), sizeof(etc_block)); m_best_etc1s_images[i].unpack(m_best_etc1s_images_unpacked[i]); } return true; } bool basis_compressor::process_backend() { debug_printf("basis_compressor::process_backend\n"); basisu_backend_params backend_params; backend_params.m_debug = m_params.m_debug; backend_params.m_debug_images = m_params.m_debug_images; backend_params.m_etc1s = true; backend_params.m_compression_level = m_params.m_compression_level; if (!m_params.m_no_endpoint_rdo) backend_params.m_endpoint_rdo_quality_thresh = m_params.m_endpoint_rdo_thresh; if (!m_params.m_no_selector_rdo) backend_params.m_selector_rdo_quality_thresh = m_params.m_selector_rdo_thresh; backend_params.m_use_global_sel_codebook = (m_frontend.get_params().m_pGlobal_sel_codebook != NULL); backend_params.m_global_sel_codebook_pal_bits = m_frontend.get_params().m_num_global_sel_codebook_pal_bits; backend_params.m_global_sel_codebook_mod_bits = m_frontend.get_params().m_num_global_sel_codebook_mod_bits; backend_params.m_use_hybrid_sel_codebooks = m_frontend.get_params().m_use_hybrid_selector_codebooks; m_backend.init(&m_frontend, backend_params, m_slice_descs, m_params.m_pSel_codebook); uint32_t total_packed_bytes = m_backend.encode(); if (!total_packed_bytes) { error_printf("basis_compressor::encode() failed!\n"); return false; } debug_printf("Total packed bytes (estimated): %u\n", total_packed_bytes); return true; } bool basis_compressor::create_basis_file_and_transcode() { debug_printf("basis_compressor::create_basis_file_and_transcode\n"); const basisu_backend_output &encoded_output = m_backend.get_output(); if (!m_basis_file.init(encoded_output, m_params.m_tex_type, m_params.m_userdata0, m_params.m_userdata1, m_params.m_y_flip, m_params.m_us_per_frame)) { error_printf("basis_compressor::write_output_files_and_compute_stats: basisu_backend:init() failed!\n"); return false; } const uint8_vec &comp_data = m_basis_file.get_compressed_data(); m_output_basis_file = comp_data; // Verify the compressed data by transcoding it to ETC1/BC1 and validating the CRC's. basist::basisu_transcoder decoder(m_params.m_pSel_codebook); if (!decoder.validate_file_checksums(&comp_data[0], (uint32_t)comp_data.size(), true)) { error_printf("decoder.validate_file_checksums() failed!\n"); return false; } m_decoded_output_textures.resize(m_slice_descs.size()); m_decoded_output_textures_unpacked.resize(m_slice_descs.size()); m_decoded_output_textures_bc1.resize(m_slice_descs.size()); m_decoded_output_textures_unpacked_bc1.resize(m_slice_descs.size()); interval_timer tm; tm.start(); if (!decoder.start_transcoding(&comp_data[0], (uint32_t)comp_data.size())) { error_printf("decoder.start_transcoding() failed!\n"); return false; } debug_printf("basisu_comppressor::start_transcoding() took %3.3fms\n", tm.get_elapsed_ms()); uint32_t total_orig_pixels = 0; uint32_t total_texels = 0; double total_time_etc1 = 0; for (uint32_t i = 0; i < m_slice_descs.size(); i++) { gpu_image decoded_texture; decoded_texture.init(texture_format::cETC1, m_slice_descs[i].m_width, m_slice_descs[i].m_height); tm.start(); if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i, reinterpret_cast(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, basist::block_format::cETC1, 8)) { error_printf("Transcoding failed to ETC1 on slice %u!\n", i); return false; } total_time_etc1 += tm.get_elapsed_secs(); uint32_t image_crc16 = basist::crc16(decoded_texture.get_ptr(), decoded_texture.get_size_in_bytes(), 0); if (image_crc16 != m_backend.get_output().m_slice_image_crcs[i]) { error_printf("Decoded image data CRC check failed on slice %u!\n", i); return false; } debug_printf("Decoded image data CRC check succeeded on slice %i\n", i); m_decoded_output_textures[i] = decoded_texture; total_orig_pixels += m_slice_descs[i].m_orig_width * m_slice_descs[i].m_orig_height; total_texels += m_slice_descs[i].m_width * m_slice_descs[i].m_height; } tm.start(); basist::basisu_transcoder_init(); debug_printf("basist::basisu_transcoder_init: Took %f ms\n", tm.get_elapsed_ms()); double total_time_bc1 = 0; for (uint32_t i = 0; i < m_slice_descs.size(); i++) { gpu_image decoded_texture; decoded_texture.init(texture_format::cBC1, m_slice_descs[i].m_width, m_slice_descs[i].m_height); tm.start(); if (!decoder.transcode_slice(&comp_data[0], (uint32_t)comp_data.size(), i, reinterpret_cast(decoded_texture.get_ptr()), m_slice_descs[i].m_num_blocks_x * m_slice_descs[i].m_num_blocks_y, basist::block_format::cBC1, 8)) { error_printf("Transcoding failed to BC1 on slice %u!\n", i); return false; } total_time_bc1 += tm.get_elapsed_secs(); m_decoded_output_textures_bc1[i] = decoded_texture; } for (uint32_t i = 0; i < m_slice_descs.size(); i++) { m_decoded_output_textures[i].unpack(m_decoded_output_textures_unpacked[i]); m_decoded_output_textures_bc1[i].unpack(m_decoded_output_textures_unpacked_bc1[i]); } debug_printf("Transcoded to ETC1 in %3.3fms, %f texels/sec\n", total_time_etc1 * 1000.0f, total_orig_pixels / total_time_etc1); debug_printf("Transcoded to BC1 in %3.3fms, %f texels/sec\n", total_time_bc1 * 1000.0f, total_orig_pixels / total_time_bc1); debug_printf("Total .basis output file size: %u, %3.3f bits/texel\n", comp_data.size(), comp_data.size() * 8.0f / total_orig_pixels); m_output_blocks.resize(0); uint32_t total_orig_texels = 0; for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index]; total_orig_texels += slice_desc.m_orig_width * slice_desc.m_orig_height; const uint32_t total_blocks = slice_desc.m_num_blocks_x * slice_desc.m_num_blocks_y; assert(m_decoded_output_textures[slice_index].get_total_blocks() == total_blocks); memcpy(enlarge_vector(m_output_blocks, total_blocks), m_decoded_output_textures[slice_index].get_ptr(), sizeof(etc_block) * total_blocks); } m_basis_file_size = (uint32_t)comp_data.size(); m_basis_bits_per_texel = (comp_data.size() * 8.0f) / total_orig_texels; return true; } bool basis_compressor::write_output_files_and_compute_stats() { debug_printf("basis_compressor::write_output_files_and_compute_stats\n"); if (m_params.m_write_output_basis_files) { const uint8_vec &comp_data = m_basis_file.get_compressed_data(); const std::string& basis_filename = m_params.m_out_filename; if (!write_vec_to_file(basis_filename.c_str(), comp_data)) { error_printf("Failed writing output data to file \"%s\"\n", basis_filename.c_str()); return false; } printf("Wrote output .basis file \"%s\"\n", basis_filename.c_str()); } m_stats.resize(m_slice_descs.size()); uint32_t total_orig_texels = 0; for (uint32_t slice_index = 0; slice_index < m_slice_descs.size(); slice_index++) { const basisu_backend_slice_desc &slice_desc = m_slice_descs[slice_index]; total_orig_texels += slice_desc.m_orig_width * slice_desc.m_orig_height; if (m_params.m_compute_stats) { printf("Slice: %u\n", slice_index); image_stats &s = m_stats[slice_index]; // TODO: We used to output SSIM (during heavy encoder development), but this slowed down compression too much. We'll be adding it back. image_metrics em; // ---- .basis ETC1S stats em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0); em.print(".basis ETC1S 709 Luma: "); s.m_basis_etc1s_luma_709_psnr = static_cast(em.m_psnr); s.m_basis_etc1s_luma_709_ssim = static_cast(em.m_ssim); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 0, true, true); em.print(".basis ETC1S 601 Luma: "); s.m_basis_etc1s_luma_601_psnr = static_cast(em.m_psnr); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked[slice_index], 0, 3); em.print(".basis ETC1S RGB Avg: "); s.m_basis_etc1s_rgb_avg_psnr = em.m_psnr; if (m_slice_descs.size() == 1) { debug_printf(".basis Luma 709 PSNR per bit/texel*10000: %3.3f\n", 10000.0f * s.m_basis_etc1s_luma_709_psnr / ((m_backend.get_output().get_output_size_estimate() * 8.0f) / (slice_desc.m_orig_width * slice_desc.m_orig_height))); } // ---- .basis BC1 stats em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc1[slice_index], 0, 0); em.print(".basis BC1 709 Luma: "); s.m_basis_bc1_luma_709_psnr = static_cast(em.m_psnr); s.m_basis_bc1_luma_709_ssim = static_cast(em.m_ssim); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc1[slice_index], 0, 0, true, true); em.print(".basis BC1 601 Luma: "); s.m_basis_bc1_luma_601_psnr = static_cast(em.m_psnr); em.calc(m_slice_images[slice_index], m_decoded_output_textures_unpacked_bc1[slice_index], 0, 3); em.print(".basis BC1 RGB Avg: "); s.m_basis_bc1_rgb_avg_psnr = static_cast(em.m_psnr); // ---- Nearly best possible ETC1S stats em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 0); em.print("Unquantized ETC1S 709 Luma: "); s.m_best_luma_709_psnr = static_cast(em.m_psnr); s.m_best_luma_709_ssim = static_cast(em.m_ssim); em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 0, true, true); em.print("Unquantized ETC1S 601 Luma: "); s.m_best_luma_601_psnr = static_cast(em.m_psnr); em.calc(m_slice_images[slice_index], m_best_etc1s_images_unpacked[slice_index], 0, 3); em.print("Unquantized ETC1S RGB Avg: "); s.m_best_rgb_avg_psnr = static_cast(em.m_psnr); } if (m_frontend.get_params().m_debug_images) { std::string out_basename; if (m_params.m_out_filename.size()) string_get_filename(m_params.m_out_filename.c_str(), out_basename); else if (m_params.m_source_filenames.size()) string_get_filename(m_params.m_source_filenames[slice_desc.m_source_file_index].c_str(), out_basename); string_remove_extension(out_basename); out_basename = "basis_debug_" + out_basename + string_format("_slice_%u", slice_index); // Write "best" ETC1S debug images { gpu_image best_etc1s_gpu_image(m_best_etc1s_images[slice_index]); best_etc1s_gpu_image.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height); write_compressed_texture_file((out_basename + "_best_etc1s.ktx").c_str(), best_etc1s_gpu_image); image best_etc1s_unpacked; best_etc1s_gpu_image.unpack(best_etc1s_unpacked); save_png(out_basename + "_best_etc1s.png", best_etc1s_unpacked); } // Write decoded ETC1S debug images { gpu_image decoded_etc1s(m_decoded_output_textures[slice_index]); decoded_etc1s.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height); write_compressed_texture_file((out_basename + "_decoded_etc1s.ktx").c_str(), decoded_etc1s); image temp(m_decoded_output_textures_unpacked[slice_index]); temp.crop(slice_desc.m_orig_width, slice_desc.m_orig_height); save_png(out_basename + "_decoded_etc1s.png", temp); } // Write decoded BC1 debug images { gpu_image decoded_bc1(m_decoded_output_textures_bc1[slice_index]); decoded_bc1.override_dimensions(slice_desc.m_orig_width, slice_desc.m_orig_height); write_compressed_texture_file((out_basename + "_decoded_bc1.ktx").c_str(), decoded_bc1); image temp(m_decoded_output_textures_unpacked_bc1[slice_index]); temp.crop(slice_desc.m_orig_width, slice_desc.m_orig_height); save_png(out_basename + "_decoded_bc1.png", temp); } } } return true; } } // namespace basisu