#include "b3GpuGridBroadphase.h" #include "Bullet3Geometry/b3AabbUtil.h" #include "kernels/gridBroadphaseKernels.h" #include "kernels/sapKernels.h" //#include "kernels/gridBroadphase.cl" #include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h" #include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h" #define B3_BROADPHASE_SAP_PATH "src/Bullet3OpenCL/BroadphaseCollision/kernels/sap.cl" #define B3_GRID_BROADPHASE_PATH "src/Bullet3OpenCL/BroadphaseCollision/kernels/gridBroadphase.cl" cl_kernel kCalcHashAABB; cl_kernel kClearCellStart; cl_kernel kFindCellStart; cl_kernel kFindOverlappingPairs; cl_kernel m_copyAabbsKernel; cl_kernel m_sap2Kernel; //int maxPairsPerBody = 64; int maxBodiesPerCell = 256; //?? b3GpuGridBroadphase::b3GpuGridBroadphase(cl_context ctx, cl_device_id device, cl_command_queue q) : m_context(ctx), m_device(device), m_queue(q), m_allAabbsGPU1(ctx, q), m_smallAabbsMappingGPU(ctx, q), m_largeAabbsMappingGPU(ctx, q), m_gpuPairs(ctx, q), m_hashGpu(ctx, q), m_cellStartGpu(ctx, q), m_paramsGPU(ctx, q) { b3Vector3 gridSize = b3MakeVector3(3, 3, 3); b3Vector3 invGridSize = b3MakeVector3(1.f / gridSize[0], 1.f / gridSize[1], 1.f / gridSize[2]); m_paramsCPU.m_gridSize[0] = 128; m_paramsCPU.m_gridSize[1] = 128; m_paramsCPU.m_gridSize[2] = 128; m_paramsCPU.m_gridSize[3] = maxBodiesPerCell; m_paramsCPU.setMaxBodiesPerCell(maxBodiesPerCell); m_paramsCPU.m_invCellSize[0] = invGridSize[0]; m_paramsCPU.m_invCellSize[1] = invGridSize[1]; m_paramsCPU.m_invCellSize[2] = invGridSize[2]; m_paramsCPU.m_invCellSize[3] = 0.f; m_paramsGPU.push_back(m_paramsCPU); cl_int errNum = 0; { const char* sapSrc = sapCL; cl_program sapProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, sapSrc, &errNum, "", B3_BROADPHASE_SAP_PATH); b3Assert(errNum == CL_SUCCESS); m_copyAabbsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, sapSrc, "copyAabbsKernel", &errNum, sapProg); m_sap2Kernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, sapSrc, "computePairsKernelTwoArrays", &errNum, sapProg); b3Assert(errNum == CL_SUCCESS); } { cl_program gridProg = b3OpenCLUtils::compileCLProgramFromString(m_context, m_device, gridBroadphaseCL, &errNum, "", B3_GRID_BROADPHASE_PATH); b3Assert(errNum == CL_SUCCESS); kCalcHashAABB = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, gridBroadphaseCL, "kCalcHashAABB", &errNum, gridProg); b3Assert(errNum == CL_SUCCESS); kClearCellStart = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, gridBroadphaseCL, "kClearCellStart", &errNum, gridProg); b3Assert(errNum == CL_SUCCESS); kFindCellStart = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, gridBroadphaseCL, "kFindCellStart", &errNum, gridProg); b3Assert(errNum == CL_SUCCESS); kFindOverlappingPairs = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device, gridBroadphaseCL, "kFindOverlappingPairs", &errNum, gridProg); b3Assert(errNum == CL_SUCCESS); } m_sorter = new b3RadixSort32CL(m_context, m_device, m_queue); } b3GpuGridBroadphase::~b3GpuGridBroadphase() { clReleaseKernel(kCalcHashAABB); clReleaseKernel(kClearCellStart); clReleaseKernel(kFindCellStart); clReleaseKernel(kFindOverlappingPairs); clReleaseKernel(m_sap2Kernel); clReleaseKernel(m_copyAabbsKernel); delete m_sorter; } void b3GpuGridBroadphase::createProxy(const b3Vector3& aabbMin, const b3Vector3& aabbMax, int userPtr, int collisionFilterGroup, int collisionFilterMask) { b3SapAabb aabb; aabb.m_minVec = aabbMin; aabb.m_maxVec = aabbMax; aabb.m_minIndices[3] = userPtr; aabb.m_signedMaxIndices[3] = m_allAabbsCPU1.size(); //NOT userPtr; m_smallAabbsMappingCPU.push_back(m_allAabbsCPU1.size()); m_allAabbsCPU1.push_back(aabb); } void b3GpuGridBroadphase::createLargeProxy(const b3Vector3& aabbMin, const b3Vector3& aabbMax, int userPtr, int collisionFilterGroup, int collisionFilterMask) { b3SapAabb aabb; aabb.m_minVec = aabbMin; aabb.m_maxVec = aabbMax; aabb.m_minIndices[3] = userPtr; aabb.m_signedMaxIndices[3] = m_allAabbsCPU1.size(); //NOT userPtr; m_largeAabbsMappingCPU.push_back(m_allAabbsCPU1.size()); m_allAabbsCPU1.push_back(aabb); } void b3GpuGridBroadphase::calculateOverlappingPairs(int maxPairs) { B3_PROFILE("b3GpuGridBroadphase::calculateOverlappingPairs"); if (0) { calculateOverlappingPairsHost(maxPairs); /* b3AlignedObjectArray cpuPairs; m_gpuPairs.copyToHost(cpuPairs); printf("host m_gpuPairs.size()=%d\n",m_gpuPairs.size()); for (int i=0;i pairCount(m_context, m_queue); pairCount.push_back(0); m_gpuPairs.resize(maxPairs); //numSmallAabbs*maxPairsPerBody); { int numLargeAabbs = m_largeAabbsMappingGPU.size(); if (numLargeAabbs && numSmallAabbs) { B3_PROFILE("sap2Kernel"); b3BufferInfoCL bInfo[] = { b3BufferInfoCL(m_allAabbsGPU1.getBufferCL()), b3BufferInfoCL(m_largeAabbsMappingGPU.getBufferCL()), b3BufferInfoCL(m_smallAabbsMappingGPU.getBufferCL()), b3BufferInfoCL(m_gpuPairs.getBufferCL()), b3BufferInfoCL(pairCount.getBufferCL())}; b3LauncherCL launcher(m_queue, m_sap2Kernel, "m_sap2Kernel"); launcher.setBuffers(bInfo, sizeof(bInfo) / sizeof(b3BufferInfoCL)); launcher.setConst(numLargeAabbs); launcher.setConst(numSmallAabbs); launcher.setConst(0); //axis is not used launcher.setConst(maxPairs); //@todo: use actual maximum work item sizes of the device instead of hardcoded values launcher.launch2D(numLargeAabbs, numSmallAabbs, 4, 64); int numPairs = pairCount.at(0); if (numPairs > maxPairs) { b3Error("Error running out of pairs: numPairs = %d, maxPairs = %d.\n", numPairs, maxPairs); numPairs = maxPairs; } } } if (numSmallAabbs) { B3_PROFILE("gridKernel"); m_hashGpu.resize(numSmallAabbs); { B3_PROFILE("kCalcHashAABB"); b3LauncherCL launch(m_queue, kCalcHashAABB, "kCalcHashAABB"); launch.setConst(numSmallAabbs); launch.setBuffer(m_allAabbsGPU1.getBufferCL()); launch.setBuffer(m_smallAabbsMappingGPU.getBufferCL()); launch.setBuffer(m_hashGpu.getBufferCL()); launch.setBuffer(this->m_paramsGPU.getBufferCL()); launch.launch1D(numSmallAabbs); } m_sorter->execute(m_hashGpu); int numCells = this->m_paramsCPU.m_gridSize[0] * this->m_paramsCPU.m_gridSize[1] * this->m_paramsCPU.m_gridSize[2]; m_cellStartGpu.resize(numCells); //b3AlignedObjectArray cellStartCpu; { B3_PROFILE("kClearCellStart"); b3LauncherCL launch(m_queue, kClearCellStart, "kClearCellStart"); launch.setConst(numCells); launch.setBuffer(m_cellStartGpu.getBufferCL()); launch.launch1D(numCells); //m_cellStartGpu.copyToHost(cellStartCpu); //printf("??\n"); } { B3_PROFILE("kFindCellStart"); b3LauncherCL launch(m_queue, kFindCellStart, "kFindCellStart"); launch.setConst(numSmallAabbs); launch.setBuffer(m_hashGpu.getBufferCL()); launch.setBuffer(m_cellStartGpu.getBufferCL()); launch.launch1D(numSmallAabbs); //m_cellStartGpu.copyToHost(cellStartCpu); //printf("??\n"); } { B3_PROFILE("kFindOverlappingPairs"); b3LauncherCL launch(m_queue, kFindOverlappingPairs, "kFindOverlappingPairs"); launch.setConst(numSmallAabbs); launch.setBuffer(m_allAabbsGPU1.getBufferCL()); launch.setBuffer(m_smallAabbsMappingGPU.getBufferCL()); launch.setBuffer(m_hashGpu.getBufferCL()); launch.setBuffer(m_cellStartGpu.getBufferCL()); launch.setBuffer(m_paramsGPU.getBufferCL()); //launch.setBuffer(0); launch.setBuffer(pairCount.getBufferCL()); launch.setBuffer(m_gpuPairs.getBufferCL()); launch.setConst(maxPairs); launch.launch1D(numSmallAabbs); int numPairs = pairCount.at(0); if (numPairs > maxPairs) { b3Error("Error running out of pairs: numPairs = %d, maxPairs = %d.\n", numPairs, maxPairs); numPairs = maxPairs; } m_gpuPairs.resize(numPairs); if (0) { b3AlignedObjectArray pairsCpu; m_gpuPairs.copyToHost(pairsCpu); int sz = m_gpuPairs.size(); printf("m_gpuPairs.size()=%d\n", sz); for (int i = 0; i < m_gpuPairs.size(); i++) { printf("pair %d = %d,%d\n", i, pairsCpu[i].x, pairsCpu[i].y); } printf("?!?\n"); } } } //calculateOverlappingPairsHost(maxPairs); } void b3GpuGridBroadphase::calculateOverlappingPairsHost(int maxPairs) { m_hostPairs.resize(0); m_allAabbsGPU1.copyToHost(m_allAabbsCPU1); for (int i = 0; i < m_allAabbsCPU1.size(); i++) { for (int j = i + 1; j < m_allAabbsCPU1.size(); j++) { if (b3TestAabbAgainstAabb2(m_allAabbsCPU1[i].m_minVec, m_allAabbsCPU1[i].m_maxVec, m_allAabbsCPU1[j].m_minVec, m_allAabbsCPU1[j].m_maxVec)) { b3Int4 pair; int a = m_allAabbsCPU1[j].m_minIndices[3]; int b = m_allAabbsCPU1[i].m_minIndices[3]; if (a <= b) { pair.x = a; pair.y = b; //store the original index in the unsorted aabb array } else { pair.x = b; pair.y = a; //store the original index in the unsorted aabb array } if (m_hostPairs.size() < maxPairs) { m_hostPairs.push_back(pair); } } } } m_gpuPairs.copyFromHost(m_hostPairs); } //call writeAabbsToGpu after done making all changes (createProxy etc) void b3GpuGridBroadphase::writeAabbsToGpu() { m_allAabbsGPU1.copyFromHost(m_allAabbsCPU1); m_smallAabbsMappingGPU.copyFromHost(m_smallAabbsMappingCPU); m_largeAabbsMappingGPU.copyFromHost(m_largeAabbsMappingCPU); } cl_mem b3GpuGridBroadphase::getAabbBufferWS() { return this->m_allAabbsGPU1.getBufferCL(); } int b3GpuGridBroadphase::getNumOverlap() { return m_gpuPairs.size(); } cl_mem b3GpuGridBroadphase::getOverlappingPairBuffer() { return m_gpuPairs.getBufferCL(); } b3OpenCLArray& b3GpuGridBroadphase::getAllAabbsGPU() { return m_allAabbsGPU1; } b3AlignedObjectArray& b3GpuGridBroadphase::getAllAabbsCPU() { return m_allAabbsCPU1; } b3OpenCLArray& b3GpuGridBroadphase::getOverlappingPairsGPU() { return m_gpuPairs; } b3OpenCLArray& b3GpuGridBroadphase::getSmallAabbIndicesGPU() { return m_smallAabbsMappingGPU; } b3OpenCLArray& b3GpuGridBroadphase::getLargeAabbIndicesGPU() { return m_largeAabbsMappingGPU; }