/*************************************************************************/ /* collision_solver_sat.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "collision_solver_sat.h" #include "geometry.h" #define _EDGE_IS_VALID_SUPPORT_TRESHOLD 0.02 struct _CollectorCallback { CollisionSolverSW::CallbackResult callback; void *userdata; bool swap; bool collided; Vector3 normal; Vector3 *prev_axis; _FORCE_INLINE_ void call(const Vector3& p_point_A, const Vector3& p_point_B) { //if (normal.dot(p_point_A) >= normal.dot(p_point_B)) // return; if (swap) callback(p_point_B,p_point_A,userdata); else callback(p_point_A,p_point_B,userdata); } }; typedef void (*GenerateContactsFunc)(const Vector3 *,int, const Vector3 *,int ,_CollectorCallback *); static void _generate_contacts_point_point(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A != 1 ); ERR_FAIL_COND( p_point_count_B != 1 ); #endif p_callback->call(*p_points_A,*p_points_B); } static void _generate_contacts_point_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A != 1 ); ERR_FAIL_COND( p_point_count_B != 2 ); #endif Vector3 closest_B = Geometry::get_closest_point_to_segment_uncapped(*p_points_A, p_points_B ); p_callback->call(*p_points_A,closest_B); } static void _generate_contacts_point_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A != 1 ); ERR_FAIL_COND( p_point_count_B < 3 ); #endif Vector3 closest_B=Plane(p_points_B[0],p_points_B[1],p_points_B[2]).project( *p_points_A ); p_callback->call(*p_points_A,closest_B); } static void _generate_contacts_edge_edge(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A != 2 ); ERR_FAIL_COND( p_point_count_B != 2 ); // circle is actually a 4x3 matrix #endif Vector3 rel_A=p_points_A[1]-p_points_A[0]; Vector3 rel_B=p_points_B[1]-p_points_B[0]; Vector3 c=rel_A.cross(rel_B).cross(rel_B); // if ( Math::abs(rel_A.dot(c) )<_EDGE_IS_VALID_SUPPORT_TRESHOLD ) { if ( Math::abs(rel_A.dot(c) ) sa; sa.sort(dvec,4); //use the middle ones as contacts p_callback->call(base_A+axis*dvec[1],base_B+axis*dvec[1]); p_callback->call(base_A+axis*dvec[2],base_B+axis*dvec[2]); return; } real_t d = (c.dot( p_points_B[0] ) - p_points_A[0].dot(c))/rel_A.dot(c); if (d<0.0) d=0.0; else if (d>1.0) d=1.0; Vector3 closest_A=p_points_A[0]+rel_A*d; Vector3 closest_B=Geometry::get_closest_point_to_segment_uncapped(closest_A, p_points_B); p_callback->call(closest_A,closest_B); } static void _generate_contacts_face_face(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A <2 ); ERR_FAIL_COND( p_point_count_B <3 ); #endif static const int max_clip=32; Vector3 _clipbuf1[max_clip]; Vector3 _clipbuf2[max_clip]; Vector3 *clipbuf_src=_clipbuf1; Vector3 *clipbuf_dst=_clipbuf2; int clipbuf_len=p_point_count_A; // copy A points to clipbuf_src for (int i=0;i= max_clip ); clipbuf_dst[dst_idx++]=clipbuf_src[j]; } // check for different sides and non coplanar // if ( (dist0*dist1) < -CMP_EPSILON && !(edge && j)) { if ( (dist0*dist1) < 0 && !(edge && j)) { // calculate intersection Vector3 rel = edge1_A - edge0_A; real_t den=clip.normal.dot( rel ); real_t dist=-(clip.normal.dot( edge0_A )-clip.d)/den; Vector3 inters = edge0_A+rel*dist; ERR_FAIL_COND( dst_idx >= max_clip ); clipbuf_dst[dst_idx]=inters; dst_idx++; } } clipbuf_len=dst_idx; SWAP(clipbuf_src,clipbuf_dst); } // generate contacts //Plane plane_A(p_points_A[0],p_points_A[1],p_points_A[2]); int added=0; for (int i=0;iCMP_EPSILON) continue; Vector3 closest_B=clipbuf_src[i] - plane_B.normal*d; p_callback->call(clipbuf_src[i],closest_B); added++; } } static void _generate_contacts_from_supports(const Vector3 * p_points_A,int p_point_count_A, const Vector3 * p_points_B,int p_point_count_B,_CollectorCallback *p_callback) { #ifdef DEBUG_ENABLED ERR_FAIL_COND( p_point_count_A <1 ); ERR_FAIL_COND( p_point_count_B <1 ); #endif static const GenerateContactsFunc generate_contacts_func_table[3][3]={ { _generate_contacts_point_point, _generate_contacts_point_edge, _generate_contacts_point_face, },{ 0, _generate_contacts_edge_edge, _generate_contacts_face_face, },{ 0,0, _generate_contacts_face_face, } }; int pointcount_B; int pointcount_A; const Vector3 *points_A; const Vector3 *points_B; if (p_point_count_A > p_point_count_B) { //swap p_callback->swap = !p_callback->swap; p_callback->normal = -p_callback->normal; pointcount_B = p_point_count_A; pointcount_A = p_point_count_B; points_A=p_points_B; points_B=p_points_A; } else { pointcount_B = p_point_count_B; pointcount_A = p_point_count_A; points_A=p_points_A; points_B=p_points_B; } int version_A = (pointcount_A > 3 ? 3 : pointcount_A) -1; int version_B = (pointcount_B > 3 ? 3 : pointcount_B) -1; GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B]; ERR_FAIL_COND(!contacts_func); contacts_func(points_A,pointcount_A,points_B,pointcount_B,p_callback); } template class SeparatorAxisTest { const ShapeA *shape_A; const ShapeB *shape_B; const Transform *transform_A; const Transform *transform_B; real_t best_depth; Vector3 best_axis; _CollectorCallback *callback; Vector3 separator_axis; public: _FORCE_INLINE_ bool test_previous_axis() { if (callback && callback->prev_axis && *callback->prev_axis!=Vector3()) return test_axis(*callback->prev_axis); else return true; } _FORCE_INLINE_ bool test_axis(const Vector3& p_axis) { Vector3 axis=p_axis; if ( Math::abs(axis.x)project_range(axis,*transform_A,min_A,max_A); shape_B->project_range(axis,*transform_B,min_B,max_B); min_B -= ( max_A - min_A ) * 0.5; max_B += ( max_A - min_A ) * 0.5; real_t dmin = min_B - ( min_A + max_A ) * 0.5; real_t dmax = max_B - ( min_A + max_A ) * 0.5; if (dmin > 0.0 || dmax < 0.0) { separator_axis=axis; return false; // doesn't contain 0 } //use the smallest depth dmin = Math::abs(dmin); if ( dmax < dmin ) { if ( dmax < best_depth ) { best_depth=dmax; best_axis=axis; } } else { if ( dmin < best_depth ) { best_depth=dmin; best_axis=-axis; // keep it as A axis } } return true; } _FORCE_INLINE_ void generate_contacts() { // nothing to do, don't generate if (best_axis==Vector3(0.0,0.0,0.0)) return; if (!callback->callback) { //just was checking intersection? callback->collided=true; if (callback->prev_axis) *callback->prev_axis=best_axis; return; } static const int max_supports=16; Vector3 supports_A[max_supports]; int support_count_A; shape_A->get_supports(transform_A->basis.xform_inv(-best_axis).normalized(),max_supports,supports_A,support_count_A); for(int i=0;ixform(supports_A[i]); } Vector3 supports_B[max_supports]; int support_count_B; shape_B->get_supports(transform_B->basis.xform_inv(best_axis).normalized(),max_supports,supports_B,support_count_B); for(int i=0;ixform(supports_B[i]); } /* print_line("best depth: "+rtos(best_depth)); for(int i=0;inormal=best_axis; if (callback->prev_axis) *callback->prev_axis=best_axis; _generate_contacts_from_supports(supports_A,support_count_A,supports_B,support_count_B,callback); callback->collided=true; //CollisionSolverSW::CallbackResult cbk=NULL; //cbk(Vector3(),Vector3(),NULL); } _FORCE_INLINE_ SeparatorAxisTest(const ShapeA *p_shape_A,const Transform& p_transform_A, const ShapeB *p_shape_B,const Transform& p_transform_B,_CollectorCallback *p_callback) { best_depth=1e15; shape_A=p_shape_A; shape_B=p_shape_B; transform_A=&p_transform_A; transform_B=&p_transform_B; callback=p_callback; } }; /****** SAT TESTS *******/ /****** SAT TESTS *******/ /****** SAT TESTS *******/ /****** SAT TESTS *******/ typedef void (*CollisionFunc)(const ShapeSW*,const Transform&,const ShapeSW*,const Transform&,_CollectorCallback *p_callback); static void _collision_sphere_sphere(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const SphereShapeSW *sphere_A = static_cast(p_a); const SphereShapeSW *sphere_B = static_cast(p_b); SeparatorAxisTest separator(sphere_A,p_transform_a,sphere_B,p_transform_b,p_collector); // previous axis if (!separator.test_previous_axis()) return; if (!separator.test_axis( (p_transform_a.origin-p_transform_b.origin).normalized() )) return; separator.generate_contacts(); } static void _collision_sphere_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const SphereShapeSW *sphere_A = static_cast(p_a); const BoxShapeSW *box_B = static_cast(p_b); SeparatorAxisTest separator(sphere_A,p_transform_a,box_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; // test faces for (int i=0;i<3;i++) { Vector3 axis = p_transform_b.basis.get_axis(i).normalized(); if (!separator.test_axis( axis )) return; } // calculate closest point to sphere Vector3 cnormal=p_transform_b.xform_inv( p_transform_a.origin ); Vector3 cpoint=p_transform_b.xform( Vector3( (cnormal.x<0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x, (cnormal.y<0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y, (cnormal.z<0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z ) ); // use point to test axis Vector3 point_axis = (p_transform_a.origin - cpoint).normalized(); if (!separator.test_axis( point_axis )) return; // test edges for (int i=0;i<3;i++) { Vector3 axis = point_axis.cross( p_transform_b.basis.get_axis(i) ).cross( p_transform_b.basis.get_axis(i) ).normalized(); if (!separator.test_axis( axis )) return; } separator.generate_contacts(); } static void _collision_sphere_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const SphereShapeSW *sphere_A = static_cast(p_a); const CapsuleShapeSW *capsule_B = static_cast(p_b); SeparatorAxisTest separator(sphere_A,p_transform_a,capsule_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; //capsule sphere 1, sphere Vector3 capsule_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5); Vector3 capsule_ball_1 = p_transform_b.origin + capsule_axis; if (!separator.test_axis( (capsule_ball_1 - p_transform_a.origin).normalized() ) ) return; //capsule sphere 2, sphere Vector3 capsule_ball_2 = p_transform_b.origin - capsule_axis; if (!separator.test_axis( (capsule_ball_1 - p_transform_a.origin).normalized() ) ) return; //capsule edge, sphere Vector3 b2a = p_transform_a.origin - p_transform_b.origin; Vector3 axis = b2a.cross( capsule_axis ).cross( capsule_axis ).normalized(); if (!separator.test_axis( axis )) return; separator.generate_contacts(); } static void _collision_sphere_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const SphereShapeSW *sphere_A = static_cast(p_a); const ConvexPolygonShapeSW *convex_polygon_B = static_cast(p_b); SeparatorAxisTest separator(sphere_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; const Geometry::MeshData &mesh = convex_polygon_B->get_mesh(); const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int face_count = mesh.faces.size(); const Geometry::MeshData::Edge *edges = mesh.edges.ptr(); int edge_count = mesh.edges.size(); const Vector3 *vertices = mesh.vertices.ptr(); int vertex_count = mesh.vertices.size(); // faces of B for (int i=0;i(p_a); const FaceShapeSW *face_B = static_cast(p_b); SeparatorAxisTest separator(sphere_A,p_transform_a,face_B,p_transform_b,p_collector); Vector3 vertex[3]={ p_transform_b.xform( face_B->vertex[0] ), p_transform_b.xform( face_B->vertex[1] ), p_transform_b.xform( face_B->vertex[2] ), }; if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() )) return; // edges and points of B for(int i=0;i<3;i++) { Vector3 n1=vertex[i]-p_transform_a.origin; if (!separator.test_axis( n1.normalized() )) { return; } Vector3 n2=vertex[(i+1)%3]-vertex[i]; Vector3 axis = n1.cross(n2).cross(n2).normalized(); if (!separator.test_axis( axis )) { return; } } separator.generate_contacts(); } static void _collision_box_box(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const BoxShapeSW *box_A = static_cast(p_a); const BoxShapeSW *box_B = static_cast(p_b); SeparatorAxisTest separator(box_A,p_transform_a,box_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; // test faces of A for (int i=0;i<3;i++) { Vector3 axis = p_transform_a.basis.get_axis(i).normalized(); if (!separator.test_axis( axis )) return; } // test faces of B for (int i=0;i<3;i++) { Vector3 axis = p_transform_b.basis.get_axis(i).normalized(); if (!separator.test_axis( axis )) return; } // test combined edges for (int i=0;i<3;i++) { for (int j=0;j<3;j++) { Vector3 axis = p_transform_a.basis.get_axis(i).cross( p_transform_b.basis.get_axis(j) ); if (axis.length_squared()(p_a); const CapsuleShapeSW *capsule_B = static_cast(p_b); SeparatorAxisTest separator(box_A,p_transform_a,capsule_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; // faces of A for (int i=0;i<3;i++) { Vector3 axis = p_transform_a.basis.get_axis(i); if (!separator.test_axis( axis )) return; } Vector3 cyl_axis = p_transform_b.basis.get_axis(2).normalized(); // edges of A, capsule cylinder for (int i=0;i<3;i++) { // cylinder Vector3 box_axis = p_transform_a.basis.get_axis(i); Vector3 axis = box_axis.cross( cyl_axis ); if (axis.length_squared() < CMP_EPSILON) continue; if (!separator.test_axis( axis.normalized() )) return; } // points of A, capsule cylinder // this sure could be made faster somehow.. for (int i=0;i<2;i++) { for (int j=0;j<2;j++) { for (int k=0;k<2;k++) { Vector3 he = box_A->get_half_extents(); he.x*=(i*2-1); he.y*=(j*2-1); he.z*=(k*2-1); Vector3 point=p_transform_a.origin; for(int l=0;l<3;l++) point+=p_transform_a.basis.get_axis(l)*he[l]; //Vector3 axis = (point - cyl_axis * cyl_axis.dot(point)).normalized(); Vector3 axis = Plane(cyl_axis,0).project(point).normalized(); if (!separator.test_axis( axis )) return; } } } // capsule balls, edges of A for (int i=0;i<2;i++) { Vector3 capsule_axis = p_transform_b.basis.get_axis(2)*(capsule_B->get_height()*0.5); Vector3 sphere_pos = p_transform_b.origin + ((i==0)?capsule_axis:-capsule_axis); Vector3 cnormal=p_transform_a.xform_inv( sphere_pos ); Vector3 cpoint=p_transform_a.xform( Vector3( (cnormal.x<0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x, (cnormal.y<0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y, (cnormal.z<0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z ) ); // use point to test axis Vector3 point_axis = (sphere_pos - cpoint).normalized(); if (!separator.test_axis( point_axis )) return; // test edges of A for (int i=0;i<3;i++) { Vector3 axis = point_axis.cross( p_transform_a.basis.get_axis(i) ).cross( p_transform_a.basis.get_axis(i) ).normalized(); if (!separator.test_axis( axis )) return; } } separator.generate_contacts(); } static void _collision_box_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const BoxShapeSW *box_A = static_cast(p_a); const ConvexPolygonShapeSW *convex_polygon_B = static_cast(p_b); SeparatorAxisTest separator(box_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; const Geometry::MeshData &mesh = convex_polygon_B->get_mesh(); const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int face_count = mesh.faces.size(); const Geometry::MeshData::Edge *edges = mesh.edges.ptr(); int edge_count = mesh.edges.size(); const Vector3 *vertices = mesh.vertices.ptr(); int vertex_count = mesh.vertices.size(); // faces of A for (int i=0;i<3;i++) { Vector3 axis = p_transform_a.basis.get_axis(i).normalized(); if (!separator.test_axis( axis )) return; } // faces of B for (int i=0;iB edges for (int i=0;i<3;i++) { Vector3 e1 = p_transform_a.basis.get_axis(i); for (int j=0;j(p_a); const FaceShapeSW *face_B = static_cast(p_b); SeparatorAxisTest separator(box_A,p_transform_a,face_B,p_transform_b,p_collector); Vector3 vertex[3]={ p_transform_b.xform( face_B->vertex[0] ), p_transform_b.xform( face_B->vertex[1] ), p_transform_b.xform( face_B->vertex[2] ), }; if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() )) return; // faces of A for (int i=0;i<3;i++) { Vector3 axis = p_transform_a.basis.get_axis(i).normalized(); if (!separator.test_axis( axis )) return; } // combined edges for(int i=0;i<3;i++) { Vector3 e=vertex[i]-vertex[(i+1)%3]; for (int i=0;i<3;i++) { Vector3 axis = p_transform_a.basis.get_axis(i); if (!separator.test_axis( e.cross(axis).normalized() )) return; } } separator.generate_contacts(); } static void _collision_capsule_capsule(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const CapsuleShapeSW *capsule_A = static_cast(p_a); const CapsuleShapeSW *capsule_B = static_cast(p_b); SeparatorAxisTest separator(capsule_A,p_transform_a,capsule_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; // some values Vector3 capsule_A_axis = p_transform_a.basis.get_axis(2) * (capsule_A->get_height() * 0.5); Vector3 capsule_B_axis = p_transform_b.basis.get_axis(2) * (capsule_B->get_height() * 0.5); Vector3 capsule_A_ball_1 = p_transform_a.origin + capsule_A_axis; Vector3 capsule_A_ball_2 = p_transform_a.origin - capsule_A_axis; Vector3 capsule_B_ball_1 = p_transform_b.origin + capsule_B_axis; Vector3 capsule_B_ball_2 = p_transform_b.origin - capsule_B_axis; //balls-balls if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).normalized() ) ) return; if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).normalized() ) ) return; if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_1 ).normalized() ) ) return; if (!separator.test_axis( (capsule_A_ball_2 - capsule_B_ball_2 ).normalized() ) ) return; // edges-balls if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_1 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) ) return; if (!separator.test_axis( (capsule_A_ball_1 - capsule_B_ball_2 ).cross(capsule_A_axis).cross(capsule_A_axis).normalized() ) ) return; if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_1 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) ) return; if (!separator.test_axis( (capsule_B_ball_1 - capsule_A_ball_2 ).cross(capsule_B_axis).cross(capsule_B_axis).normalized() ) ) return; // edges if (!separator.test_axis( capsule_A_axis.cross(capsule_B_axis).normalized() ) ) return; separator.generate_contacts(); } static void _collision_capsule_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const CapsuleShapeSW *capsule_A = static_cast(p_a); const ConvexPolygonShapeSW *convex_polygon_B = static_cast(p_b); SeparatorAxisTest separator(capsule_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; const Geometry::MeshData &mesh = convex_polygon_B->get_mesh(); const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int face_count = mesh.faces.size(); const Geometry::MeshData::Edge *edges = mesh.edges.ptr(); int edge_count = mesh.edges.size(); const Vector3 *vertices = mesh.vertices.ptr(); int vertex_count = mesh.vertices.size(); // faces of B for (int i=0;iget_height()*0.5); Vector3 sphere_pos = p_transform_a.origin + ((i==0)?capsule_axis:-capsule_axis); for (int j=0;j(p_a); const FaceShapeSW *face_B = static_cast(p_b); SeparatorAxisTest separator(capsule_A,p_transform_a,face_B,p_transform_b,p_collector); Vector3 vertex[3]={ p_transform_b.xform( face_B->vertex[0] ), p_transform_b.xform( face_B->vertex[1] ), p_transform_b.xform( face_B->vertex[2] ), }; if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() )) return; // edges of B, capsule cylinder Vector3 capsule_axis = p_transform_a.basis.get_axis(2)*(capsule_A->get_height()*0.5); for (int i=0;i<3;i++) { // edge-cylinder Vector3 edge_axis = vertex[i]-vertex[(i+1)%3]; Vector3 axis = edge_axis.cross( capsule_axis ).normalized(); if (!separator.test_axis( axis )) return; if (!separator.test_axis( (p_transform_a.origin-vertex[i]).cross(capsule_axis).cross(capsule_axis).normalized() )) return; for (int j=0;j<2;j++) { // point-spheres Vector3 sphere_pos = p_transform_a.origin + ( (j==0) ? capsule_axis : -capsule_axis ); Vector3 n1=sphere_pos - vertex[i]; if (!separator.test_axis( n1.normalized() )) return; Vector3 n2=edge_axis; axis = n1.cross(n2).cross(n2); if (!separator.test_axis( axis.normalized() )) return; } } separator.generate_contacts(); } static void _collision_convex_polygon_convex_polygon(const ShapeSW *p_a,const Transform &p_transform_a,const ShapeSW *p_b,const Transform &p_transform_b,_CollectorCallback *p_collector) { const ConvexPolygonShapeSW *convex_polygon_A = static_cast(p_a); const ConvexPolygonShapeSW *convex_polygon_B = static_cast(p_b); SeparatorAxisTest separator(convex_polygon_A,p_transform_a,convex_polygon_B,p_transform_b,p_collector); if (!separator.test_previous_axis()) return; const Geometry::MeshData &mesh_A = convex_polygon_A->get_mesh(); const Geometry::MeshData::Face *faces_A = mesh_A.faces.ptr(); int face_count_A = mesh_A.faces.size(); const Geometry::MeshData::Edge *edges_A = mesh_A.edges.ptr(); int edge_count_A = mesh_A.edges.size(); const Vector3 *vertices_A = mesh_A.vertices.ptr(); int vertex_count_A = mesh_A.vertices.size(); const Geometry::MeshData &mesh_B = convex_polygon_B->get_mesh(); const Geometry::MeshData::Face *faces_B = mesh_B.faces.ptr(); int face_count_B = mesh_B.faces.size(); const Geometry::MeshData::Edge *edges_B = mesh_B.edges.ptr(); int edge_count_B = mesh_B.edges.size(); const Vector3 *vertices_B = mesh_B.vertices.ptr(); int vertex_count_B = mesh_B.vertices.size(); // faces of A for (int i=0;iB edges for (int i=0;i(p_a); const FaceShapeSW *face_B = static_cast(p_b); SeparatorAxisTest separator(convex_polygon_A,p_transform_a,face_B,p_transform_b,p_collector); const Geometry::MeshData &mesh = convex_polygon_A->get_mesh(); const Geometry::MeshData::Face *faces = mesh.faces.ptr(); int face_count = mesh.faces.size(); const Geometry::MeshData::Edge *edges = mesh.edges.ptr(); int edge_count = mesh.edges.size(); const Vector3 *vertices = mesh.vertices.ptr(); int vertex_count = mesh.vertices.size(); Vector3 vertex[3]={ p_transform_b.xform( face_B->vertex[0] ), p_transform_b.xform( face_B->vertex[1] ), p_transform_b.xform( face_B->vertex[2] ), }; if (!separator.test_axis( (vertex[0]-vertex[2]).cross(vertex[0]-vertex[1]).normalized() )) return; // faces of A for (int i=0;iB edges for (int i=0;iget_type(); ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_PLANE,false); ERR_FAIL_COND_V(type_A==PhysicsServer::SHAPE_RAY,false); ERR_FAIL_COND_V(p_shape_A->is_concave(),false); PhysicsServer::ShapeType type_B=p_shape_B->get_type(); ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_PLANE,false); ERR_FAIL_COND_V(type_B==PhysicsServer::SHAPE_RAY,false); ERR_FAIL_COND_V(p_shape_B->is_concave(),false); static const CollisionFunc collision_table[5][5]={ {_collision_sphere_sphere, _collision_sphere_box, _collision_sphere_capsule, _collision_sphere_convex_polygon, _collision_sphere_face}, {0, _collision_box_box, _collision_box_capsule, _collision_box_convex_polygon, _collision_box_face}, {0, 0, _collision_capsule_capsule, _collision_capsule_convex_polygon, _collision_capsule_face}, {0, 0, 0, _collision_convex_polygon_convex_polygon, _collision_convex_polygon_face}, {0, 0, 0, 0, 0}, }; _CollectorCallback callback; callback.callback=p_result_callback; callback.swap=p_swap; callback.userdata=p_userdata; callback.collided=false; callback.prev_axis=r_prev_axis; const ShapeSW *A=p_shape_A; const ShapeSW *B=p_shape_B; const Transform *transform_A=&p_transform_A; const Transform *transform_B=&p_transform_B; if (type_A > type_B) { SWAP(A,B); SWAP(transform_A,transform_B); SWAP(type_A,type_B); callback.swap = !callback.swap; } CollisionFunc collision_func = collision_table[type_A-2][type_B-2]; ERR_FAIL_COND_V(!collision_func,false); collision_func(A,*transform_A,B,*transform_B,&callback); return callback.collided; }