// file: core/math/math_2d.h // commit: 7ad14e7a3e6f87ddc450f7e34621eb5200808451 // file: core/math/math_2d.cpp // commit: 7ad14e7a3e6f87ddc450f7e34621eb5200808451 // file: core/variant_call.cpp // commit: 5ad9be4c24e9d7dc5672fdc42cea896622fe5685 using System; using System.Runtime.InteropServices; #if REAL_T_IS_DOUBLE using real_t = System.Double; #else using real_t = System.Single; #endif namespace Godot { /// /// 2-element structure that can be used to represent positions in 2D space or any other pair of numeric values. /// [Serializable] [StructLayout(LayoutKind.Sequential)] public struct Vector2 : IEquatable { public enum Axis { X = 0, Y } public real_t x; public real_t y; public real_t this[int index] { get { switch (index) { case 0: return x; case 1: return y; default: throw new IndexOutOfRangeException(); } } set { switch (index) { case 0: x = value; return; case 1: y = value; return; default: throw new IndexOutOfRangeException(); } } } internal void Normalize() { real_t lengthsq = LengthSquared(); if (lengthsq == 0) { x = y = 0f; } else { real_t length = Mathf.Sqrt(lengthsq); x /= length; y /= length; } } public Vector2 Abs() { return new Vector2(Mathf.Abs(x), Mathf.Abs(y)); } public real_t Angle() { return Mathf.Atan2(y, x); } public real_t AngleTo(Vector2 to) { return Mathf.Atan2(Cross(to), Dot(to)); } public real_t AngleToPoint(Vector2 to) { return Mathf.Atan2(y - to.y, x - to.x); } public real_t Aspect() { return x / y; } public Vector2 Bounce(Vector2 n) { return -Reflect(n); } public Vector2 Ceil() { return new Vector2(Mathf.Ceil(x), Mathf.Ceil(y)); } public Vector2 Clamped(real_t length) { var v = this; real_t l = Length(); if (l > 0 && length < l) { v /= l; v *= length; } return v; } public real_t Cross(Vector2 b) { return x * b.y - y * b.x; } public Vector2 CubicInterpolate(Vector2 b, Vector2 preA, Vector2 postB, real_t t) { var p0 = preA; var p1 = this; var p2 = b; var p3 = postB; real_t t2 = t * t; real_t t3 = t2 * t; return 0.5f * (p1 * 2.0f + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); } public Vector2 DirectionTo(Vector2 b) { return new Vector2(b.x - x, b.y - y).Normalized(); } public real_t DistanceSquaredTo(Vector2 to) { return (x - to.x) * (x - to.x) + (y - to.y) * (y - to.y); } public real_t DistanceTo(Vector2 to) { return Mathf.Sqrt((x - to.x) * (x - to.x) + (y - to.y) * (y - to.y)); } public real_t Dot(Vector2 with) { return x * with.x + y * with.y; } public Vector2 Floor() { return new Vector2(Mathf.Floor(x), Mathf.Floor(y)); } public bool IsNormalized() { return Mathf.Abs(LengthSquared() - 1.0f) < Mathf.Epsilon; } public real_t Length() { return Mathf.Sqrt(x * x + y * y); } public real_t LengthSquared() { return x * x + y * y; } public Vector2 LinearInterpolate(Vector2 b, real_t t) { var res = this; res.x += t * (b.x - x); res.y += t * (b.y - y); return res; } public Vector2 MoveToward(Vector2 to, real_t delta) { var v = this; var vd = to - v; var len = vd.Length(); return len <= delta || len < Mathf.Epsilon ? to : v + vd / len * delta; } public Vector2 Normalized() { var v = this; v.Normalize(); return v; } public Vector2 PosMod(real_t mod) { Vector2 v; v.x = Mathf.PosMod(x, mod); v.y = Mathf.PosMod(y, mod); return v; } public Vector2 PosMod(Vector2 modv) { Vector2 v; v.x = Mathf.PosMod(x, modv.x); v.y = Mathf.PosMod(y, modv.y); return v; } public Vector2 Project(Vector2 onNormal) { return onNormal * (Dot(onNormal) / onNormal.LengthSquared()); } public Vector2 Reflect(Vector2 n) { return 2 * Dot(n) * n - this; } public Vector2 Rotated(real_t phi) { real_t rads = Angle() + phi; return new Vector2(Mathf.Cos(rads), Mathf.Sin(rads)) * Length(); } public Vector2 Round() { return new Vector2(Mathf.Round(x), Mathf.Round(y)); } public Vector2 Sign() { Vector2 v; v.x = Mathf.Sign(x); v.y = Mathf.Sign(y); return v; } public Vector2 Slerp(Vector2 b, real_t t) { real_t theta = AngleTo(b); return Rotated(theta * t); } public Vector2 Slide(Vector2 n) { return this - n * Dot(n); } public Vector2 Snapped(Vector2 by) { return new Vector2(Mathf.Stepify(x, by.x), Mathf.Stepify(y, by.y)); } public Vector2 Tangent() { return new Vector2(y, -x); } // Constants private static readonly Vector2 _zero = new Vector2(0, 0); private static readonly Vector2 _one = new Vector2(1, 1); private static readonly Vector2 _negOne = new Vector2(-1, -1); private static readonly Vector2 _inf = new Vector2(Mathf.Inf, Mathf.Inf); private static readonly Vector2 _up = new Vector2(0, -1); private static readonly Vector2 _down = new Vector2(0, 1); private static readonly Vector2 _right = new Vector2(1, 0); private static readonly Vector2 _left = new Vector2(-1, 0); public static Vector2 Zero { get { return _zero; } } public static Vector2 NegOne { get { return _negOne; } } public static Vector2 One { get { return _one; } } public static Vector2 Inf { get { return _inf; } } public static Vector2 Up { get { return _up; } } public static Vector2 Down { get { return _down; } } public static Vector2 Right { get { return _right; } } public static Vector2 Left { get { return _left; } } // Constructors public Vector2(real_t x, real_t y) { this.x = x; this.y = y; } public Vector2(Vector2 v) { x = v.x; y = v.y; } public static Vector2 operator +(Vector2 left, Vector2 right) { left.x += right.x; left.y += right.y; return left; } public static Vector2 operator -(Vector2 left, Vector2 right) { left.x -= right.x; left.y -= right.y; return left; } public static Vector2 operator -(Vector2 vec) { vec.x = -vec.x; vec.y = -vec.y; return vec; } public static Vector2 operator *(Vector2 vec, real_t scale) { vec.x *= scale; vec.y *= scale; return vec; } public static Vector2 operator *(real_t scale, Vector2 vec) { vec.x *= scale; vec.y *= scale; return vec; } public static Vector2 operator *(Vector2 left, Vector2 right) { left.x *= right.x; left.y *= right.y; return left; } public static Vector2 operator /(Vector2 vec, real_t divisor) { vec.x /= divisor; vec.y /= divisor; return vec; } public static Vector2 operator /(Vector2 vec, Vector2 divisorv) { vec.x /= divisorv.x; vec.y /= divisorv.y; return vec; } public static Vector2 operator %(Vector2 vec, real_t divisor) { vec.x %= divisor; vec.y %= divisor; return vec; } public static Vector2 operator %(Vector2 vec, Vector2 divisorv) { vec.x %= divisorv.x; vec.y %= divisorv.y; return vec; } public static bool operator ==(Vector2 left, Vector2 right) { return left.Equals(right); } public static bool operator !=(Vector2 left, Vector2 right) { return !left.Equals(right); } public static bool operator <(Vector2 left, Vector2 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { return left.y < right.y; } return left.x < right.x; } public static bool operator >(Vector2 left, Vector2 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { return left.y > right.y; } return left.x > right.x; } public static bool operator <=(Vector2 left, Vector2 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { return left.y <= right.y; } return left.x <= right.x; } public static bool operator >=(Vector2 left, Vector2 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { return left.y >= right.y; } return left.x >= right.x; } public override bool Equals(object obj) { if (obj is Vector2) { return Equals((Vector2)obj); } return false; } public bool Equals(Vector2 other) { return x == other.x && y == other.y; } public bool IsEqualApprox(Vector2 other) { return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y); } public override int GetHashCode() { return y.GetHashCode() ^ x.GetHashCode(); } public override string ToString() { return String.Format("({0}, {1})", new object[] { x.ToString(), y.ToString() }); } public string ToString(string format) { return String.Format("({0}, {1})", new object[] { x.ToString(format), y.ToString(format) }); } } }