/*************************************************/ /* rasterizer_gles2.cpp */ /*************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /*************************************************/ /* Source code within this file is: */ /* (c) 2007-2010 Juan Linietsky, Ariel Manzur */ /* All Rights Reserved. */ /*************************************************/ #include "rasterizer_flash.h" #include "os/os.h" #include "globals.h" #include #include "servers/visual/particle_system_sw.h" #include _FORCE_INLINE_ static void _set_color_attrib(const Color& p_color) { } RasterizerFlash::FX::FX() { bgcolor_active=false; bgcolor=Color(0,1,0,1); skybox_active=false; glow_active=false; glow_passes=4; glow_attenuation=0.7; glow_bloom=0.0; antialias_active=true; antialias_tolerance=15; ssao_active=true; ssao_attenuation=0.7; ssao_radius=0.18; ssao_max_distance=1.0; ssao_range_min=0.25; ssao_range_max=0.48; ssao_only=false; fog_active=false; fog_near=5; fog_far=100; fog_attenuation=1.0; fog_color_near=Color(1,1,1,1); fog_color_far=Color(1,1,1,1); fog_bg=false; toon_active=false; toon_treshold=0.4; toon_soft=0.001; edge_active=false; edge_color=Color(0,0,0,1); edge_size=1.0; } void RasterizerFlash::_draw_primitive(int p_points, const Vector3 *p_vertices, const Vector3 *p_normals, const Color* p_colors, const Vector3 *p_uvs,const Plane *p_tangents,int p_instanced) { }; RID RasterizerFlash::texture_create() { Texture *texture = memnew(Texture); return texture_owner.make_rid( texture ); } void RasterizerFlash::texture_allocate(RID p_texture,int p_width, int p_height,Image::Format p_format,uint32_t p_flags,int p_mipmap_count) { } void RasterizerFlash::texture_set_data(RID p_texture,const Image& p_image,VS::CubeMapSide p_cube_side) { } Image RasterizerFlash::texture_get_data(RID p_texture,VS::CubeMapSide p_cube_side) const { return Image(); } void RasterizerFlash::texture_set_flags(RID p_texture,uint32_t p_flags) { } uint32_t RasterizerFlash::texture_get_flags(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->flags; } Image::Format RasterizerFlash::texture_get_format(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,Image::FORMAT_GRAYSCALE); return texture->format; } uint32_t RasterizerFlash::texture_get_width(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->width; } uint32_t RasterizerFlash::texture_get_height(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->height; } bool RasterizerFlash::texture_has_alpha(RID p_texture) const { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND_V(!texture,0); return texture->has_alpha; } void RasterizerFlash::texture_set_size_override(RID p_texture,int p_width, int p_height) { Texture * texture = texture_owner.get(p_texture); ERR_FAIL_COND(!texture); ERR_FAIL_COND(p_width<=0 || p_width>4096); ERR_FAIL_COND(p_height<=0 || p_height>4096); //real texture size is in alloc width and height texture->width=p_width; texture->height=p_height; } /* SHADER API */ RID RasterizerFlash::shader_create(VS::ShaderMode p_mode) { Shader *shader = memnew( Shader ); shader->mode=p_mode; RID rid = shader_owner.make_rid(shader); shader_set_mode(rid,p_mode); _shader_make_dirty(shader); return rid; } void RasterizerFlash::shader_set_mode(RID p_shader,VS::ShaderMode p_mode) { } VS::ShaderMode RasterizerFlash::shader_get_mode(RID p_shader) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader,VS::SHADER_MATERIAL); return shader->mode; } void RasterizerFlash::shader_set_code(RID p_shader, const String& p_vertex, const String& p_fragment,int p_vertex_ofs,int p_fragment_ofs) { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND(!shader); #ifdef DEBUG_ENABLED if (shader->vertex_code==p_vertex && shader->fragment_code==p_fragment) return; #endif shader->fragment_code=p_fragment; shader->vertex_code=p_vertex; shader->fragment_line=p_fragment_ofs; shader->vertex_line=p_vertex_ofs; _shader_make_dirty(shader); } String RasterizerFlash::shader_get_vertex_code(RID p_shader) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader,String()); return shader->vertex_code; } String RasterizerFlash::shader_get_fragment_code(RID p_shader) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND_V(!shader,String()); return shader->fragment_code; } void RasterizerFlash::_shader_make_dirty(Shader* p_shader) { if (p_shader->dirty_list.in_list()) return; _shader_dirty_list.add(&p_shader->dirty_list); } void RasterizerFlash::shader_get_param_list(RID p_shader, List *p_param_list) const { Shader *shader=shader_owner.get(p_shader); ERR_FAIL_COND(!shader); if (shader->dirty_list.in_list()) _update_shader(shader); // ok should be not anymore dirty Map order; for(Map::Element *E=shader->uniforms.front();E;E=E->next()) { order[E->get().order]=E->key(); } for(Map::Element *E=order.front();E;E=E->next()) { PropertyInfo pi; ShaderLanguage::Uniform &u=shader->uniforms[E->get()]; pi.name=E->get(); switch(u.type) { case ShaderLanguage::TYPE_VOID: case ShaderLanguage::TYPE_BOOL: case ShaderLanguage::TYPE_FLOAT: case ShaderLanguage::TYPE_VEC2: case ShaderLanguage::TYPE_VEC3: case ShaderLanguage::TYPE_MAT3: case ShaderLanguage::TYPE_MAT4: case ShaderLanguage::TYPE_VEC4: pi.type=u.default_value.get_type(); break; case ShaderLanguage::TYPE_TEXTURE: pi.type=Variant::_RID; pi.hint=PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string="Texture"; break; case ShaderLanguage::TYPE_CUBEMAP: pi.type=Variant::_RID; pi.hint=PROPERTY_HINT_RESOURCE_TYPE; pi.hint_string="Texture"; break; }; p_param_list->push_back(pi); } } /* COMMON MATERIAL API */ RID RasterizerFlash::material_create() { return material_owner.make_rid( memnew( Material ) ); } void RasterizerFlash::material_set_shader(RID p_material, RID p_shader) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); if (material->shader==p_shader) return; material->shader=p_shader; material->shader_version=0; } RID RasterizerFlash::material_get_shader(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,RID()); return material->shader; } void RasterizerFlash::material_set_param(RID p_material, const StringName& p_param, const Variant& p_value) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); Map::Element *E=material->shader_params.find(p_param); if (E) { if (p_value.get_type()==Variant::NIL) { material->shader_params.erase(E); material->shader_version=0; //get default! } else { E->get().value=p_value; } } else { Material::UniformData ud; ud.index=-1; ud.value=p_value; ud.istexture=p_value.get_type()==Variant::_RID; /// cache it being texture material->shader_params[p_param]=ud; //may be got at some point, or erased } } Variant RasterizerFlash::material_get_param(RID p_material, const StringName& p_param) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,Variant()); if (material->shader.is_valid()) { //update shader params if necesary //make sure the shader is compiled and everything //so the actual parameters can be properly retrieved! material->shader_cache=shader_owner.get( material->shader ); if (!material->shader_cache) { //invalidate material->shader=RID(); material->shader_cache=NULL; } else { if (material->shader_cache->dirty_list.in_list()) _update_shader(material->shader_cache); if (material->shader_cache->valid && material->shader_cache->version!=material->shader_version) { //validate _update_material_shader_params(material); } } } if (material->shader_params.has(p_param)) return material->shader_params[p_param].value; else return Variant(); } void RasterizerFlash::material_set_flag(RID p_material, VS::MaterialFlag p_flag,bool p_enabled) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); ERR_FAIL_INDEX(p_flag,VS::MATERIAL_FLAG_MAX); material->flags[p_flag]=p_enabled; } bool RasterizerFlash::material_get_flag(RID p_material,VS::MaterialFlag p_flag) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,false); ERR_FAIL_INDEX_V(p_flag,VS::MATERIAL_FLAG_MAX,false); return material->flags[p_flag]; } void RasterizerFlash::material_set_hint(RID p_material, VS::MaterialHint p_hint,bool p_enabled) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); ERR_FAIL_INDEX(p_hint,VS::MATERIAL_HINT_MAX); material->hints[p_hint]=p_enabled; } bool RasterizerFlash::material_get_hint(RID p_material,VS::MaterialHint p_hint) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,false); ERR_FAIL_INDEX_V(p_hint,VS::MATERIAL_HINT_MAX,false); return material->hints[p_hint]; } void RasterizerFlash::material_set_shade_model(RID p_material, VS::MaterialShadeModel p_model) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->shade_model=p_model; }; VS::MaterialShadeModel RasterizerFlash::material_get_shade_model(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,VS::MATERIAL_SHADE_MODEL_LAMBERT); return material->shade_model; }; void RasterizerFlash::material_set_blend_mode(RID p_material,VS::MaterialBlendMode p_mode) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->blend_mode=p_mode; } VS::MaterialBlendMode RasterizerFlash::material_get_blend_mode(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,VS::MATERIAL_BLEND_MODE_ADD); return material->blend_mode; } void RasterizerFlash::material_set_line_width(RID p_material,float p_line_width) { Material *material = material_owner.get(p_material); ERR_FAIL_COND(!material); material->line_width=p_line_width; } float RasterizerFlash::material_get_line_width(RID p_material) const { Material *material = material_owner.get(p_material); ERR_FAIL_COND_V(!material,0); return material->line_width; } /* MESH API */ RID RasterizerFlash::mesh_create() { return mesh_owner.make_rid( memnew( Mesh ) ); } void RasterizerFlash::mesh_add_surface(RID p_mesh,VS::PrimitiveType p_primitive,const Array& p_arrays,const Array& p_blend_shapes) { } Error RasterizerFlash::_surface_set_arrays(Surface *p_surface, uint8_t *p_mem,uint8_t *p_index_mem,const Array& p_arrays,bool p_main) { return FAILED; } void RasterizerFlash::mesh_add_custom_surface(RID p_mesh,const Variant& p_dat) { ERR_EXPLAIN("OpenGL Rasterizer does not support custom surfaces. Running on wrong platform?"); ERR_FAIL_V(); } Array RasterizerFlash::mesh_get_surface_arrays(RID p_mesh,int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,Array()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, Array() ); return surface->data; } Array RasterizerFlash::mesh_get_surface_morph_arrays(RID p_mesh,int p_surface) const{ Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,Array()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), Array() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, Array() ); return surface->morph_data; } void RasterizerFlash::mesh_set_morph_target_count(RID p_mesh,int p_amount) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_COND( mesh->surfaces.size()!=0 ); mesh->morph_target_count=p_amount; } int RasterizerFlash::mesh_get_morph_target_count(RID p_mesh) const{ Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); return mesh->morph_target_count; } void RasterizerFlash::mesh_set_morph_target_mode(RID p_mesh,VS::MorphTargetMode p_mode) { ERR_FAIL_INDEX(p_mode,2); Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); mesh->morph_target_mode=p_mode; } VS::MorphTargetMode RasterizerFlash::mesh_get_morph_target_mode(RID p_mesh) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,VS::MORPH_MODE_NORMALIZED); return mesh->morph_target_mode; } void RasterizerFlash::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material,bool p_owned) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_surface, mesh->surfaces.size() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND( !surface); if (surface->material_owned && surface->material.is_valid()) free(surface->material); surface->material_owned=p_owned; surface->material=p_material; } RID RasterizerFlash::mesh_surface_get_material(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,RID()); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), RID() ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, RID() ); return surface->material; } int RasterizerFlash::mesh_surface_get_array_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, -1 ); return surface->array_len; } int RasterizerFlash::mesh_surface_get_array_index_len(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), -1 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, -1 ); return surface->index_array_len; } uint32_t RasterizerFlash::mesh_surface_get_format(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,0); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), 0 ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, 0 ); return surface->format; } VS::PrimitiveType RasterizerFlash::mesh_surface_get_primitive_type(RID p_mesh, int p_surface) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,VS::PRIMITIVE_POINTS); ERR_FAIL_INDEX_V(p_surface, mesh->surfaces.size(), VS::PRIMITIVE_POINTS ); Surface *surface = mesh->surfaces[p_surface]; ERR_FAIL_COND_V( !surface, VS::PRIMITIVE_POINTS ); return surface->primitive; } void RasterizerFlash::mesh_remove_surface(RID p_mesh,int p_index) { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND(!mesh); ERR_FAIL_INDEX(p_index, mesh->surfaces.size() ); Surface *surface = mesh->surfaces[p_index]; ERR_FAIL_COND( !surface); if (mesh->morph_target_count) { for(int i=0;imorph_target_count;i++) memfree(surface->morph_targets_local[i].array); memfree( surface->morph_targets_local ); } memdelete( mesh->surfaces[p_index] ); mesh->surfaces.remove(p_index); } int RasterizerFlash::mesh_get_surface_count(RID p_mesh) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,-1); return mesh->surfaces.size(); } AABB RasterizerFlash::mesh_get_aabb(RID p_mesh) const { Mesh *mesh = mesh_owner.get( p_mesh ); ERR_FAIL_COND_V(!mesh,AABB()); AABB aabb; for (int i=0;isurfaces.size();i++) { if (i==0) aabb=mesh->surfaces[i]->aabb; else aabb.merge_with(mesh->surfaces[i]->aabb); } return aabb; } /* MULTIMESH API */ RID RasterizerFlash::multimesh_create() { return multimesh_owner.make_rid( memnew( MultiMesh )); } void RasterizerFlash::multimesh_set_instance_count(RID p_multimesh,int p_count) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->elements.clear(); // make sure to delete everything, so it "fails" in all implementations multimesh->elements.resize(p_count); } int RasterizerFlash::multimesh_get_instance_count(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,-1); return multimesh->elements.size(); } void RasterizerFlash::multimesh_set_mesh(RID p_multimesh,RID p_mesh) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->mesh=p_mesh; } void RasterizerFlash::multimesh_set_aabb(RID p_multimesh,const AABB& p_aabb) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->aabb=p_aabb; } void RasterizerFlash::multimesh_instance_set_transform(RID p_multimesh,int p_index,const Transform& p_transform) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); ERR_FAIL_INDEX(p_index,multimesh->elements.size()); MultiMesh::Element &e=multimesh->elements[p_index]; e.matrix[0]=p_transform.basis.elements[0][0]; e.matrix[1]=p_transform.basis.elements[1][0]; e.matrix[2]=p_transform.basis.elements[2][0]; e.matrix[3]=0; e.matrix[4]=p_transform.basis.elements[0][1]; e.matrix[5]=p_transform.basis.elements[1][1]; e.matrix[6]=p_transform.basis.elements[2][1]; e.matrix[7]=0; e.matrix[8]=p_transform.basis.elements[0][2]; e.matrix[9]=p_transform.basis.elements[1][2]; e.matrix[10]=p_transform.basis.elements[2][2]; e.matrix[11]=0; e.matrix[12]=p_transform.origin.x; e.matrix[13]=p_transform.origin.y; e.matrix[14]=p_transform.origin.z; e.matrix[15]=1; } void RasterizerFlash::multimesh_instance_set_color(RID p_multimesh,int p_index,const Color& p_color) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh) ERR_FAIL_INDEX(p_index,multimesh->elements.size()); MultiMesh::Element &e=multimesh->elements[p_index]; e.color[0]=CLAMP(p_color.r*255,0,255); e.color[1]=CLAMP(p_color.g*255,0,255); e.color[2]=CLAMP(p_color.b*255,0,255); e.color[3]=CLAMP(p_color.a*255,0,255); } RID RasterizerFlash::multimesh_get_mesh(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,RID()); return multimesh->mesh; } AABB RasterizerFlash::multimesh_get_aabb(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,AABB()); return multimesh->aabb; } Transform RasterizerFlash::multimesh_instance_get_transform(RID p_multimesh,int p_index) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,Transform()); ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Transform()); MultiMesh::Element &e=multimesh->elements[p_index]; Transform tr; tr.basis.elements[0][0]=e.matrix[0]; tr.basis.elements[1][0]=e.matrix[1]; tr.basis.elements[2][0]=e.matrix[2]; tr.basis.elements[0][1]=e.matrix[4]; tr.basis.elements[1][1]=e.matrix[5]; tr.basis.elements[2][1]=e.matrix[6]; tr.basis.elements[0][2]=e.matrix[8]; tr.basis.elements[1][2]=e.matrix[9]; tr.basis.elements[2][2]=e.matrix[10]; tr.origin.x=e.matrix[12]; tr.origin.y=e.matrix[13]; tr.origin.z=e.matrix[14]; return tr; } Color RasterizerFlash::multimesh_instance_get_color(RID p_multimesh,int p_index) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,Color()); ERR_FAIL_INDEX_V(p_index,multimesh->elements.size(),Color()); MultiMesh::Element &e=multimesh->elements[p_index]; Color c; c.r=e.color[0]/255.0; c.g=e.color[1]/255.0; c.b=e.color[2]/255.0; c.a=e.color[3]/255.0; return c; } void RasterizerFlash::multimesh_set_visible_instances(RID p_multimesh,int p_visible) { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); multimesh->visible=p_visible; } int RasterizerFlash::multimesh_get_visible_instances(RID p_multimesh) const { MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND_V(!multimesh,-1); return multimesh->visible; } /* PARTICLES API */ RID RasterizerFlash::particles_create() { Particles *particles = memnew( Particles ); ERR_FAIL_COND_V(!particles,RID()); return particles_owner.make_rid(particles); } void RasterizerFlash::particles_set_amount(RID p_particles, int p_amount) { ERR_FAIL_COND(p_amount<1); Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.amount=p_amount; } int RasterizerFlash::particles_get_amount(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.amount; } void RasterizerFlash::particles_set_emitting(RID p_particles, bool p_emitting) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emitting=p_emitting;; } bool RasterizerFlash::particles_is_emitting(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,false); return particles->data.emitting; } void RasterizerFlash::particles_set_visibility_aabb(RID p_particles, const AABB& p_visibility) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.visibility_aabb=p_visibility; } void RasterizerFlash::particles_set_emission_half_extents(RID p_particles, const Vector3& p_half_extents) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emission_half_extents=p_half_extents; } Vector3 RasterizerFlash::particles_get_emission_half_extents(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); return particles->data.emission_half_extents; } void RasterizerFlash::particles_set_emission_base_velocity(RID p_particles, const Vector3& p_base_velocity) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emission_base_velocity=p_base_velocity; } Vector3 RasterizerFlash::particles_get_emission_base_velocity(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); return particles->data.emission_base_velocity; } void RasterizerFlash::particles_set_emission_points(RID p_particles, const DVector& p_points) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.emission_points=p_points; } DVector RasterizerFlash::particles_get_emission_points(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,DVector()); return particles->data.emission_points; } void RasterizerFlash::particles_set_gravity_normal(RID p_particles, const Vector3& p_normal) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.gravity_normal=p_normal; } Vector3 RasterizerFlash::particles_get_gravity_normal(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); return particles->data.gravity_normal; } AABB RasterizerFlash::particles_get_visibility_aabb(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,AABB()); return particles->data.visibility_aabb; } void RasterizerFlash::particles_set_variable(RID p_particles, VS::ParticleVariable p_variable,float p_value) { ERR_FAIL_INDEX(p_variable,VS::PARTICLE_VAR_MAX); Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.particle_vars[p_variable]=p_value; } float RasterizerFlash::particles_get_variable(RID p_particles, VS::ParticleVariable p_variable) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.particle_vars[p_variable]; } void RasterizerFlash::particles_set_randomness(RID p_particles, VS::ParticleVariable p_variable,float p_randomness) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.particle_randomness[p_variable]=p_randomness; } float RasterizerFlash::particles_get_randomness(RID p_particles, VS::ParticleVariable p_variable) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.particle_randomness[p_variable]; } void RasterizerFlash::particles_set_color_phases(RID p_particles, int p_phases) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_COND( p_phases<0 || p_phases>VS::MAX_PARTICLE_COLOR_PHASES ); particles->data.color_phase_count=p_phases; } int RasterizerFlash::particles_get_color_phases(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.color_phase_count; } void RasterizerFlash::particles_set_color_phase_pos(RID p_particles, int p_phase, float p_pos) { ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES); if (p_pos<0.0) p_pos=0.0; if (p_pos>1.0) p_pos=1.0; Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.color_phases[p_phase].pos=p_pos; } float RasterizerFlash::particles_get_color_phase_pos(RID p_particles, int p_phase) const { ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, -1.0); const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.color_phases[p_phase].pos; } void RasterizerFlash::particles_set_color_phase_color(RID p_particles, int p_phase, const Color& p_color) { ERR_FAIL_INDEX(p_phase, VS::MAX_PARTICLE_COLOR_PHASES); Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.color_phases[p_phase].color=p_color; //update alpha particles->has_alpha=false; for(int i=0;idata.color_phases[i].color.a<0.99) particles->has_alpha=true; } } Color RasterizerFlash::particles_get_color_phase_color(RID p_particles, int p_phase) const { ERR_FAIL_INDEX_V(p_phase, VS::MAX_PARTICLE_COLOR_PHASES, Color()); const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Color()); return particles->data.color_phases[p_phase].color; } void RasterizerFlash::particles_set_attractors(RID p_particles, int p_attractors) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_COND( p_attractors<0 || p_attractors>VisualServer::MAX_PARTICLE_ATTRACTORS ); particles->data.attractor_count=p_attractors; } int RasterizerFlash::particles_get_attractors(RID p_particles) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,-1); return particles->data.attractor_count; } void RasterizerFlash::particles_set_attractor_pos(RID p_particles, int p_attractor, const Vector3& p_pos) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count); particles->data.attractors[p_attractor].pos=p_pos;; } Vector3 RasterizerFlash::particles_get_attractor_pos(RID p_particles,int p_attractor) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,Vector3()); ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,Vector3()); return particles->data.attractors[p_attractor].pos; } void RasterizerFlash::particles_set_attractor_strength(RID p_particles, int p_attractor, float p_force) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); ERR_FAIL_INDEX(p_attractor,particles->data.attractor_count); particles->data.attractors[p_attractor].force=p_force; } float RasterizerFlash::particles_get_attractor_strength(RID p_particles,int p_attractor) const { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,0); ERR_FAIL_INDEX_V(p_attractor,particles->data.attractor_count,0); return particles->data.attractors[p_attractor].force; } void RasterizerFlash::particles_set_material(RID p_particles, RID p_material,bool p_owned) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); if (particles->material_owned && particles->material.is_valid()) free(particles->material); particles->material_owned=p_owned; particles->material=p_material; } RID RasterizerFlash::particles_get_material(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,RID()); return particles->material; } void RasterizerFlash::particles_set_use_local_coordinates(RID p_particles, bool p_enable) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.local_coordinates=p_enable; } bool RasterizerFlash::particles_is_using_local_coordinates(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,false); return particles->data.local_coordinates; } bool RasterizerFlash::particles_has_height_from_velocity(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,false); return particles->data.height_from_velocity; } void RasterizerFlash::particles_set_height_from_velocity(RID p_particles, bool p_enable) { Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND(!particles); particles->data.height_from_velocity=p_enable; } AABB RasterizerFlash::particles_get_aabb(RID p_particles) const { const Particles* particles = particles_owner.get( p_particles ); ERR_FAIL_COND_V(!particles,AABB()); return particles->data.visibility_aabb; } /* SKELETON API */ RID RasterizerFlash::skeleton_create() { Skeleton *skeleton = memnew( Skeleton ); ERR_FAIL_COND_V(!skeleton,RID()); return skeleton_owner.make_rid( skeleton ); } void RasterizerFlash::skeleton_resize(RID p_skeleton,int p_bones) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND(!skeleton); if (p_bones == skeleton->bones.size()) { return; }; skeleton->bones.resize(p_bones); } int RasterizerFlash::skeleton_get_bone_count(RID p_skeleton) const { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND_V(!skeleton, -1); return skeleton->bones.size(); } void RasterizerFlash::skeleton_bone_set_transform(RID p_skeleton,int p_bone, const Transform& p_transform) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND(!skeleton); ERR_FAIL_INDEX( p_bone, skeleton->bones.size() ); skeleton->bones[p_bone] = p_transform; } Transform RasterizerFlash::skeleton_bone_get_transform(RID p_skeleton,int p_bone) { Skeleton *skeleton = skeleton_owner.get( p_skeleton ); ERR_FAIL_COND_V(!skeleton, Transform()); ERR_FAIL_INDEX_V( p_bone, skeleton->bones.size(), Transform() ); // something return skeleton->bones[p_bone]; } /* LIGHT API */ RID RasterizerFlash::light_create(VS::LightType p_type) { Light *light = memnew( Light ); light->type=p_type; return light_owner.make_rid(light); } VS::LightType RasterizerFlash::light_get_type(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,VS::LIGHT_OMNI); return light->type; } void RasterizerFlash::light_set_color(RID p_light,VS::LightColor p_type, const Color& p_color) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); ERR_FAIL_INDEX( p_type, 3 ); light->colors[p_type]=p_color; } Color RasterizerFlash::light_get_color(RID p_light,VS::LightColor p_type) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light, Color()); ERR_FAIL_INDEX_V( p_type, 3, Color() ); return light->colors[p_type]; } void RasterizerFlash::light_set_shadow(RID p_light,bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->shadow_enabled=p_enabled; } bool RasterizerFlash::light_has_shadow(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,false); return light->shadow_enabled; } void RasterizerFlash::light_set_volumetric(RID p_light,bool p_enabled) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->volumetric_enabled=p_enabled; } bool RasterizerFlash::light_is_volumetric(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,false); return light->volumetric_enabled; } void RasterizerFlash::light_set_projector(RID p_light,RID p_texture) { Light *light = light_owner.get(p_light); ERR_FAIL_COND(!light); light->projector=p_texture; } RID RasterizerFlash::light_get_projector(RID p_light) const { Light *light = light_owner.get(p_light); ERR_FAIL_COND_V(!light,RID()); return light->projector; } void RasterizerFlash::light_set_var(RID p_light, VS::LightParam p_var, float p_value) { Light * light = light_owner.get( p_light ); ERR_FAIL_COND(!light); ERR_FAIL_INDEX( p_var, VS::LIGHT_PARAM_MAX ); light->vars[p_var]=p_value; } float RasterizerFlash::light_get_var(RID p_light, VS::LightParam p_var) const { Light * light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light,0); ERR_FAIL_INDEX_V( p_var, VS::LIGHT_PARAM_MAX,0 ); return light->vars[p_var]; } void RasterizerFlash::light_set_operator(RID p_light,VS::LightOp p_op) { }; VS::LightOp RasterizerFlash::light_get_operator(RID p_light) const { return VS::LightOp(); }; void RasterizerFlash::light_omni_set_shadow_mode(RID p_light,VS::LightOmniShadowMode p_mode) { }; VS::LightOmniShadowMode RasterizerFlash::light_omni_get_shadow_mode(RID p_light) const { return VS::LIGHT_OMNI_SHADOW_DEFAULT; }; void RasterizerFlash::light_directional_set_shadow_mode(RID p_light,VS::LightDirectionalShadowMode p_mode) { }; VS::LightDirectionalShadowMode RasterizerFlash::light_directional_get_shadow_mode(RID p_light) const { return VS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL; }; void RasterizerFlash::light_directional_set_shadow_max_distance(RID p_light,float p_distance) { }; float RasterizerFlash::light_directional_get_shadow_max_distance(RID p_light) const { return 0; }; void RasterizerFlash::light_directional_set_pssm_split_weight(RID p_light,float p_weight) { }; float RasterizerFlash::light_directional_get_pssm_split_weight(RID p_light) const { return 0; }; void RasterizerFlash::light_directional_set_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param, float p_value) { }; float RasterizerFlash::light_directional_get_shadow_param(RID p_light,VS::LightDirectionalShadowParam p_param) const { return 0; }; AABB RasterizerFlash::light_get_aabb(RID p_light) const { Light *light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light,AABB()); switch( light->type ) { case VS::LIGHT_SPOT: { float len=light->vars[VS::LIGHT_PARAM_RADIUS]; float size=Math::tan(Math::deg2rad(light->vars[VS::LIGHT_PARAM_SPOT_ANGLE]))*len; return AABB( Vector3( -size,-size,-len ), Vector3( size*2, size*2, len ) ); } break; case VS::LIGHT_OMNI: { float r = light->vars[VS::LIGHT_PARAM_RADIUS]; return AABB( -Vector3(r,r,r), Vector3(r,r,r)*2 ); } break; case VS::LIGHT_DIRECTIONAL: { return AABB(); } break; default: {} } ERR_FAIL_V( AABB() ); } RID RasterizerFlash::light_instance_create(RID p_light) { Light *light = light_owner.get( p_light ); ERR_FAIL_COND_V(!light, RID()); LightInstance *light_instance = memnew( LightInstance ); light_instance->light=p_light; light_instance->base=light; light_instance->last_pass=0; return light_instance_owner.make_rid( light_instance ); } void RasterizerFlash::light_instance_set_transform(RID p_light_instance,const Transform& p_transform) { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND(!lighti); lighti->transform=p_transform; } void RasterizerFlash::light_instance_set_active_hint(RID p_light_instance) { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND(!lighti); if (lighti->base->type==VS::LIGHT_DIRECTIONAL) lighti->shadow_pass=scene_pass; else lighti->shadow_pass=frame; } bool RasterizerFlash::light_instance_has_shadow(RID p_light_instance) const { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND_V(!lighti, false); if (!lighti->base->shadow_enabled) return false; if (lighti->base->type==VS::LIGHT_DIRECTIONAL) { if (lighti->shadow_pass!=scene_pass) return false; } else { if (lighti->shadow_pass!=frame) return false; } return !lighti->shadow_buffers.empty(); } bool RasterizerFlash::light_instance_assign_shadow(RID p_light_instance) { return false; } Rasterizer::ShadowType RasterizerFlash::light_instance_get_shadow_type(RID p_light_instance) const { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND_V(!lighti,Rasterizer::SHADOW_NONE); switch(lighti->base->type) { case VS::LIGHT_DIRECTIONAL: return SHADOW_PSM; break; case VS::LIGHT_OMNI: return SHADOW_DUAL_PARABOLOID; break; case VS::LIGHT_SPOT: return SHADOW_SIMPLE; break; } return Rasterizer::SHADOW_NONE; } int RasterizerFlash::light_instance_get_shadow_passes(RID p_light_instance) const { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND_V(!lighti,0); if (lighti->base->type==VS::LIGHT_OMNI) return 2; // dp else return 1; } void RasterizerFlash::light_instance_set_custom_transform(RID p_light_instance, int p_index, const CameraMatrix& p_camera, const Transform& p_transform, float p_split_near,float p_split_far) { LightInstance *lighti = light_instance_owner.get( p_light_instance ); ERR_FAIL_COND(!lighti); ERR_FAIL_COND(lighti->base->type!=VS::LIGHT_DIRECTIONAL); ERR_FAIL_INDEX(p_index,1); lighti->custom_projection=p_camera; lighti->custom_transform=p_transform; } /* PARTICLES INSTANCE */ RID RasterizerFlash::particles_instance_create(RID p_particles) { ERR_FAIL_COND_V(!particles_owner.owns(p_particles),RID()); ParticlesInstance *particles_instance = memnew( ParticlesInstance ); ERR_FAIL_COND_V(!particles_instance, RID() ); particles_instance->particles=p_particles; return particles_instance_owner.make_rid(particles_instance); } void RasterizerFlash::particles_instance_set_transform(RID p_particles_instance,const Transform& p_transform) { ParticlesInstance *particles_instance=particles_instance_owner.get(p_particles_instance); ERR_FAIL_COND(!particles_instance); particles_instance->transform=p_transform; } /* RENDER API */ /* all calls (inside begin/end shadow) are always warranted to be in the following order: */ void RasterizerFlash::begin_frame() { } void RasterizerFlash::clear_viewport(const Color& p_color) { }; void RasterizerFlash::set_viewport(const VS::ViewportRect& p_viewport) { viewport=p_viewport; } void RasterizerFlash::begin_scene(bool p_copy_bg, RID p_fx,VS::ScenarioDebugMode p_debug) { }; void RasterizerFlash::begin_shadow_map( RID p_light_instance, int p_shadow_pass ) { } void RasterizerFlash::set_camera(const Transform& p_world,const CameraMatrix& p_projection) { camera_transform=p_world; camera_transform_inverse=camera_transform.inverse(); camera_projection=p_projection; camera_plane = Plane( camera_transform.origin, camera_transform.basis.get_axis(2) ); camera_z_near=camera_projection.get_z_near(); camera_z_far=camera_projection.get_z_far(); camera_projection.get_viewport_size(camera_vp_size.x,camera_vp_size.y); } void RasterizerFlash::add_light( RID p_light_instance ) { #define LIGHT_FADE_TRESHOLD 0.05 ERR_FAIL_COND( light_instance_count >= MAX_SCENE_LIGHTS ); LightInstance *li = light_instance_owner.get(p_light_instance); ERR_FAIL_COND(!li); if (li->base->type==VS::LIGHT_DIRECTIONAL) { ERR_FAIL_COND( directional_light_count >= RenderList::MAX_LIGHTS); directional_lights[directional_light_count++]=li; } /* make light hash */ // actually, not really a hash, but helps to sort the lights // and avoid recompiling redudant shader versions li->last_pass=scene_pass; li->sort_key=light_instance_count; light_instances[light_instance_count++]=li; } void RasterizerFlash::_update_shader( Shader* p_shader) const { } void RasterizerFlash::_add_geometry( const Geometry* p_geometry, const InstanceData *p_instance, const Geometry *p_geometry_cmp, const GeometryOwner *p_owner) { Material *m=NULL; RID m_src=p_instance->material_override.is_valid() ? p_instance->material_override : p_geometry->material; if (m_src) m=material_owner.get( m_src ); if (!m) { m=material_owner.get( default_material ); } ERR_FAIL_COND(!m); if (m->last_pass!=frame) { if (m->shader.is_valid()) { m->shader_cache=shader_owner.get(m->shader); if (m->shader_cache) { if (!m->shader_cache->valid) m->shader_cache=NULL; } else { m->shader=RID(); } } else { m->shader_cache=NULL; } m->last_pass=frame; } LightInstance *lights[RenderList::MAX_LIGHTS]; RenderList *render_list=NULL; bool has_alpha = m->blend_mode!=VS::MATERIAL_BLEND_MODE_MIX || (m->shader_cache && m->shader_cache->has_alpha) || m->flags[VS::MATERIAL_FLAG_ONTOP]; if (has_alpha) { render_list = &alpha_render_list; } else { render_list = &opaque_render_list; } if (false && !has_alpha) { //hacemos aca el per picsel liting viejis } RenderList::Element *e = render_list->add_element(); e->geometry=p_geometry; e->geometry_cmp=p_geometry_cmp; e->material=m; e->instance=p_instance; //e->depth=camera_plane.distance_to(p_world->origin); e->depth=camera_transform.origin.distance_to(p_instance->transform.origin); e->owner=p_owner; e->light_type=0; e->additive=false; e->additive_ptr=&e->additive; if (p_instance->skeleton.is_valid()) { e->skeleton=skeleton_owner.get(p_instance->skeleton); if (!e->skeleton) const_cast(p_instance)->skeleton=RID(); } else { e->skeleton=NULL; } e->mirror=p_instance->mirror; if (m->flags[VS::MATERIAL_FLAG_INVERT_FACES]) e->mirror=!e->mirror; e->light_key=0; e->light_type=0xFF; // no lights! e->light_count=0; if (m->flags[VS::MATERIAL_FLAG_UNSHADED]) { e->light_key-=1; } else { //setup lights uint16_t light_count=0; uint16_t sort_key[4]; uint8_t light_types[4]; int dlc = MIN(directional_light_count,RenderList::MAX_LIGHTS);; light_count=dlc; for(int i=0;isort_key; light_types[i]=VS::LIGHT_DIRECTIONAL; } const RID *liptr = p_instance->light_instances.ptr(); int ilc=p_instance->light_instances.size(); for(int i=0;i=RenderList::MAX_LIGHTS) break; LightInstance *li=light_instance_owner.get( liptr[i] ); if (!li || li->last_pass!=scene_pass) //lit by light not in visible scene continue; light_types[light_count]=li->base->type; sort_key[light_count++]=li->sort_key; } if (light_count>dlc) { SortArray light_sort; light_sort.sort(&sort_key[dlc],(light_count-dlc)); //generate an equal sort key } if (fragment_lighting && !has_alpha) { //per vertex lighting, all lights at the same time for(int i=0;i0) { ec = render_list->add_element(); memcpy(ec,e,sizeof(RenderList::Element)); } else { ec=e; } ec->light_type=light_types[i]; ec->light_count=1; ec->lights[0]=sort_key[i]; ec->additive_ptr=&e->additive; } /*for(int i=0;ilights[i]=sort_key[i];*/ } else { //per vertex lighting, all lights at the same time e->light_count=light_count; for(int i=0;ilights[i]=sort_key[i]; } } } void RasterizerFlash::add_mesh( const RID& p_mesh, const InstanceData *p_data) { Mesh *mesh = mesh_owner.get(p_mesh); ERR_FAIL_COND(!mesh); int ssize = mesh->surfaces.size(); for (int i=0;isurfaces[i]; _add_geometry(s,p_data,s,NULL); } mesh->last_pass=frame; } void RasterizerFlash::add_multimesh( const RID& p_multimesh, const InstanceData *p_data){ MultiMesh *multimesh = multimesh_owner.get(p_multimesh); ERR_FAIL_COND(!multimesh); if (!multimesh->mesh.is_valid()) return; if (multimesh->elements.empty()) return; Mesh *mesh = mesh_owner.get(multimesh->mesh); ERR_FAIL_COND(!mesh); int surf_count = mesh->surfaces.size(); if (multimesh->last_pass!=scene_pass) { multimesh->cache_surfaces.resize(surf_count); for(int i=0;icache_surfaces[i].material=mesh->surfaces[i]->material; multimesh->cache_surfaces[i].has_alpha=mesh->surfaces[i]->has_alpha; multimesh->cache_surfaces[i].surface=mesh->surfaces[i]; } multimesh->last_pass=scene_pass; } for(int i=0;icache_surfaces[i],p_data,multimesh->cache_surfaces[i].surface,multimesh); } } void RasterizerFlash::add_particles( const RID& p_particle_instance, const InstanceData *p_data){ //print_line("adding particles"); ParticlesInstance *particles_instance = particles_instance_owner.get(p_particle_instance); ERR_FAIL_COND(!particles_instance); Particles *p=particles_owner.get( particles_instance->particles ); ERR_FAIL_COND(!p); _add_geometry(p,p_data,p,particles_instance); } void RasterizerFlash::_set_cull(bool p_front,bool p_reverse_cull) { } _FORCE_INLINE_ void RasterizerFlash::_update_material_shader_params(Material *p_material) const { Map old_mparams=p_material->shader_params; Map &mparams=p_material->shader_params; mparams.clear(); int idx=0; for(Map::Element *E=p_material->shader_cache->uniforms.front();E;E=E->next()) { Material::UniformData ud; bool keep=true; if (!old_mparams.has(E->key())) keep=false; else if (old_mparams[E->key()].value.get_type()!=E->value().default_value.get_type()) { if (old_mparams[E->key()].value.get_type()==Variant::OBJECT) { if (E->value().default_value.get_type()!=Variant::_RID) //hackfor textures keep=false; } else if (!old_mparams[E->key()].value.is_num() || !E->value().default_value.get_type()) keep=false; } if (keep) { ud.value=old_mparams[E->key()].value; print_line("KEEP: "+String(E->key())); } else { ud.value=E->value().default_value; print_line("NEW: "+String(E->key())+" because: hasold-"+itos(old_mparams.has(E->key()))); if (old_mparams.has(E->key())) print_line(" told "+Variant::get_type_name(old_mparams[E->key()].value.get_type())+" tnew "+Variant::get_type_name(E->value().default_value.get_type())); } ud.istexture=(E->get().type==ShaderLanguage::TYPE_TEXTURE || E->get().type==ShaderLanguage::TYPE_CUBEMAP); ud.index=idx++; mparams[E->key()]=ud; } p_material->shader_version=p_material->shader_cache->version; } bool RasterizerFlash::_setup_material(const Geometry *p_geometry,const Material *p_material,bool p_vertexlit,bool p_no_const_light) { return false; } void RasterizerFlash::_setup_lights(const uint16_t * p_lights,int p_light_count) { } Error RasterizerFlash::_setup_geometry(const Geometry *p_geometry, const Material* p_material, const Skeleton *p_skeleton,const float *p_morphs) { return OK; }; void RasterizerFlash::_render(const Geometry *p_geometry,const Material *p_material, const Skeleton* p_skeleton, const GeometryOwner *p_owner) { }; void RasterizerFlash::_render_list_forward(RenderList *p_render_list,bool p_reverse_cull,bool p_fragment_light) { }; void RasterizerFlash::end_scene() { } void RasterizerFlash::end_shadow_map() { } void RasterizerFlash::end_frame() { } void RasterizerFlash::flush_frame() { } /* CANVAS API */ void RasterizerFlash::canvas_begin() { } void RasterizerFlash::canvas_set_opacity(float p_opacity) { canvas_opacity = p_opacity; } void RasterizerFlash::canvas_set_blend_mode(VS::MaterialBlendMode p_mode) { } void RasterizerFlash::canvas_begin_rect(const Matrix32& p_transform) { } void RasterizerFlash::canvas_set_clip(bool p_clip, const Rect2& p_rect) { } void RasterizerFlash::canvas_end_rect() { //glPopMatrix(); } RasterizerFlash::Texture* RasterizerFlash::_bind_canvas_texture(const RID& p_texture) { return NULL; } void RasterizerFlash::canvas_draw_line(const Point2& p_from, const Point2& p_to,const Color& p_color,float p_width) { } void RasterizerFlash::_draw_gui_primitive(int p_points, const Vector2 *p_vertices, const Color* p_colors, const Vector2 *p_uvs) { } void RasterizerFlash::_draw_textured_quad(const Rect2& p_rect, const Rect2& p_src_region, const Size2& p_tex_size,bool p_h_flip, bool p_v_flip ) { } void RasterizerFlash::_draw_quad(const Rect2& p_rect) { Vector2 coords[4]= { Vector2( p_rect.pos.x,p_rect.pos.y ), Vector2( p_rect.pos.x+p_rect.size.width,p_rect.pos.y ), Vector2( p_rect.pos.x+p_rect.size.width,p_rect.pos.y+p_rect.size.height ), Vector2( p_rect.pos.x,p_rect.pos.y+p_rect.size.height ) }; _draw_gui_primitive(4,coords,0,0); } void RasterizerFlash::canvas_draw_rect(const Rect2& p_rect, int p_flags, const Rect2& p_source,RID p_texture,const Color& p_modulate) { Color m = p_modulate; m.a*=canvas_opacity; _set_color_attrib(m); Texture *texture = _bind_canvas_texture(p_texture); if ( texture ) { if (!(p_flags&CANVAS_RECT_REGION)) { Rect2 region = Rect2(0,0,texture->width,texture->height); _draw_textured_quad(p_rect,region,region.size,p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V); } else { _draw_textured_quad(p_rect, p_source, Size2(texture->width,texture->height),p_flags&CANVAS_RECT_FLIP_H,p_flags&CANVAS_RECT_FLIP_V ); } } else { //glDisable(GL_TEXTURE_2D); _draw_quad( p_rect ); //print_line("rect: "+p_rect); } } void RasterizerFlash::canvas_draw_style_box(const Rect2& p_rect, RID p_texture,const float *p_margin, bool p_draw_center,const Color& p_modulate) { Color m = p_modulate; m.a*=canvas_opacity; _set_color_attrib(m); Texture* texture=_bind_canvas_texture(p_texture); ERR_FAIL_COND(!texture); /* CORNERS */ _draw_textured_quad( // top left Rect2( p_rect.pos, Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])), Rect2( Point2(), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // top right Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])), Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],0), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom left Rect2( Point2(p_rect.pos.x,p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])), Rect2( Point2(0,texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_LEFT],p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom right Rect2( Point2( p_rect.pos.x + p_rect.size.width - p_margin[MARGIN_RIGHT], p_rect.pos.y + p_rect.size.height - p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])), Rect2( Point2(texture->width-p_margin[MARGIN_RIGHT],texture->height-p_margin[MARGIN_BOTTOM]), Size2(p_margin[MARGIN_RIGHT],p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); Rect2 rect_center( p_rect.pos+Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( p_rect.size.width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], p_rect.size.height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] )); Rect2 src_center( Point2( p_margin[MARGIN_LEFT], p_margin[MARGIN_TOP]), Size2( texture->width - p_margin[MARGIN_LEFT] - p_margin[MARGIN_RIGHT], texture->height - p_margin[MARGIN_TOP] - p_margin[MARGIN_BOTTOM] )); _draw_textured_quad( // top Rect2( Point2(rect_center.pos.x,p_rect.pos.y),Size2(rect_center.size.width,p_margin[MARGIN_TOP])), Rect2( Point2(p_margin[MARGIN_LEFT],0), Size2(src_center.size.width,p_margin[MARGIN_TOP])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // bottom Rect2( Point2(rect_center.pos.x,rect_center.pos.y+rect_center.size.height),Size2(rect_center.size.width,p_margin[MARGIN_BOTTOM])), Rect2( Point2(p_margin[MARGIN_LEFT],src_center.pos.y+src_center.size.height), Size2(src_center.size.width,p_margin[MARGIN_BOTTOM])), Size2( texture->width, texture->height ) ); _draw_textured_quad( // left Rect2( Point2(p_rect.pos.x,rect_center.pos.y),Size2(p_margin[MARGIN_LEFT],rect_center.size.height)), Rect2( Point2(0,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_LEFT],src_center.size.height)), Size2( texture->width, texture->height ) ); _draw_textured_quad( // right Rect2( Point2(rect_center.pos.x+rect_center.size.width,rect_center.pos.y),Size2(p_margin[MARGIN_RIGHT],rect_center.size.height)), Rect2( Point2(src_center.pos.x+src_center.size.width,p_margin[MARGIN_TOP]), Size2(p_margin[MARGIN_RIGHT],src_center.size.height)), Size2( texture->width, texture->height ) ); if (p_draw_center) { _draw_textured_quad( rect_center, src_center, Size2( texture->width, texture->height )); } } void RasterizerFlash::canvas_draw_primitive(const Vector& p_points, const Vector& p_colors,const Vector& p_uvs, RID p_texture,float p_width) { ERR_FAIL_COND(p_points.size()<1); _set_color_attrib(Color(1,1,1,canvas_opacity)); _bind_canvas_texture(p_texture); _draw_gui_primitive(p_points.size(),p_points.ptr(),p_colors.ptr(),p_uvs.ptr()); } void RasterizerFlash::canvas_draw_polygon(int p_vertex_count, const int* p_indices, const Vector2* p_vertices, const Vector2* p_uvs, const Color* p_colors,const RID& p_texture,bool p_singlecolor) { }; void RasterizerFlash::canvas_set_transform(const Matrix32& p_transform) { } /* ENVIRONMENT */ RID RasterizerFlash::environment_create() { Environment * env = memnew( Environment ); return environment_owner.make_rid(env); } void RasterizerFlash::environment_set_background(RID p_env,VS::EnvironmentBG p_bg) { ERR_FAIL_INDEX(p_bg,VS::ENV_BG_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->bg_mode=p_bg; } VS::EnvironmentBG RasterizerFlash::environment_get_background(RID p_env) const{ const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,VS::ENV_BG_MAX); return env->bg_mode; } void RasterizerFlash::environment_set_background_param(RID p_env,VS::EnvironmentBGParam p_param, const Variant& p_value){ ERR_FAIL_INDEX(p_param,VS::ENV_BG_PARAM_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->bg_param[p_param]=p_value; } Variant RasterizerFlash::environment_get_background_param(RID p_env,VS::EnvironmentBGParam p_param) const{ ERR_FAIL_INDEX_V(p_param,VS::ENV_BG_PARAM_MAX,Variant()); const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,Variant()); return env->bg_param[p_param]; } void RasterizerFlash::environment_set_enable_fx(RID p_env,VS::EnvironmentFx p_effect,bool p_enabled){ ERR_FAIL_INDEX(p_effect,VS::ENV_FX_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->fx_enabled[p_effect]=p_enabled; } bool RasterizerFlash::environment_is_fx_enabled(RID p_env,VS::EnvironmentFx p_effect) const{ ERR_FAIL_INDEX_V(p_effect,VS::ENV_FX_MAX,false); const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,false); return env->fx_enabled[p_effect]; } void RasterizerFlash::environment_fx_set_param(RID p_env,VS::EnvironmentFxParam p_param,const Variant& p_value){ ERR_FAIL_INDEX(p_param,VS::ENV_FX_PARAM_MAX); Environment * env = environment_owner.get(p_env); ERR_FAIL_COND(!env); env->fx_param[p_param]=p_value; } Variant RasterizerFlash::environment_fx_get_param(RID p_env,VS::EnvironmentFxParam p_param) const{ ERR_FAIL_INDEX_V(p_param,VS::ENV_FX_PARAM_MAX,Variant()); const Environment * env = environment_owner.get(p_env); ERR_FAIL_COND_V(!env,Variant()); return env->fx_param[p_param]; } /* FX */ RID RasterizerFlash::fx_create() { FX *fx = memnew( FX ); ERR_FAIL_COND_V(!fx,RID()); return fx_owner.make_rid(fx); } void RasterizerFlash::fx_get_effects(RID p_fx,List *p_effects) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); p_effects->clear(); p_effects->push_back("bgcolor"); p_effects->push_back("skybox"); p_effects->push_back("antialias"); //p_effects->push_back("hdr"); p_effects->push_back("glow"); // glow has a bloom parameter, too p_effects->push_back("ssao"); p_effects->push_back("fog"); p_effects->push_back("dof_blur"); p_effects->push_back("toon"); p_effects->push_back("edge"); } void RasterizerFlash::fx_set_active(RID p_fx,const String& p_effect, bool p_active) { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); if (p_effect=="bgcolor") fx->bgcolor_active=p_active; else if (p_effect=="skybox") fx->skybox_active=p_active; else if (p_effect=="antialias") fx->antialias_active=p_active; else if (p_effect=="glow") fx->glow_active=p_active; else if (p_effect=="ssao") fx->ssao_active=p_active; else if (p_effect=="fog") fx->fog_active=p_active; // else if (p_effect=="dof_blur") // fx->dof_blur_active=p_active; else if (p_effect=="toon") fx->toon_active=p_active; else if (p_effect=="edge") fx->edge_active=p_active; } bool RasterizerFlash::fx_is_active(RID p_fx,const String& p_effect) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND_V(!fx,false); if (p_effect=="bgcolor") return fx->bgcolor_active; else if (p_effect=="skybox") return fx->skybox_active; else if (p_effect=="antialias") return fx->antialias_active; else if (p_effect=="glow") return fx->glow_active; else if (p_effect=="ssao") return fx->ssao_active; else if (p_effect=="fog") return fx->fog_active; //else if (p_effect=="dof_blur") // return fx->dof_blur_active; else if (p_effect=="toon") return fx->toon_active; else if (p_effect=="edge") return fx->edge_active; return false; } void RasterizerFlash::fx_get_effect_params(RID p_fx,const String& p_effect,List *p_params) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); if (p_effect=="bgcolor") { p_params->push_back( PropertyInfo( Variant::COLOR, "color" ) ); } else if (p_effect=="skybox") { p_params->push_back( PropertyInfo( Variant::_RID, "cubemap" ) ); } else if (p_effect=="antialias") { p_params->push_back( PropertyInfo( Variant::REAL, "tolerance", PROPERTY_HINT_RANGE,"1,128,1" ) ); } else if (p_effect=="glow") { p_params->push_back( PropertyInfo( Variant::INT, "passes", PROPERTY_HINT_RANGE,"1,4,1" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.01,8.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "bloom", PROPERTY_HINT_RANGE,"-1.0,1.0,0.01" ) ); } else if (p_effect=="ssao") { p_params->push_back( PropertyInfo( Variant::REAL, "radius", PROPERTY_HINT_RANGE,"0.0,16.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "max_distance", PROPERTY_HINT_RANGE,"0.0,256.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "range_max", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "range_min", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.0,8.0,0.01" ) ); } else if (p_effect=="fog") { p_params->push_back( PropertyInfo( Variant::REAL, "begin", PROPERTY_HINT_RANGE,"0.0,8192,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "end", PROPERTY_HINT_RANGE,"0.0,8192,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "attenuation", PROPERTY_HINT_RANGE,"0.0,8.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::COLOR, "color_begin" ) ); p_params->push_back( PropertyInfo( Variant::COLOR, "color_end" ) ); p_params->push_back( PropertyInfo( Variant::BOOL, "fog_bg" ) ); // } else if (p_effect=="dof_blur") { // return fx->dof_blur_active; } else if (p_effect=="toon") { p_params->push_back( PropertyInfo( Variant::REAL, "treshold", PROPERTY_HINT_RANGE,"0.0,1.0,0.01" ) ); p_params->push_back( PropertyInfo( Variant::REAL, "soft", PROPERTY_HINT_RANGE,"0.001,1.0,0.001" ) ); } else if (p_effect=="edge") { } } Variant RasterizerFlash::fx_get_effect_param(RID p_fx,const String& p_effect,const String& p_param) const { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND_V(!fx,Variant()); if (p_effect=="bgcolor") { if (p_param=="color") return fx->bgcolor; } else if (p_effect=="skybox") { if (p_param=="cubemap") return fx->skybox_cubemap; } else if (p_effect=="antialias") { if (p_param=="tolerance") return fx->antialias_tolerance; } else if (p_effect=="glow") { if (p_param=="passes") return fx->glow_passes; if (p_param=="attenuation") return fx->glow_attenuation; if (p_param=="bloom") return fx->glow_bloom; } else if (p_effect=="ssao") { if (p_param=="attenuation") return fx->ssao_attenuation; if (p_param=="max_distance") return fx->ssao_max_distance; if (p_param=="range_max") return fx->ssao_range_max; if (p_param=="range_min") return fx->ssao_range_min; if (p_param=="radius") return fx->ssao_radius; } else if (p_effect=="fog") { if (p_param=="begin") return fx->fog_near; if (p_param=="end") return fx->fog_far; if (p_param=="attenuation") return fx->fog_attenuation; if (p_param=="color_begin") return fx->fog_color_near; if (p_param=="color_end") return fx->fog_color_far; if (p_param=="fog_bg") return fx->fog_bg; // } else if (p_effect=="dof_blur") { // return fx->dof_blur_active; } else if (p_effect=="toon") { if (p_param=="treshold") return fx->toon_treshold; if (p_param=="soft") return fx->toon_soft; } else if (p_effect=="edge") { } return Variant(); } void RasterizerFlash::fx_set_effect_param(RID p_fx,const String& p_effect, const String& p_param, const Variant& p_value) { FX *fx = fx_owner.get(p_fx); ERR_FAIL_COND(!fx); if (p_effect=="bgcolor") { if (p_param=="color") fx->bgcolor=p_value; } else if (p_effect=="skybox") { if (p_param=="cubemap") fx->skybox_cubemap=p_value; } else if (p_effect=="antialias") { if (p_param=="tolerance") fx->antialias_tolerance=p_value; } else if (p_effect=="glow") { if (p_param=="passes") fx->glow_passes=p_value; if (p_param=="attenuation") fx->glow_attenuation=p_value; if (p_param=="bloom") fx->glow_bloom=p_value; } else if (p_effect=="ssao") { if (p_param=="attenuation") fx->ssao_attenuation=p_value; if (p_param=="radius") fx->ssao_radius=p_value; if (p_param=="max_distance") fx->ssao_max_distance=p_value; if (p_param=="range_max") fx->ssao_range_max=p_value; if (p_param=="range_min") fx->ssao_range_min=p_value; } else if (p_effect=="fog") { if (p_param=="begin") fx->fog_near=p_value; if (p_param=="end") fx->fog_far=p_value; if (p_param=="attenuation") fx->fog_attenuation=p_value; if (p_param=="color_begin") fx->fog_color_near=p_value; if (p_param=="color_end") fx->fog_color_far=p_value; if (p_param=="fog_bg") fx->fog_bg=p_value; // } else if (p_effect=="dof_blur") { // fx->dof_blur_active=p_value; } else if (p_effect=="toon") { if (p_param=="treshold") fx->toon_treshold=p_value; if (p_param=="soft") fx->toon_soft=p_value; } else if (p_effect=="edge") { } } /*MISC*/ bool RasterizerFlash::is_texture(const RID& p_rid) const { return texture_owner.owns(p_rid); } bool RasterizerFlash::is_material(const RID& p_rid) const { return material_owner.owns(p_rid); } bool RasterizerFlash::is_mesh(const RID& p_rid) const { return mesh_owner.owns(p_rid); } bool RasterizerFlash::is_multimesh(const RID& p_rid) const { return multimesh_owner.owns(p_rid); } bool RasterizerFlash::is_particles(const RID &p_beam) const { return particles_owner.owns(p_beam); } bool RasterizerFlash::is_light(const RID& p_rid) const { return light_owner.owns(p_rid); } bool RasterizerFlash::is_light_instance(const RID& p_rid) const { return light_instance_owner.owns(p_rid); } bool RasterizerFlash::is_particles_instance(const RID& p_rid) const { return particles_instance_owner.owns(p_rid); } bool RasterizerFlash::is_skeleton(const RID& p_rid) const { return skeleton_owner.owns(p_rid); } bool RasterizerFlash::is_environment(const RID& p_rid) const { return environment_owner.owns(p_rid); } bool RasterizerFlash::is_fx(const RID& p_rid) const { return fx_owner.owns(p_rid); } bool RasterizerFlash::is_shader(const RID& p_rid) const { return false; } void RasterizerFlash::free(const RID& p_rid) { if (texture_owner.owns(p_rid)) { // delete the texture Texture *texture = texture_owner.get(p_rid); _rinfo.texture_mem-=texture->total_data_size; texture_owner.free(p_rid); memdelete(texture); } else if (shader_owner.owns(p_rid)) { } else if (material_owner.owns(p_rid)) { Material *material = material_owner.get( p_rid ); ERR_FAIL_COND(!material); _free_fixed_material(p_rid); //just in case material_owner.free(p_rid); memdelete(material); } else if (mesh_owner.owns(p_rid)) { } else if (multimesh_owner.owns(p_rid)) { MultiMesh *multimesh = multimesh_owner.get(p_rid); ERR_FAIL_COND(!multimesh); multimesh_owner.free(p_rid); memdelete(multimesh); } else if (particles_owner.owns(p_rid)) { Particles *particles = particles_owner.get(p_rid); ERR_FAIL_COND(!particles); particles_owner.free(p_rid); memdelete(particles); } else if (particles_instance_owner.owns(p_rid)) { ParticlesInstance *particles_isntance = particles_instance_owner.get(p_rid); ERR_FAIL_COND(!particles_isntance); particles_instance_owner.free(p_rid); memdelete(particles_isntance); } else if (skeleton_owner.owns(p_rid)) { Skeleton *skeleton = skeleton_owner.get( p_rid ); ERR_FAIL_COND(!skeleton) skeleton_owner.free(p_rid); memdelete(skeleton); } else if (light_owner.owns(p_rid)) { Light *light = light_owner.get( p_rid ); ERR_FAIL_COND(!light) light_owner.free(p_rid); memdelete(light); } else if (light_instance_owner.owns(p_rid)) { LightInstance *light_instance = light_instance_owner.get( p_rid ); ERR_FAIL_COND(!light_instance); light_instance->clear_shadow_buffers(); light_instance_owner.free(p_rid); memdelete( light_instance ); } else if (fx_owner.owns(p_rid)) { FX *fx = fx_owner.get( p_rid ); ERR_FAIL_COND(!fx); fx_owner.free(p_rid); memdelete( fx ); } else if (environment_owner.owns(p_rid)) { Environment *env = environment_owner.get( p_rid ); ERR_FAIL_COND(!env); environment_owner.free(p_rid); memdelete( env ); }; } void RasterizerFlash::ShadowBuffer::init(int p_size) { } void RasterizerFlash::_init_shadow_buffers() { int near_shadow_size=GLOBAL_DEF("rasterizer/near_shadow_size",512); int far_shadow_size=GLOBAL_DEF("rasterizer/far_shadow_size",64); near_shadow_buffers.resize( GLOBAL_DEF("rasterizer/near_shadow_count",4) ); far_shadow_buffers.resize( GLOBAL_DEF("rasterizer/far_shadow_count",16) ); shadow_near_far_split_size_ratio = GLOBAL_DEF("rasterizer/shadow_near_far_split_size_ratio",0.3); for (int i=0;i