/*************************************************************************/ /* gdscript_functions.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "gdscript_functions.h" #include "core/io/json.h" #include "core/io/marshalls.h" #include "core/math/math_funcs.h" #include "core/object/class_db.h" #include "core/object/reference.h" #include "core/os/os.h" #include "core/variant/variant_parser.h" #include "gdscript.h" const char *GDScriptFunctions::get_func_name(Function p_func) { ERR_FAIL_INDEX_V(p_func, FUNC_MAX, ""); static const char *_names[FUNC_MAX] = { "sin", "cos", "tan", "sinh", "cosh", "tanh", "asin", "acos", "atan", "atan2", "sqrt", "fmod", "fposmod", "posmod", "floor", "ceil", "round", "abs", "sign", "pow", "log", "exp", "is_nan", "is_inf", "is_equal_approx", "is_zero_approx", "ease", "step_decimals", "stepify", "lerp", "lerp_angle", "inverse_lerp", "range_lerp", "smoothstep", "move_toward", "dectime", "randomize", "randi", "randf", "randf_range", "randi_range", "seed", "rand_seed", "deg2rad", "rad2deg", "linear2db", "db2linear", "polar2cartesian", "cartesian2polar", "wrapi", "wrapf", "max", "min", "clamp", "nearest_po2", "weakref", "convert", "typeof", "type_exists", "char", "ord", "str", "print", "printt", "prints", "printerr", "printraw", "print_debug", "push_error", "push_warning", "var2str", "str2var", "var2bytes", "bytes2var", "range", "load", "inst2dict", "dict2inst", "validate_json", "parse_json", "to_json", "hash", "Color8", "ColorN", "print_stack", "get_stack", "instance_from_id", "len", "is_instance_valid", }; return _names[p_func]; } void GDScriptFunctions::call(Function p_func, const Variant **p_args, int p_arg_count, Variant &r_ret, Callable::CallError &r_error) { r_error.error = Callable::CallError::CALL_OK; #ifdef DEBUG_ENABLED #define VALIDATE_ARG_COUNT(m_count) \ if (p_arg_count < m_count) { \ r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; \ r_error.argument = m_count; \ r_error.expected = m_count; \ r_ret = Variant(); \ return; \ } \ if (p_arg_count > m_count) { \ r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS; \ r_error.argument = m_count; \ r_error.expected = m_count; \ r_ret = Variant(); \ return; \ } #define VALIDATE_ARG_NUM(m_arg) \ if (!p_args[m_arg]->is_num()) { \ r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; \ r_error.argument = m_arg; \ r_error.expected = Variant::FLOAT; \ r_ret = Variant(); \ return; \ } #else #define VALIDATE_ARG_COUNT(m_count) #define VALIDATE_ARG_NUM(m_arg) #endif //using a switch, so the compiler generates a jumptable switch (p_func) { case MATH_SIN: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::sin((double)*p_args[0]); } break; case MATH_COS: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::cos((double)*p_args[0]); } break; case MATH_TAN: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::tan((double)*p_args[0]); } break; case MATH_SINH: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::sinh((double)*p_args[0]); } break; case MATH_COSH: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::cosh((double)*p_args[0]); } break; case MATH_TANH: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::tanh((double)*p_args[0]); } break; case MATH_ASIN: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::asin((double)*p_args[0]); } break; case MATH_ACOS: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::acos((double)*p_args[0]); } break; case MATH_ATAN: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::atan((double)*p_args[0]); } break; case MATH_ATAN2: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::atan2((double)*p_args[0], (double)*p_args[1]); } break; case MATH_SQRT: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::sqrt((double)*p_args[0]); } break; case MATH_FMOD: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::fmod((double)*p_args[0], (double)*p_args[1]); } break; case MATH_FPOSMOD: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::fposmod((double)*p_args[0], (double)*p_args[1]); } break; case MATH_POSMOD: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::posmod((int)*p_args[0], (int)*p_args[1]); } break; case MATH_FLOOR: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::floor((double)*p_args[0]); } break; case MATH_CEIL: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::ceil((double)*p_args[0]); } break; case MATH_ROUND: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::round((double)*p_args[0]); } break; case MATH_ABS: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() == Variant::INT) { int64_t i = *p_args[0]; r_ret = ABS(i); } else if (p_args[0]->get_type() == Variant::FLOAT) { double r = *p_args[0]; r_ret = Math::abs(r); } else { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::FLOAT; r_ret = Variant(); } } break; case MATH_SIGN: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() == Variant::INT) { int64_t i = *p_args[0]; r_ret = i < 0 ? -1 : (i > 0 ? +1 : 0); } else if (p_args[0]->get_type() == Variant::FLOAT) { double r = *p_args[0]; r_ret = r < 0.0 ? -1.0 : (r > 0.0 ? +1.0 : 0.0); } else { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::FLOAT; r_ret = Variant(); } } break; case MATH_POW: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::pow((double)*p_args[0], (double)*p_args[1]); } break; case MATH_LOG: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::log((double)*p_args[0]); } break; case MATH_EXP: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::exp((double)*p_args[0]); } break; case MATH_ISNAN: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::is_nan((double)*p_args[0]); } break; case MATH_ISINF: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::is_inf((double)*p_args[0]); } break; case MATH_ISEQUALAPPROX: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::is_equal_approx((real_t)*p_args[0], (real_t)*p_args[1]); } break; case MATH_ISZEROAPPROX: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::is_zero_approx((real_t)*p_args[0]); } break; case MATH_EASE: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::ease((double)*p_args[0], (double)*p_args[1]); } break; case MATH_STEP_DECIMALS: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::step_decimals((double)*p_args[0]); } break; case MATH_STEPIFY: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::stepify((double)*p_args[0], (double)*p_args[1]); } break; case MATH_LERP: { VALIDATE_ARG_COUNT(3); VALIDATE_ARG_NUM(2); const double t = (double)*p_args[2]; switch (p_args[0]->get_type() == p_args[1]->get_type() ? p_args[0]->get_type() : Variant::FLOAT) { case Variant::VECTOR2: { r_ret = ((Vector2)*p_args[0]).lerp((Vector2)*p_args[1], t); } break; case Variant::VECTOR3: { r_ret = (p_args[0]->operator Vector3()).lerp(p_args[1]->operator Vector3(), t); } break; case Variant::COLOR: { r_ret = ((Color)*p_args[0]).lerp((Color)*p_args[1], t); } break; default: { VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::lerp((double)*p_args[0], (double)*p_args[1], t); } break; } } break; case MATH_LERP_ANGLE: { VALIDATE_ARG_COUNT(3); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); r_ret = Math::lerp_angle((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]); } break; case MATH_INVERSE_LERP: { VALIDATE_ARG_COUNT(3); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); r_ret = Math::inverse_lerp((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]); } break; case MATH_RANGE_LERP: { VALIDATE_ARG_COUNT(5); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); VALIDATE_ARG_NUM(3); VALIDATE_ARG_NUM(4); r_ret = Math::range_lerp((double)*p_args[0], (double)*p_args[1], (double)*p_args[2], (double)*p_args[3], (double)*p_args[4]); } break; case MATH_SMOOTHSTEP: { VALIDATE_ARG_COUNT(3); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); r_ret = Math::smoothstep((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]); } break; case MATH_MOVE_TOWARD: { VALIDATE_ARG_COUNT(3); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); r_ret = Math::move_toward((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]); } break; case MATH_DECTIME: { VALIDATE_ARG_COUNT(3); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); r_ret = Math::dectime((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]); } break; case MATH_RANDOMIZE: { VALIDATE_ARG_COUNT(0); Math::randomize(); r_ret = Variant(); } break; case MATH_RANDI: { VALIDATE_ARG_COUNT(0); r_ret = Math::rand(); } break; case MATH_RANDF: { VALIDATE_ARG_COUNT(0); r_ret = Math::randf(); } break; case MATH_RANDF_RANGE: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::random((double)*p_args[0], (double)*p_args[1]); } break; case MATH_RANDI_RANGE: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); r_ret = Math::random((int)*p_args[0], (int)*p_args[1]); } break; case MATH_SEED: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); uint64_t seed = *p_args[0]; Math::seed(seed); r_ret = Variant(); } break; case MATH_RANDSEED: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); uint64_t seed = *p_args[0]; int ret = Math::rand_from_seed(&seed); Array reta; reta.push_back(ret); reta.push_back(seed); r_ret = reta; } break; case MATH_DEG2RAD: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::deg2rad((double)*p_args[0]); } break; case MATH_RAD2DEG: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::rad2deg((double)*p_args[0]); } break; case MATH_LINEAR2DB: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::linear2db((double)*p_args[0]); } break; case MATH_DB2LINEAR: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); r_ret = Math::db2linear((double)*p_args[0]); } break; case MATH_POLAR2CARTESIAN: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); double r = *p_args[0]; double th = *p_args[1]; r_ret = Vector2(r * Math::cos(th), r * Math::sin(th)); } break; case MATH_CARTESIAN2POLAR: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); double x = *p_args[0]; double y = *p_args[1]; r_ret = Vector2(Math::sqrt(x * x + y * y), Math::atan2(y, x)); } break; case MATH_WRAP: { VALIDATE_ARG_COUNT(3); r_ret = Math::wrapi((int64_t)*p_args[0], (int64_t)*p_args[1], (int64_t)*p_args[2]); } break; case MATH_WRAPF: { VALIDATE_ARG_COUNT(3); r_ret = Math::wrapf((double)*p_args[0], (double)*p_args[1], (double)*p_args[2]); } break; case LOGIC_MAX: { VALIDATE_ARG_COUNT(2); if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT) { int64_t a = *p_args[0]; int64_t b = *p_args[1]; r_ret = MAX(a, b); } else { VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); double a = *p_args[0]; double b = *p_args[1]; r_ret = MAX(a, b); } } break; case LOGIC_MIN: { VALIDATE_ARG_COUNT(2); if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT) { int64_t a = *p_args[0]; int64_t b = *p_args[1]; r_ret = MIN(a, b); } else { VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); double a = *p_args[0]; double b = *p_args[1]; r_ret = MIN(a, b); } } break; case LOGIC_CLAMP: { VALIDATE_ARG_COUNT(3); if (p_args[0]->get_type() == Variant::INT && p_args[1]->get_type() == Variant::INT && p_args[2]->get_type() == Variant::INT) { int64_t a = *p_args[0]; int64_t b = *p_args[1]; int64_t c = *p_args[2]; r_ret = CLAMP(a, b, c); } else { VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); double a = *p_args[0]; double b = *p_args[1]; double c = *p_args[2]; r_ret = CLAMP(a, b, c); } } break; case LOGIC_NEAREST_PO2: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); int64_t num = *p_args[0]; r_ret = next_power_of_2(num); } break; case OBJ_WEAKREF: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() == Variant::OBJECT) { if (p_args[0]->is_ref()) { Ref wref = memnew(WeakRef); REF r = *p_args[0]; if (r.is_valid()) { wref->set_ref(r); } r_ret = wref; } else { Ref wref = memnew(WeakRef); Object *obj = *p_args[0]; if (obj) { wref->set_obj(obj); } r_ret = wref; } } else if (p_args[0]->get_type() == Variant::NIL) { Ref wref = memnew(WeakRef); r_ret = wref; } else { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::OBJECT; r_ret = Variant(); return; } } break; case TYPE_CONVERT: { VALIDATE_ARG_COUNT(2); VALIDATE_ARG_NUM(1); int type = *p_args[1]; if (type < 0 || type >= Variant::VARIANT_MAX) { r_ret = RTR("Invalid type argument to convert(), use TYPE_* constants."); r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::INT; return; } else { Variant::construct(Variant::Type(type), r_ret, p_args, 1, r_error); } } break; case TYPE_OF: { VALIDATE_ARG_COUNT(1); r_ret = p_args[0]->get_type(); } break; case TYPE_EXISTS: { VALIDATE_ARG_COUNT(1); r_ret = ClassDB::class_exists(*p_args[0]); } break; case TEXT_CHAR: { VALIDATE_ARG_COUNT(1); VALIDATE_ARG_NUM(0); char32_t result[2] = { *p_args[0], 0 }; r_ret = String(result); } break; case TEXT_ORD: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() != Variant::STRING) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::STRING; r_ret = Variant(); return; } String str = p_args[0]->operator String(); if (str.length() != 1) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::STRING; r_ret = RTR("Expected a string of length 1 (a character)."); return; } r_ret = str.get(0); } break; case TEXT_STR: { if (p_arg_count < 1) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; r_ret = Variant(); return; } String str; for (int i = 0; i < p_arg_count; i++) { String os = p_args[i]->operator String(); if (i == 0) { str = os; } else { str += os; } } r_ret = str; } break; case TEXT_PRINT: { String str; for (int i = 0; i < p_arg_count; i++) { str += p_args[i]->operator String(); } print_line(str); r_ret = Variant(); } break; case TEXT_PRINT_TABBED: { String str; for (int i = 0; i < p_arg_count; i++) { if (i) { str += "\t"; } str += p_args[i]->operator String(); } print_line(str); r_ret = Variant(); } break; case TEXT_PRINT_SPACED: { String str; for (int i = 0; i < p_arg_count; i++) { if (i) { str += " "; } str += p_args[i]->operator String(); } print_line(str); r_ret = Variant(); } break; case TEXT_PRINTERR: { String str; for (int i = 0; i < p_arg_count; i++) { str += p_args[i]->operator String(); } print_error(str); r_ret = Variant(); } break; case TEXT_PRINTRAW: { String str; for (int i = 0; i < p_arg_count; i++) { str += p_args[i]->operator String(); } OS::get_singleton()->print("%s", str.utf8().get_data()); r_ret = Variant(); } break; case TEXT_PRINT_DEBUG: { String str; for (int i = 0; i < p_arg_count; i++) { str += p_args[i]->operator String(); } ScriptLanguage *script = GDScriptLanguage::get_singleton(); if (script->debug_get_stack_level_count() > 0) { str += "\n At: " + script->debug_get_stack_level_source(0) + ":" + itos(script->debug_get_stack_level_line(0)) + ":" + script->debug_get_stack_level_function(0) + "()"; } print_line(str); r_ret = Variant(); } break; case PUSH_ERROR: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() != Variant::STRING) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::STRING; r_ret = Variant(); break; } String message = *p_args[0]; ERR_PRINT(message); r_ret = Variant(); } break; case PUSH_WARNING: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() != Variant::STRING) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::STRING; r_ret = Variant(); break; } String message = *p_args[0]; WARN_PRINT(message); r_ret = Variant(); } break; case VAR_TO_STR: { VALIDATE_ARG_COUNT(1); String vars; VariantWriter::write_to_string(*p_args[0], vars); r_ret = vars; } break; case STR_TO_VAR: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() != Variant::STRING) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::STRING; r_ret = Variant(); return; } r_ret = *p_args[0]; VariantParser::StreamString ss; ss.s = *p_args[0]; String errs; int line; (void)VariantParser::parse(&ss, r_ret, errs, line); } break; case VAR_TO_BYTES: { bool full_objects = false; if (p_arg_count < 1) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; r_ret = Variant(); return; } else if (p_arg_count > 2) { r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = 2; r_ret = Variant(); } else if (p_arg_count == 2) { if (p_args[1]->get_type() != Variant::BOOL) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 1; r_error.expected = Variant::BOOL; r_ret = Variant(); return; } full_objects = *p_args[1]; } PackedByteArray barr; int len; Error err = encode_variant(*p_args[0], nullptr, len, full_objects); if (err) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::NIL; r_ret = "Unexpected error encoding variable to bytes, likely unserializable type found (Object or RID)."; return; } barr.resize(len); { uint8_t *w = barr.ptrw(); encode_variant(*p_args[0], w, len, full_objects); } r_ret = barr; } break; case BYTES_TO_VAR: { bool allow_objects = false; if (p_arg_count < 1) { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; r_ret = Variant(); return; } else if (p_arg_count > 2) { r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = 2; r_ret = Variant(); } else if (p_arg_count == 2) { if (p_args[1]->get_type() != Variant::BOOL) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 1; r_error.expected = Variant::BOOL; r_ret = Variant(); return; } allow_objects = *p_args[1]; } if (p_args[0]->get_type() != Variant::PACKED_BYTE_ARRAY) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 1; r_error.expected = Variant::PACKED_BYTE_ARRAY; r_ret = Variant(); return; } PackedByteArray varr = *p_args[0]; Variant ret; { const uint8_t *r = varr.ptr(); Error err = decode_variant(ret, r, varr.size(), nullptr, allow_objects); if (err != OK) { r_ret = RTR("Not enough bytes for decoding bytes, or invalid format."); r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::PACKED_BYTE_ARRAY; return; } } r_ret = ret; } break; case GEN_RANGE: { switch (p_arg_count) { case 0: { r_error.error = Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS; r_error.argument = 1; r_error.expected = 1; r_ret = Variant(); } break; case 1: { VALIDATE_ARG_NUM(0); int count = *p_args[0]; Array arr; if (count <= 0) { r_ret = arr; return; } Error err = arr.resize(count); if (err != OK) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; r_ret = Variant(); return; } for (int i = 0; i < count; i++) { arr[i] = i; } r_ret = arr; } break; case 2: { VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); int from = *p_args[0]; int to = *p_args[1]; Array arr; if (from >= to) { r_ret = arr; return; } Error err = arr.resize(to - from); if (err != OK) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; r_ret = Variant(); return; } for (int i = from; i < to; i++) { arr[i - from] = i; } r_ret = arr; } break; case 3: { VALIDATE_ARG_NUM(0); VALIDATE_ARG_NUM(1); VALIDATE_ARG_NUM(2); int from = *p_args[0]; int to = *p_args[1]; int incr = *p_args[2]; if (incr == 0) { r_ret = RTR("Step argument is zero!"); r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; return; } Array arr; if (from >= to && incr > 0) { r_ret = arr; return; } if (from <= to && incr < 0) { r_ret = arr; return; } //calculate how many int count = 0; if (incr > 0) { count = ((to - from - 1) / incr) + 1; } else { count = ((from - to - 1) / -incr) + 1; } Error err = arr.resize(count); if (err != OK) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_METHOD; r_ret = Variant(); return; } if (incr > 0) { int idx = 0; for (int i = from; i < to; i += incr) { arr[idx++] = i; } } else { int idx = 0; for (int i = from; i > to; i += incr) { arr[idx++] = i; } } r_ret = arr; } break; default: { r_error.error = Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS; r_error.argument = 3; r_error.expected = 3; r_ret = Variant(); } break; } } break; case RESOURCE_LOAD: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() != Variant::STRING) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::STRING; r_ret = Variant(); } else { r_ret = ResourceLoader::load(*p_args[0]); } } break; case INST2DICT: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() == Variant::NIL) { r_ret = Variant(); } else if (p_args[0]->get_type() != Variant::OBJECT) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_ret = Variant(); } else { Object *obj = *p_args[0]; if (!obj) { r_ret = Variant(); } else if (!obj->get_script_instance() || obj->get_script_instance()->get_language() != GDScriptLanguage::get_singleton()) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::DICTIONARY; r_ret = RTR("Not a script with an instance"); return; } else { GDScriptInstance *ins = static_cast(obj->get_script_instance()); Ref base = ins->get_script(); if (base.is_null()) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::DICTIONARY; r_ret = RTR("Not based on a script"); return; } GDScript *p = base.ptr(); Vector sname; while (p->_owner) { sname.push_back(p->name); p = p->_owner; } sname.invert(); if (!p->path.is_resource_file()) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::DICTIONARY; r_ret = Variant(); r_ret = RTR("Not based on a resource file"); return; } NodePath cp(sname, Vector(), false); Dictionary d; d["@subpath"] = cp; d["@path"] = p->get_path(); for (Map::Element *E = base->member_indices.front(); E; E = E->next()) { if (!d.has(E->key())) { d[E->key()] = ins->members[E->get().index]; } } r_ret = d; } } } break; case DICT2INST: { VALIDATE_ARG_COUNT(1); if (p_args[0]->get_type() != Variant::DICTIONARY) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::DICTIONARY; r_ret = Variant(); return; } Dictionary d = *p_args[0]; if (!d.has("@path")) { r_error.error = Callable::CallError::CALL_ERROR_INVALID_ARGUMENT; r_error.argument = 0; r_error.expected = Variant::OBJECT; r_ret = RTR("Invalid instance dictionary format (missing @path)"); return; } Ref