// Copyright 2016 Activision Publishing, Inc. // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. #[compute] #version 450 VERSION_DEFINES #define GROUP_SIZE 64 layout(local_size_x = GROUP_SIZE, local_size_y = 1, local_size_z = 1) in; layout(set = 0, binding = 0) uniform samplerCube source_cubemap; layout(rgba16f, set = 2, binding = 0) uniform restrict writeonly imageCube dest_cubemap0; layout(rgba16f, set = 2, binding = 1) uniform restrict writeonly imageCube dest_cubemap1; layout(rgba16f, set = 2, binding = 2) uniform restrict writeonly imageCube dest_cubemap2; layout(rgba16f, set = 2, binding = 3) uniform restrict writeonly imageCube dest_cubemap3; layout(rgba16f, set = 2, binding = 4) uniform restrict writeonly imageCube dest_cubemap4; layout(rgba16f, set = 2, binding = 5) uniform restrict writeonly imageCube dest_cubemap5; layout(rgba16f, set = 2, binding = 6) uniform restrict writeonly imageCube dest_cubemap6; #ifdef USE_HIGH_QUALITY #define NUM_TAPS 32 #else #define NUM_TAPS 8 #endif #define BASE_RESOLUTION 128 #ifdef USE_HIGH_QUALITY layout(set = 1, binding = 0, std430) buffer restrict readonly Data { vec4[7][5][3][24] coeffs; } data; #else layout(set = 1, binding = 0, std430) buffer restrict readonly Data { vec4[7][5][6] coeffs; } data; #endif void get_dir(out vec3 dir, in vec2 uv, in uint face) { switch (face) { case 0: dir = vec3(1.0, uv[1], -uv[0]); break; case 1: dir = vec3(-1.0, uv[1], uv[0]); break; case 2: dir = vec3(uv[0], 1.0, -uv[1]); break; case 3: dir = vec3(uv[0], -1.0, uv[1]); break; case 4: dir = vec3(uv[0], uv[1], 1.0); break; default: dir = vec3(-uv[0], uv[1], -1.0); break; } } void main() { // INPUT: // id.x = the linear address of the texel (ignoring face) // id.y = the face // -> use to index output texture // id.x = texel x // id.y = texel y // id.z = face uvec3 id = gl_GlobalInvocationID; // determine which texel this is #ifndef USE_TEXTURE_ARRAY // NOTE (macOS/MoltenVK): Do not rename, "level" variable name conflicts with the Metal "level(float lod)" mipmap sampling function name. int mip_level = 0; if (id.x < (128 * 128)) { mip_level = 0; } else if (id.x < (128 * 128 + 64 * 64)) { mip_level = 1; id.x -= (128 * 128); } else if (id.x < (128 * 128 + 64 * 64 + 32 * 32)) { mip_level = 2; id.x -= (128 * 128 + 64 * 64); } else if (id.x < (128 * 128 + 64 * 64 + 32 * 32 + 16 * 16)) { mip_level = 3; id.x -= (128 * 128 + 64 * 64 + 32 * 32); } else if (id.x < (128 * 128 + 64 * 64 + 32 * 32 + 16 * 16 + 8 * 8)) { mip_level = 4; id.x -= (128 * 128 + 64 * 64 + 32 * 32 + 16 * 16); } else if (id.x < (128 * 128 + 64 * 64 + 32 * 32 + 16 * 16 + 8 * 8 + 4 * 4)) { mip_level = 5; id.x -= (128 * 128 + 64 * 64 + 32 * 32 + 16 * 16 + 8 * 8); } else if (id.x < (128 * 128 + 64 * 64 + 32 * 32 + 16 * 16 + 8 * 8 + 4 * 4 + 2 * 2)) { mip_level = 6; id.x -= (128 * 128 + 64 * 64 + 32 * 32 + 16 * 16 + 8 * 8 + 4 * 4); } else { return; } int res = BASE_RESOLUTION >> mip_level; #else // Using Texture Arrays so all levels are the same resolution int res = BASE_RESOLUTION; int mip_level = int(id.x / (BASE_RESOLUTION * BASE_RESOLUTION)); id.x -= mip_level * BASE_RESOLUTION * BASE_RESOLUTION; #endif // determine dir / pos for the texel vec3 dir, adir, frameZ; { id.z = id.y; id.y = id.x / res; id.x -= id.y * res; vec2 uv; uv.x = (float(id.x) * 2.0 + 1.0) / float(res) - 1.0; uv.y = -(float(id.y) * 2.0 + 1.0) / float(res) + 1.0; get_dir(dir, uv, id.z); frameZ = normalize(dir); adir = abs(dir); } // GGX gather colors vec4 color = vec4(0.0); for (int axis = 0; axis < 3; axis++) { const int otherAxis0 = 1 - (axis & 1) - (axis >> 1); const int otherAxis1 = 2 - (axis >> 1); float frameweight = (max(adir[otherAxis0], adir[otherAxis1]) - .75) / .25; if (frameweight > 0.0) { // determine frame vec3 UpVector; switch (axis) { case 0: UpVector = vec3(1, 0, 0); break; case 1: UpVector = vec3(0, 1, 0); break; default: UpVector = vec3(0, 0, 1); break; } vec3 frameX = normalize(cross(UpVector, frameZ)); vec3 frameY = cross(frameZ, frameX); // calculate parametrization for polynomial float Nx = dir[otherAxis0]; float Ny = dir[otherAxis1]; float Nz = adir[axis]; float NmaxXY = max(abs(Ny), abs(Nx)); Nx /= NmaxXY; Ny /= NmaxXY; float theta; if (Ny < Nx) { if (Ny <= -0.999) theta = Nx; else theta = Ny; } else { if (Ny >= 0.999) theta = -Nx; else theta = -Ny; } float phi; if (Nz <= -0.999) phi = -NmaxXY; else if (Nz >= 0.999) phi = NmaxXY; else phi = Nz; float theta2 = theta * theta; float phi2 = phi * phi; // sample for (int iSuperTap = 0; iSuperTap < NUM_TAPS / 4; iSuperTap++) { const int index = (NUM_TAPS / 4) * axis + iSuperTap; #ifdef USE_HIGH_QUALITY vec4 coeffsDir0[3]; vec4 coeffsDir1[3]; vec4 coeffsDir2[3]; vec4 coeffsLevel[3]; vec4 coeffsWeight[3]; for (int iCoeff = 0; iCoeff < 3; iCoeff++) { coeffsDir0[iCoeff] = data.coeffs[mip_level][0][iCoeff][index]; coeffsDir1[iCoeff] = data.coeffs[mip_level][1][iCoeff][index]; coeffsDir2[iCoeff] = data.coeffs[mip_level][2][iCoeff][index]; coeffsLevel[iCoeff] = data.coeffs[mip_level][3][iCoeff][index]; coeffsWeight[iCoeff] = data.coeffs[mip_level][4][iCoeff][index]; } for (int iSubTap = 0; iSubTap < 4; iSubTap++) { // determine sample attributes (dir, weight, mip_level) vec3 sample_dir = frameX * (coeffsDir0[0][iSubTap] + coeffsDir0[1][iSubTap] * theta2 + coeffsDir0[2][iSubTap] * phi2) + frameY * (coeffsDir1[0][iSubTap] + coeffsDir1[1][iSubTap] * theta2 + coeffsDir1[2][iSubTap] * phi2) + frameZ * (coeffsDir2[0][iSubTap] + coeffsDir2[1][iSubTap] * theta2 + coeffsDir2[2][iSubTap] * phi2); float sample_level = coeffsLevel[0][iSubTap] + coeffsLevel[1][iSubTap] * theta2 + coeffsLevel[2][iSubTap] * phi2; float sample_weight = coeffsWeight[0][iSubTap] + coeffsWeight[1][iSubTap] * theta2 + coeffsWeight[2][iSubTap] * phi2; #else vec4 coeffsDir0 = data.coeffs[mip_level][0][index]; vec4 coeffsDir1 = data.coeffs[mip_level][1][index]; vec4 coeffsDir2 = data.coeffs[mip_level][2][index]; vec4 coeffsLevel = data.coeffs[mip_level][3][index]; vec4 coeffsWeight = data.coeffs[mip_level][4][index]; for (int iSubTap = 0; iSubTap < 4; iSubTap++) { // determine sample attributes (dir, weight, mip_level) vec3 sample_dir = frameX * coeffsDir0[iSubTap] + frameY * coeffsDir1[iSubTap] + frameZ * coeffsDir2[iSubTap]; float sample_level = coeffsLevel[iSubTap]; float sample_weight = coeffsWeight[iSubTap]; #endif sample_weight *= frameweight; // adjust for jacobian sample_dir /= max(abs(sample_dir[0]), max(abs(sample_dir[1]), abs(sample_dir[2]))); sample_level += 0.75 * log2(dot(sample_dir, sample_dir)); #ifndef USE_TEXTURE_ARRAY sample_level += float(mip_level) / 6.0; // Hack to increase the perceived roughness and reduce upscaling artifacts #endif // sample cubemap color.xyz += textureLod(source_cubemap, normalize(sample_dir), sample_level).xyz * sample_weight; color.w += sample_weight; } } } } color /= color.w; // write color color.xyz = max(vec3(0.0), color.xyz); color.w = 1.0; #ifdef USE_TEXTURE_ARRAY id.xy *= uvec2(2, 2); #endif switch (mip_level) { case 0: imageStore(dest_cubemap0, ivec3(id), color); #ifdef USE_TEXTURE_ARRAY imageStore(dest_cubemap0, ivec3(id) + ivec3(1.0, 0.0, 0.0), color); imageStore(dest_cubemap0, ivec3(id) + ivec3(0.0, 1.0, 0.0), color); imageStore(dest_cubemap0, ivec3(id) + ivec3(1.0, 1.0, 0.0), color); #endif break; case 1: imageStore(dest_cubemap1, ivec3(id), color); #ifdef USE_TEXTURE_ARRAY imageStore(dest_cubemap1, ivec3(id) + ivec3(1.0, 0.0, 0.0), color); imageStore(dest_cubemap1, ivec3(id) + ivec3(0.0, 1.0, 0.0), color); imageStore(dest_cubemap1, ivec3(id) + ivec3(1.0, 1.0, 0.0), color); #endif break; case 2: imageStore(dest_cubemap2, ivec3(id), color); #ifdef USE_TEXTURE_ARRAY imageStore(dest_cubemap2, ivec3(id) + ivec3(1.0, 0.0, 0.0), color); imageStore(dest_cubemap2, ivec3(id) + ivec3(0.0, 1.0, 0.0), color); imageStore(dest_cubemap2, ivec3(id) + ivec3(1.0, 1.0, 0.0), color); #endif break; case 3: imageStore(dest_cubemap3, ivec3(id), color); #ifdef USE_TEXTURE_ARRAY imageStore(dest_cubemap3, ivec3(id) + ivec3(1.0, 0.0, 0.0), color); imageStore(dest_cubemap3, ivec3(id) + ivec3(0.0, 1.0, 0.0), color); imageStore(dest_cubemap3, ivec3(id) + ivec3(1.0, 1.0, 0.0), color); #endif break; case 4: imageStore(dest_cubemap4, ivec3(id), color); #ifdef USE_TEXTURE_ARRAY imageStore(dest_cubemap4, ivec3(id) + ivec3(1.0, 0.0, 0.0), color); imageStore(dest_cubemap4, ivec3(id) + ivec3(0.0, 1.0, 0.0), color); imageStore(dest_cubemap4, ivec3(id) + ivec3(1.0, 1.0, 0.0), color); #endif break; case 5: imageStore(dest_cubemap5, ivec3(id), color); #ifdef USE_TEXTURE_ARRAY imageStore(dest_cubemap5, ivec3(id) + ivec3(1.0, 0.0, 0.0), color); imageStore(dest_cubemap5, ivec3(id) + ivec3(0.0, 1.0, 0.0), color); imageStore(dest_cubemap5, ivec3(id) + ivec3(1.0, 1.0, 0.0), color); #endif break; default: imageStore(dest_cubemap6, ivec3(id), color); #ifdef USE_TEXTURE_ARRAY imageStore(dest_cubemap6, ivec3(id) + ivec3(1.0, 0.0, 0.0), color); imageStore(dest_cubemap6, ivec3(id) + ivec3(0.0, 1.0, 0.0), color); imageStore(dest_cubemap6, ivec3(id) + ivec3(1.0, 1.0, 0.0), color); #endif break; } }