#[compute] #version 450 VERSION_DEFINES #define GROUP_SIZE 8 layout(local_size_x = GROUP_SIZE, local_size_y = GROUP_SIZE, local_size_z = 1) in; layout(set = 0, binding = 0) uniform samplerCube source_cube; layout(rgba16f, set = 1, binding = 0) uniform restrict writeonly imageCube dest_cubemap; layout(push_constant, binding = 1, std430) uniform Params { uint face_id; uint sample_count; float roughness; bool use_direct_write; float face_size; } params; #define M_PI 3.14159265359 vec3 texelCoordToVec(vec2 uv, uint faceID) { mat3 faceUvVectors[6]; // -x faceUvVectors[1][0] = vec3(0.0, 0.0, 1.0); // u -> +z faceUvVectors[1][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[1][2] = vec3(-1.0, 0.0, 0.0); // -x face // +x faceUvVectors[0][0] = vec3(0.0, 0.0, -1.0); // u -> -z faceUvVectors[0][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[0][2] = vec3(1.0, 0.0, 0.0); // +x face // -y faceUvVectors[3][0] = vec3(1.0, 0.0, 0.0); // u -> +x faceUvVectors[3][1] = vec3(0.0, 0.0, -1.0); // v -> -z faceUvVectors[3][2] = vec3(0.0, -1.0, 0.0); // -y face // +y faceUvVectors[2][0] = vec3(1.0, 0.0, 0.0); // u -> +x faceUvVectors[2][1] = vec3(0.0, 0.0, 1.0); // v -> +z faceUvVectors[2][2] = vec3(0.0, 1.0, 0.0); // +y face // -z faceUvVectors[5][0] = vec3(-1.0, 0.0, 0.0); // u -> -x faceUvVectors[5][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[5][2] = vec3(0.0, 0.0, -1.0); // -z face // +z faceUvVectors[4][0] = vec3(1.0, 0.0, 0.0); // u -> +x faceUvVectors[4][1] = vec3(0.0, -1.0, 0.0); // v -> -y faceUvVectors[4][2] = vec3(0.0, 0.0, 1.0); // +z face // out = u * s_faceUv[0] + v * s_faceUv[1] + s_faceUv[2]. vec3 result = (faceUvVectors[faceID][0] * uv.x) + (faceUvVectors[faceID][1] * uv.y) + faceUvVectors[faceID][2]; return normalize(result); } vec3 ImportanceSampleGGX(vec2 Xi, float Roughness, vec3 N) { float a = Roughness * Roughness; // DISNEY'S ROUGHNESS [see Burley'12 siggraph] // Compute distribution direction float Phi = 2.0 * M_PI * Xi.x; float CosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a * a - 1.0) * Xi.y)); float SinTheta = sqrt(1.0 - CosTheta * CosTheta); // Convert to spherical direction vec3 H; H.x = SinTheta * cos(Phi); H.y = SinTheta * sin(Phi); H.z = CosTheta; vec3 UpVector = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 TangentX = normalize(cross(UpVector, N)); vec3 TangentY = cross(N, TangentX); // Tangent to world space return TangentX * H.x + TangentY * H.y + N * H.z; } // http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html float GGX(float NdotV, float a) { float k = a / 2.0; return NdotV / (NdotV * (1.0 - k) + k); } // http://graphicrants.blogspot.com.au/2013/08/specular-brdf-reference.html float G_Smith(float a, float nDotV, float nDotL) { return GGX(nDotL, a * a) * GGX(nDotV, a * a); } float radicalInverse_VdC(uint bits) { bits = (bits << 16u) | (bits >> 16u); bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); return float(bits) * 2.3283064365386963e-10; // / 0x100000000 } vec2 Hammersley(uint i, uint N) { return vec2(float(i) / float(N), radicalInverse_VdC(i)); } void main() { uvec3 id = gl_GlobalInvocationID; id.z += params.face_id; vec2 uv = ((vec2(id.xy) * 2.0 + 1.0) / (params.face_size) - 1.0); vec3 N = texelCoordToVec(uv, id.z); //vec4 color = color_interp; if (params.use_direct_write) { imageStore(dest_cubemap, ivec3(id), vec4(texture(source_cube, N).rgb, 1.0)); } else { vec4 sum = vec4(0.0, 0.0, 0.0, 0.0); for (uint sampleNum = 0u; sampleNum < params.sample_count; sampleNum++) { vec2 xi = Hammersley(sampleNum, params.sample_count); vec3 H = ImportanceSampleGGX(xi, params.roughness, N); vec3 V = N; vec3 L = (2.0 * dot(V, H) * H - V); float ndotl = clamp(dot(N, L), 0.0, 1.0); if (ndotl > 0.0) { sum.rgb += textureLod(source_cube, L, 0.0).rgb * ndotl; sum.a += ndotl; } } sum /= sum.a; imageStore(dest_cubemap, ivec3(id), vec4(sum.rgb, 1.0)); } }