#[compute] #version 450 VERSION_DEFINES layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; #define NO_CHILDREN 0xFFFFFFFF #define GREY_VEC vec3(0.33333, 0.33333, 0.33333) struct CellChildren { uint children[8]; }; layout(set = 0, binding = 1, std430) buffer CellChildrenBuffer { CellChildren data[]; } cell_children; struct CellData { uint position; // xyz 10 bits uint albedo; //rgb albedo uint emission; //rgb normalized with e as multiplier uint normal; //RGB normal encoded }; layout(set = 0, binding = 2, std430) buffer CellDataBuffer { CellData data[]; } cell_data; #define LIGHT_TYPE_DIRECTIONAL 0 #define LIGHT_TYPE_OMNI 1 #define LIGHT_TYPE_SPOT 2 #ifdef MODE_COMPUTE_LIGHT struct Light { uint type; float energy; float radius; float attenuation; vec3 color; float spot_angle_radians; vec3 position; float spot_attenuation; vec3 direction; bool has_shadow; }; layout(set = 0, binding = 3, std140) uniform Lights { Light data[MAX_LIGHTS]; } lights; #endif layout(push_constant, binding = 0, std430) uniform Params { ivec3 limits; uint stack_size; float emission_scale; float propagation; float dynamic_range; uint light_count; uint cell_offset; uint cell_count; uint pad[2]; } params; layout(set = 0, binding = 4, std140) uniform Outputs { vec4 data[]; } output; #ifdef MODE_COMPUTE_LIGHT uint raymarch(float distance, float distance_adv, vec3 from, vec3 direction) { uint result = NO_CHILDREN; ivec3 size = ivec3(max(max(params.limits.x, params.limits.y), params.limits.z)); while (distance > -distance_adv) { //use this to avoid precision errors uint cell = 0; ivec3 pos = ivec3(from); if (all(greaterThanEqual(pos, ivec3(0))) && all(lessThan(pos, size))) { ivec3 ofs = ivec3(0); ivec3 half_size = size / 2; for (int i = 0; i < params.stack_size - 1; i++) { bvec3 greater = greaterThanEqual(pos, ofs + half_size); ofs += mix(ivec3(0), half_size, greater); uint child = 0; //wonder if this can be done faster if (greater.x) { child |= 1; } if (greater.y) { child |= 2; } if (greater.z) { child |= 4; } cell = cell_children.data[cell].children[child]; if (cell == NO_CHILDREN) { break; } half_size >>= ivec3(1); } if (cell != NO_CHILDREN) { return cell; //found cell! } } from += direction * distance_adv; distance -= distance_adv; } return NO_CHILDREN; } bool compute_light_vector(uint light, uint cell, vec3 pos, out float attenuation, out vec3 light_pos) { if (lights.data[light].type == LIGHT_TYPE_DIRECTIONAL) { light_pos = pos - lights.data[light].direction * length(vec3(params.limits)); attenuation = 1.0; } else { light_pos = lights.data[light].position; float distance = length(pos - light_pos); if (distance >= lights.data[light].radius) { return false; } attenuation = pow(clamp(1.0 - distance / lights.data[light].radius, 0.0001, 1.0), lights.data[light].attenuation); if (lights.data[light].type == LIGHT_TYPE_SPOT) { vec3 rel = normalize(pos - light_pos); float angle = acos(dot(rel, lights.data[light].direction)); if (angle > lights.data[light].spot_angle_radians) { return false; } float d = clamp(angle / lights.data[light].spot_angle_radians, 0, 1); attenuation *= pow(1.0 - d, lights.data[light].spot_attenuation); } } return true; } float get_normal_advance(vec3 p_normal) { vec3 normal = p_normal; vec3 unorm = abs(normal); if ((unorm.x >= unorm.y) && (unorm.x >= unorm.z)) { // x code unorm = normal.x > 0.0 ? vec3(1.0, 0.0, 0.0) : vec3(-1.0, 0.0, 0.0); } else if ((unorm.y > unorm.x) && (unorm.y >= unorm.z)) { // y code unorm = normal.y > 0.0 ? vec3(0.0, 1.0, 0.0) : vec3(0.0, -1.0, 0.0); } else if ((unorm.z > unorm.x) && (unorm.z > unorm.y)) { // z code unorm = normal.z > 0.0 ? vec3(0.0, 0.0, 1.0) : vec3(0.0, 0.0, -1.0); } else { // oh-no we messed up code // has to be unorm = vec3(1.0, 0.0, 0.0); } return 1.0 / dot(normal, unorm); } #endif void main() { uint cell_index = gl_GlobalInvocationID.x; if (cell_index >= params.cell_count) { return; } cell_index += params.cell_offset; uvec3 posu = uvec3(cell_data.data[cell_index].position & 0x7FF, (cell_data.data[cell_index].position >> 11) & 0x3FF, cell_data.data[cell_index].position >> 21); vec4 albedo = unpackUnorm4x8(cell_data.data[cell_index].albedo); #ifdef MODE_COMPUTE_LIGHT vec3 pos = vec3(posu) + vec3(0.5); vec3 emission = vec3(ivec3(cell_data.data[cell_index].emission & 0x3FF, (cell_data.data[cell_index].emission >> 10) & 0x7FF, cell_data.data[cell_index].emission >> 21)) * params.emission_scale; vec4 normal = unpackSnorm4x8(cell_data.data[cell_index].normal); #ifdef MODE_ANISOTROPIC vec3 accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); const vec3 accum_dirs[6] = vec3[](vec3(1.0, 0.0, 0.0), vec3(-1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, -1.0, 0.0), vec3(0.0, 0.0, 1.0), vec3(0.0, 0.0, -1.0)); #else vec3 accum = vec3(0.0); #endif for (uint i = 0; i < params.light_count; i++) { float attenuation; vec3 light_pos; if (!compute_light_vector(i, cell_index, pos, attenuation, light_pos)) { continue; } vec3 light_dir = pos - light_pos; float distance = length(light_dir); light_dir = normalize(light_dir); if (length(normal.xyz) > 0.2 && dot(normal.xyz, light_dir) >= 0) { continue; //not facing the light } if (lights.data[i].has_shadow) { float distance_adv = get_normal_advance(light_dir); distance += distance_adv - mod(distance, distance_adv); //make it reach the center of the box always vec3 from = pos - light_dir * distance; //approximate from -= sign(light_dir) * 0.45; //go near the edge towards the light direction to avoid self occlusion uint result = raymarch(distance, distance_adv, from, light_dir); if (result != cell_index) { continue; //was occluded } } vec3 light = lights.data[i].color * albedo.rgb * attenuation * lights.data[i].energy; #ifdef MODE_ANISOTROPIC for (uint j = 0; j < 6; j++) { accum[j] += max(0.0, dot(accum_dir, -light_dir)) * light + emission; } #else if (length(normal.xyz) > 0.2) { accum += max(0.0, dot(normal.xyz, -light_dir)) * light + emission; } else { //all directions accum += light + emission; } #endif } #ifdef MODE_ANISOTROPIC output.data[cell_index * 6 + 0] = vec4(accum[0], 0.0); output.data[cell_index * 6 + 1] = vec4(accum[1], 0.0); output.data[cell_index * 6 + 2] = vec4(accum[2], 0.0); output.data[cell_index * 6 + 3] = vec4(accum[3], 0.0); output.data[cell_index * 6 + 4] = vec4(accum[4], 0.0); output.data[cell_index * 6 + 5] = vec4(accum[5], 0.0); #else output.data[cell_index] = vec4(accum, 0.0); #endif #endif //MODE_COMPUTE_LIGHT #ifdef MODE_UPDATE_MIPMAPS { #ifdef MODE_ANISOTROPIC vec3 light_accum[6] = vec3[](vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0), vec3(0.0)); #else vec3 light_accum = vec3(0.0); #endif float count = 0.0; for (uint i = 0; i < 8; i++) { uint child_index = cell_children.data[cell_index].children[i]; if (child_index == NO_CHILDREN) { continue; } #ifdef MODE_ANISOTROPIC light_accum[1] += output.data[child_index * 6 + 0].rgb; light_accum[2] += output.data[child_index * 6 + 1].rgb; light_accum[3] += output.data[child_index * 6 + 2].rgb; light_accum[4] += output.data[child_index * 6 + 3].rgb; light_accum[5] += output.data[child_index * 6 + 4].rgb; light_accum[6] += output.data[child_index * 6 + 5].rgb; #else light_accum += output.data[child_index].rgb; #endif count += 1.0; } float divisor = mix(8.0, count, params.propagation); #ifdef MODE_ANISOTROPIC output.data[cell_index * 6 + 0] = vec4(light_accum[0] / divisor, 0.0); output.data[cell_index * 6 + 1] = vec4(light_accum[1] / divisor, 0.0); output.data[cell_index * 6 + 2] = vec4(light_accum[2] / divisor, 0.0); output.data[cell_index * 6 + 3] = vec4(light_accum[3] / divisor, 0.0); output.data[cell_index * 6 + 4] = vec4(light_accum[4] / divisor, 0.0); output.data[cell_index * 6 + 5] = vec4(light_accum[5] / divisor, 0.0); #else output.data[cell_index] = vec4(light_accum / divisor, 0.0); #endif } #endif #ifdef MODE_WRITE_TEXTURE { } #endif }