#[compute] #version 450 VERSION_DEFINES layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in; #define TWO_PI 6.283185307179586476925286766559 #ifdef SSAO_QUALITY_HIGH #define NUM_SAMPLES (20) #endif #ifdef SSAO_QUALITY_ULTRA #define NUM_SAMPLES (48) #endif #ifdef SSAO_QUALITY_LOW #define NUM_SAMPLES (8) #endif #if !defined(SSAO_QUALITY_LOW) && !defined(SSAO_QUALITY_HIGH) && !defined(SSAO_QUALITY_ULTRA) #define NUM_SAMPLES (12) #endif // If using depth mip levels, the log of the maximum pixel offset before we need to switch to a lower // miplevel to maintain reasonable spatial locality in the cache // If this number is too small (< 3), too many taps will land in the same pixel, and we'll get bad variance that manifests as flashing. // If it is too high (> 5), we'll get bad performance because we're not using the MIP levels effectively #define LOG_MAX_OFFSET (3) // This must be less than or equal to the MAX_MIP_LEVEL defined in SSAO.cpp #define MAX_MIP_LEVEL (4) // This is the number of turns around the circle that the spiral pattern makes. This should be prime to prevent // taps from lining up. This particular choice was tuned for NUM_SAMPLES == 9 const int ROTATIONS[] = int[]( 1, 1, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 5, 3, 4, 7, 5, 5, 7, 9, 8, 5, 5, 7, 7, 7, 8, 5, 8, 11, 12, 7, 10, 13, 8, 11, 8, 7, 14, 11, 11, 13, 12, 13, 19, 17, 13, 11, 18, 19, 11, 11, 14, 17, 21, 15, 16, 17, 18, 13, 17, 11, 17, 19, 18, 25, 18, 19, 19, 29, 21, 19, 27, 31, 29, 21, 18, 17, 29, 31, 31, 23, 18, 25, 26, 25, 23, 19, 34, 19, 27, 21, 25, 39, 29, 17, 21, 27); //#define NUM_SPIRAL_TURNS (7) const int NUM_SPIRAL_TURNS = ROTATIONS[NUM_SAMPLES - 1]; layout(set = 0, binding = 0) uniform sampler2D source_depth_mipmaps; layout(r8, set = 1, binding = 0) uniform restrict writeonly image2D dest_image; #ifndef USE_HALF_SIZE layout(set = 2, binding = 0) uniform sampler2D source_depth; #endif layout(set = 3, binding = 0) uniform sampler2D source_normal; layout(push_constant, binding = 1, std430) uniform Params { ivec2 screen_size; float z_far; float z_near; bool orthogonal; float intensity_div_r6; float radius; float bias; vec4 proj_info; vec2 pixel_size; float proj_scale; uint pad; } params; vec3 reconstructCSPosition(vec2 S, float z) { if (params.orthogonal) { return vec3((S.xy * params.proj_info.xy + params.proj_info.zw), z); } else { return vec3((S.xy * params.proj_info.xy + params.proj_info.zw) * z, z); } } vec3 getPosition(ivec2 ssP) { vec3 P; #ifdef USE_HALF_SIZE P.z = texelFetch(source_depth_mipmaps, ssP, 0).r; P.z = -P.z; #else P.z = texelFetch(source_depth, ssP, 0).r; P.z = P.z * 2.0 - 1.0; if (params.orthogonal) { P.z = ((P.z + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; } else { P.z = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - P.z * (params.z_far - params.z_near)); } P.z = -P.z; #endif // Offset to pixel center P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z); return P; } /** Returns a unit vector and a screen-space radius for the tap on a unit disk (the caller should scale by the actual disk radius) */ vec2 tapLocation(int sampleNumber, float spinAngle, out float ssR) { // Radius relative to ssR float alpha = (float(sampleNumber) + 0.5) * (1.0 / float(NUM_SAMPLES)); float angle = alpha * (float(NUM_SPIRAL_TURNS) * 6.28) + spinAngle; ssR = alpha; return vec2(cos(angle), sin(angle)); } /** Read the camera-space position of the point at screen-space pixel ssP + unitOffset * ssR. Assumes length(unitOffset) == 1 */ vec3 getOffsetPosition(ivec2 ssP, float ssR) { // Derivation: // mipLevel = floor(log(ssR / MAX_OFFSET)); int mipLevel = clamp(int(floor(log2(ssR))) - LOG_MAX_OFFSET, 0, MAX_MIP_LEVEL); vec3 P; // We need to divide by 2^mipLevel to read the appropriately scaled coordinate from a MIP-map. // Manually clamp to the texture size because texelFetch bypasses the texture unit ivec2 mipP = clamp(ssP >> mipLevel, ivec2(0), (params.screen_size >> mipLevel) - ivec2(1)); #ifdef USE_HALF_SIZE P.z = texelFetch(source_depth_mipmaps, mipP, mipLevel).r; P.z = -P.z; #else if (mipLevel < 1) { //read from depth buffer P.z = texelFetch(source_depth, mipP, 0).r; P.z = P.z * 2.0 - 1.0; if (params.orthogonal) { P.z = ((P.z + (params.z_far + params.z_near) / (params.z_far - params.z_near)) * (params.z_far - params.z_near)) / 2.0; } else { P.z = 2.0 * params.z_near * params.z_far / (params.z_far + params.z_near - P.z * (params.z_far - params.z_near)); } P.z = -P.z; } else { //read from mipmaps P.z = texelFetch(source_depth_mipmaps, mipP, mipLevel - 1).r; P.z = -P.z; } #endif // Offset to pixel center P = reconstructCSPosition(vec2(ssP) + vec2(0.5), P.z); return P; } /** Compute the occlusion due to sample with index \a i about the pixel at \a ssC that corresponds to camera-space point \a C with unit normal \a n_C, using maximum screen-space sampling radius \a ssDiskRadius Note that units of H() in the HPG12 paper are meters, not unitless. The whole falloff/sampling function is therefore unitless. In this implementation, we factor out (9 / radius). Four versions of the falloff function are implemented below */ float sampleAO(in ivec2 ssC, in vec3 C, in vec3 n_C, in float ssDiskRadius, in float p_radius, in int tapIndex, in float randomPatternRotationAngle) { // Offset on the unit disk, spun for this pixel float ssR; vec2 unitOffset = tapLocation(tapIndex, randomPatternRotationAngle, ssR); ssR *= ssDiskRadius; ivec2 ssP = ivec2(ssR * unitOffset) + ssC; if (any(lessThan(ssP, ivec2(0))) || any(greaterThanEqual(ssP, params.screen_size))) { return 0.0; } // The occluding point in camera space vec3 Q = getOffsetPosition(ssP, ssR); vec3 v = Q - C; float vv = dot(v, v); float vn = dot(v, n_C); const float epsilon = 0.01; float radius2 = p_radius * p_radius; // A: From the HPG12 paper // Note large epsilon to avoid overdarkening within cracks //return float(vv < radius2) * max((vn - bias) / (epsilon + vv), 0.0) * radius2 * 0.6; // B: Smoother transition to zero (lowers contrast, smoothing out corners). [Recommended] float f = max(radius2 - vv, 0.0); return f * f * f * max((vn - params.bias) / (epsilon + vv), 0.0); // C: Medium contrast (which looks better at high radii), no division. Note that the // contribution still falls off with radius^2, but we've adjusted the rate in a way that is // more computationally efficient and happens to be aesthetically pleasing. // return 4.0 * max(1.0 - vv * invRadius2, 0.0) * max(vn - bias, 0.0); // D: Low contrast, no division operation // return 2.0 * float(vv < radius * radius) * max(vn - bias, 0.0); } void main() { // Pixel being shaded ivec2 ssC = ivec2(gl_GlobalInvocationID.xy); if (any(greaterThanEqual(ssC, params.screen_size))) { //too large, do nothing return; } // World space point being shaded vec3 C = getPosition(ssC); #ifdef USE_HALF_SIZE vec3 n_C = texelFetch(source_normal, ssC << 1, 0).xyz * 2.0 - 1.0; #else vec3 n_C = texelFetch(source_normal, ssC, 0).xyz * 2.0 - 1.0; #endif n_C = normalize(n_C); n_C.y = -n_C.y; //because this code reads flipped // Hash function used in the HPG12 AlchemyAO paper float randomPatternRotationAngle = mod(float((3 * ssC.x ^ ssC.y + ssC.x * ssC.y) * 10), TWO_PI); // Reconstruct normals from positions. These will lead to 1-pixel black lines // at depth discontinuities, however the blur will wipe those out so they are not visible // in the final image. // Choose the screen-space sample radius // proportional to the projected area of the sphere float ssDiskRadius = -params.proj_scale * params.radius; if (!params.orthogonal) { ssDiskRadius = -params.proj_scale * params.radius / C.z; } float sum = 0.0; for (int i = 0; i < NUM_SAMPLES; ++i) { sum += sampleAO(ssC, C, n_C, ssDiskRadius, params.radius, i, randomPatternRotationAngle); } float A = max(0.0, 1.0 - sum * params.intensity_div_r6 * (5.0 / float(NUM_SAMPLES))); imageStore(dest_image, ssC, vec4(A)); }