Server for anything visible. Server for anything visible. The visual server is the API backend for everything visible. The whole scene system mounts on it to display. The visual server is completely opaque, the internals are entirely implementation specific and cannot be accessed. Sets images to be rendered in the window margin. Sets margin size, where black bars (or images, if [method black_bars_set_images] was used) are rendered. Creates a camera and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]camera_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Sets the cull mask associated with this camera. The cull mask describes which 3d layers are rendered by this camera. Equivalent to [member Camera.cull_mask]. Sets the environment used by this camera. Equivalent to [member Camera.environment]. Sets camera to use frustum projection. This mode allows adjusting the [code]offset[/code] argument to create "tilted frustum" effects. Sets camera to use orthogonal projection, also known as orthographic projection. Objects remain the same size on the screen no matter how far away they are. Sets camera to use perspective projection. Objects on the screen becomes smaller when they are far away. Sets [Transform] of camera. If [code]true[/code], preserves the horizontal aspect ratio which is equivalent to [constant Camera.KEEP_WIDTH]. If [code]false[/code], preserves the vertical aspect ratio which is equivalent to [constant Camera.KEEP_HEIGHT]. Creates a canvas and returns the assigned [RID]. It can be accessed with the RID that is returned. This RID will be used in all [code]canvas_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Adds a circle command to the [CanvasItem]'s draw commands. If ignore is [code]true[/code], the VisualServer does not perform clipping. Adds a line command to the [CanvasItem]'s draw commands. Adds a mesh command to the [CanvasItem]'s draw commands. Adds a [MultiMesh] to the [CanvasItem]'s draw commands. Only affects its aabb at the moment. Adds a nine patch image to the [CanvasItem]'s draw commands. See [NinePatchRect] for more explanation. Adds a particle system to the [CanvasItem]'s draw commands. Adds a polygon to the [CanvasItem]'s draw commands. Adds a polyline, which is a line from multiple points with a width, to the [CanvasItem]'s draw commands. Adds a primitive to the [CanvasItem]'s draw commands. Adds a rectangle to the [CanvasItem]'s draw commands. Adds a [Transform2D] command to the [CanvasItem]'s draw commands. This sets the extra_matrix uniform when executed. This affects the later commands of the canvas item. Adds a textured rect to the [CanvasItem]'s draw commands. Adds a texture rect with region setting to the [CanvasItem]'s draw commands. Adds a triangle array to the [CanvasItem]'s draw commands. Clears the [CanvasItem] and removes all commands in it. Creates a new [CanvasItem] and returns its [RID]. It can be accessed with the RID that is returned. This RID will be used in all [code]canvas_item_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Sets clipping for the [CanvasItem]. Sets the [CanvasItem] to copy a rect to the backbuffer. Defines a custom drawing rectangle for the [CanvasItem]. Enables the use of distance fields for GUI elements that are rendering distance field based fonts. Sets [CanvasItem] to be drawn behind its parent. Sets the index for the [CanvasItem]. The light mask. See [LightOccluder2D] for more information on light masks. Sets a new material to the [CanvasItem]. Sets the color that modulates the [CanvasItem] and its children. Sets the parent for the [CanvasItem]. Sets the color that modulates the [CanvasItem] without children. Sets if [CanvasItem]'s children should be sorted by y-position. Sets the [CanvasItem]'s [Transform2D]. Sets if the [CanvasItem] uses its parent's material. Sets if the canvas item (including its children) is visible. If this is enabled, the Z index of the parent will be added to the children's Z index. Sets the [CanvasItem]'s Z index, i.e. its draw order (lower indexes are drawn first). Attaches the canvas light to the canvas. Removes it from its previous canvas. Creates a canvas light and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]canvas_light_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Attaches a light occluder to the canvas. Removes it from its previous canvas. Creates a light occluder and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]canvas_light_ocluder_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Enables or disables light occluder. The light mask. See [LightOccluder2D] for more information on light masks. Sets a light occluder's polygon. Sets a light occluder's [Transform2D]. Sets the color for a light. Enables or disables a canvas light. Sets a canvas light's energy. Sets a canvas light's height. The light mask. See [LightOccluder2D] for more information on light masks. The binary mask used to determine which layers this canvas light's shadows affects. See [LightOccluder2D] for more information on light masks. The layer range that gets rendered with this light. The mode of the light, see [enum CanvasLightMode] constants. Sets the texture's scale factor of the light. Equivalent to [member Light2D.texture_scale]. Sets the width of the shadow buffer, size gets scaled to the next power of two for this. Sets the color of the canvas light's shadow. Enables or disables the canvas light's shadow. Sets the canvas light's shadow's filter, see [enum CanvasLightShadowFilter] constants. Sets the length of the shadow's gradient. Smoothens the shadow. The lower, the smoother. Sets texture to be used by light. Equivalent to [member Light2D.texture]. Sets the offset of the light's texture. Equivalent to [member Light2D.offset]. Sets the canvas light's [Transform2D]. Sets the Z range of objects that will be affected by this light. Equivalent to [member Light2D.range_z_min] and [member Light2D.range_z_max]. Creates a new light occluder polygon and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]canvas_occluder_polygon_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Sets an occluder polygons cull mode. See [enum CanvasOccluderPolygonCullMode] constants. Sets the shape of the occluder polygon. Sets the shape of the occluder polygon as lines. A copy of the canvas item will be drawn with a local offset of the mirroring [Vector2]. Modulates all colors in the given canvas. Creates a directional light and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID can be used in most [code]light_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this directional light to an instance using [method instance_set_base] using the returned RID. Draws a frame. [i]This method is deprecated[/i], please use [method force_draw] instead. Creates an environment and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]environment_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Sets the values to be used with the "Adjustment" post-process effect. See [Environment] for more details. Sets the ambient light parameters. See [Environment] for more details. Sets the [i]BGMode[/i] of the environment. Equivalent to [member Environment.background_mode]. Color displayed for clear areas of the scene (if using Custom color or Color+Sky background modes). Sets the intensity of the background color. Sets the maximum layer to use if using Canvas background mode. Sets the values to be used with the "DoF Far Blur" post-process effect. See [Environment] for more details. Sets the values to be used with the "DoF Near Blur" post-process effect. See [Environment] for more details. Sets the variables to be used with the scene fog. See [Environment] for more details. Sets the variables to be used with the fog depth effect. See [Environment] for more details. Sets the variables to be used with the fog height effect. See [Environment] for more details. Sets the variables to be used with the "glow" post-process effect. See [Environment] for more details. Sets the [Sky] to be used as the environment's background when using [i]BGMode[/i] sky. Equivalent to [member Environment.background_sky]. Sets a custom field of view for the background [Sky]. Equivalent to [member Environment.background_sky_custom_fov]. Sets the rotation of the background [Sky] expressed as a [Basis]. Equivalent to [member Environment.background_sky_orientation]. Sets the variables to be used with the "Screen Space Ambient Occlusion (SSAO)" post-process effect. See [Environment] for more details. Sets the variables to be used with the "screen space reflections" post-process effect. See [Environment] for more details. Sets the variables to be used with the "tonemap" post-process effect. See [Environment] for more details. Removes buffers and clears testcubes. Forces a frame to be drawn when the function is called. Drawing a frame updates all [Viewport]s that are set to update. Use with extreme caution. Synchronizes threads. Tries to free an object in the VisualServer. Returns a certain information, see [enum RenderInfo] for options. Returns the id of the test cube. Creates one if none exists. Returns the id of the test texture. Creates one if none exists. Returns the id of a white texture. Creates one if none exists. Creates a GI probe and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]gi_probe_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this GI probe to an instance using [method instance_set_base] using the returned RID. Returns [code]true[/code] if changes have been made to the VisualServer's data. [method draw] is usually called if this happens. Not yet implemented. Always returns [code]false[/code]. Returns [code]true[/code] if the OS supports a certain feature. Features might be s3tc, etc, etc2 and pvrtc, Sets up [ImmediateGeometry] internals to prepare for drawing. Equivalent to [method ImmediateGeometry.begin]. Clears everything that was set up between [method immediate_begin] and [method immediate_end]. Equivalent to [method ImmediateGeometry.clear]. Sets the color to be used with next vertex. Equivalent to [method ImmediateGeometry.set_color]. Creates an immediate geometry and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]immediate_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this immediate geometry to an instance using [method instance_set_base] using the returned RID. Ends drawing the [ImmediateGeometry] and displays it. Equivalent to [method ImmediateGeometry.end]. Returns the material assigned to the [ImmediateGeometry]. Sets the normal to be used with next vertex. Equivalent to [method ImmediateGeometry.set_normal]. Sets the material to be used to draw the [ImmediateGeometry]. Sets the tangent to be used with next vertex. Equivalent to [method ImmediateGeometry.set_tangent]. Sets the UV to be used with next vertex. Equivalent to [method ImmediateGeometry.set_uv]. Sets the UV2 to be used with next vertex. Equivalent to [method ImmediateGeometry.set_uv2]. Adds the next vertex using the information provided in advance. Equivalent to [method ImmediateGeometry.add_vertex]. Adds the next vertex using the information provided in advance. This is a helper class that calls [method immediate_vertex] under the hood. Equivalent to [method ImmediateGeometry.add_vertex]. Initializes the visual server. This function is called internally by platform-dependent code during engine initialization. If called from a running game, it will not do anything. Attaches a unique Object ID to instance. Object ID must be attached to instance for proper culling with [method instances_cull_aabb], [method instances_cull_convex], and [method instances_cull_ray]. Attaches a skeleton to an instance. Removes the previous skeleton from the instance. Creates a visual instance and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]instance_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. An instance is a way of placing a 3D object in the scenario. Objects like particles, meshes, and reflection probes need to be associated with an instance to be visible in the scenario using [method instance_set_base]. Creates a visual instance, adds it to the VisualServer, and sets both base and scenario. It can be accessed with the RID that is returned. This RID will be used in all [code]instance_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Not implemented in Godot 3.x. Sets the shadow casting setting to one of [enum ShadowCastingSetting]. Equivalent to [member GeometryInstance.cast_shadow]. Not implemented in Godot 3.x. Sets the flag for a given [enum InstanceFlags]. See [enum InstanceFlags] for more details. Sets a material that will override the material for all surfaces on the mesh associated with this instance. Equivalent to [member GeometryInstance.material_override]. Sets the base of the instance. A base can be any of the 3D objects that are created in the VisualServer that can be displayed. For example, any of the light types, mesh, multimesh, immediate geometry, particle system, reflection probe, lightmap capture, and the GI probe are all types that can be set as the base of an instance in order to be displayed in the scenario. Sets the weight for a given blend shape associated with this instance. Sets a custom AABB to use when culling objects from the view frustum. Equivalent to [method GeometryInstance.set_custom_aabb]. Function not implemented in Godot 3.x. Sets a margin to increase the size of the AABB when culling objects from the view frustum. This allows you avoid culling objects that fall outside the view frustum. Equivalent to [member GeometryInstance.extra_cull_margin]. Sets the render layers that this instance will be drawn to. Equivalent to [member VisualInstance.layers]. Sets the scenario that the instance is in. The scenario is the 3D world that the objects will be displayed in. Sets the material of a specific surface. Equivalent to [method MeshInstance.set_surface_material]. Sets the world space transform of the instance. Equivalent to [member Spatial.transform]. Sets the lightmap to use with this instance. Sets whether an instance is drawn or not. Equivalent to [member Spatial.visible]. Returns an array of object IDs intersecting with the provided AABB. Only visual 3D nodes are considered, such as [MeshInstance] or [DirectionalLight]. Use [method @GDScript.instance_from_id] to obtain the actual nodes. A scenario RID must be provided, which is available in the [World] you want to query. [b]Warning:[/b] This function is primarily intended for editor usage. For in-game use cases, prefer physics collision. Returns an array of object IDs intersecting with the provided convex shape. Only visual 3D nodes are considered, such as [MeshInstance] or [DirectionalLight]. Use [method @GDScript.instance_from_id] to obtain the actual nodes. A scenario RID must be provided, which is available in the [World] you want to query. [b]Warning:[/b] This function is primarily intended for editor usage. For in-game use cases, prefer physics collision. Returns an array of object IDs intersecting with the provided 3D ray. Only visual 3D nodes are considered, such as [MeshInstance] or [DirectionalLight]. Use [method @GDScript.instance_from_id] to obtain the actual nodes. A scenario RID must be provided, which is available in the [World] you want to query. [b]Warning:[/b] This function is primarily intended for editor usage. For in-game use cases, prefer physics collision. Sets whether GI probes capture light information from this light. Creates a lightmap capture and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]lightmap_capture_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this lightmap capture to an instance using [method instance_set_base] using the returned RID. Returns a mesh of a sphere with the given amount of horizontal and vertical subdivisions. Creates an empty material and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]material_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Returns the value of a certain material's parameter. Returns the shader of a certain material's shader. Returns an empty RID if the material doesn't have a shader. Sets a material's line width. Sets an object's next material. Sets a material's parameter. Sets a material's render priority. Sets a shader material's shader. Adds a surface generated from the Arrays to a mesh. See [enum PrimitiveType] constants for types. Removes all surfaces from a mesh. Creates a new mesh and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]mesh_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this mesh to an instance using [method instance_set_base] using the returned RID. Returns a mesh's blend shape count. Returns a mesh's blend shape mode. Returns a mesh's custom aabb. Returns a mesh's number of surfaces. Removes a mesh's surface. Sets a mesh's blend shape count. Sets a mesh's blend shape mode. Sets a mesh's custom aabb. Returns a mesh's surface's aabb. Returns a mesh's surface's vertex buffer. Returns a mesh's surface's amount of indices. Returns a mesh's surface's amount of vertices. Returns a mesh's surface's buffer arrays. Returns a mesh's surface's arrays for blend shapes. Returns the format of a mesh's surface. Returns a mesh's surface's index buffer. Returns a mesh's surface's material. Returns the primitive type of a mesh's surface. Returns the aabb of a mesh's surface's skeleton. Sets a mesh's surface's material. Creates a new multimesh on the VisualServer and returns an [RID] handle. This RID will be used in all [code]multimesh_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this multimesh to an instance using [method instance_set_base] using the returned RID. Creates a new omni light and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID can be used in most [code]light_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this omni light to an instance using [method instance_set_base] using the returned RID. Creates a particle system and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]particles_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach these particles to an instance using [method instance_set_base] using the returned RID. Creates a reflection probe and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]reflection_probe_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this reflection probe to an instance using [method instance_set_base] using the returned RID. Schedules a callback to the corresponding named [code]method[/code] on [code]where[/code] after a frame has been drawn. The callback method must use only 1 argument which will be called with [code]userdata[/code]. Creates a scenario and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]scenario_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. The scenario is the 3D world that all the visual instances exist in. Sets a boot image. The color defines the background color. If [code]scale[/code] is [code]true[/code], the image will be scaled to fit the screen size. If [code]use_filter[/code] is [code]true[/code], the image will be scaled with linear interpolation. If [code]use_filter[/code] is [code]false[/code], the image will be scaled with nearest-neighbor interpolation. Creates an empty shader and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]shader_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Returns a shader's code. Returns a default texture from a shader searched by name. Returns the parameters of a shader. Sets a shader's code. Sets a shader's default texture. Overwrites the texture given by name. Creates a skeleton and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]skeleton_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Creates an empty sky and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]sky_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Sets a sky's texture. Creates a spot light and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID can be used in most [code]light_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. To place in a scene, attach this spot light to an instance using [method instance_set_base] using the returned RID. Binds the texture to a texture slot. Creates an empty texture and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]texture_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Creates a texture, allocates the space for an image, and fills in the image. Returns a list of all the textures and their information. Returns a copy of a texture's image unless it's a CubeMap, in which case it returns the [RID] of the image at one of the cubes sides. Returns the flags of a texture. Returns the format of the texture's image. Returns the texture's height. Returns the texture's path. Returns the opengl id of the texture's image. Returns the texture's width. Sets the texture's image data. If it's a CubeMap, it sets the image data at a cube side. Sets the texture's flags. See [enum TextureFlags] for options. Sets the texture's path. If [code]true[/code], sets internal processes to shrink all image data to half the size. If [code]true[/code], the image will be stored in the texture's images array if overwritten. Sets a viewport's camera. Sets a viewport's canvas. Copies viewport to a region of the screen specified by [code]rect[/code]. If Viewport.[member Viewport.render_direct_to_screen] is [code]true[/code], then viewport does not use a framebuffer and the contents of the viewport are rendered directly to screen. However, note that the root viewport is drawn last, therefore it will draw over the screen. Accordingly, you must set the root viewport to an area that does not cover the area that you have attached this viewport to. For example, you can set the root viewport to not render at all with the following code: [codeblock] func _ready(): get_viewport().set_attach_to_screen_rect(Rect2()) $Viewport.set_attach_to_screen_rect(Rect2(0, 0, 600, 600)) [/codeblock] Using this can result in significant optimization, especially on lower-end devices. However, it comes at the cost of having to manage your viewports manually. For a further optimization see, [method viewport_set_render_direct_to_screen]. Creates an empty viewport and adds it to the VisualServer. It can be accessed with the RID that is returned. This RID will be used in all [code]viewport_*[/code] VisualServer functions. Once finished with your RID, you will want to free the RID using the VisualServer's [method free_rid] static method. Detaches the viewport from the screen. Returns a viewport's render information. For options, see the [enum ViewportRenderInfo] constants. Returns the viewport's last rendered frame. Detaches a viewport from a canvas and vice versa. If [code]true[/code], sets the viewport active, else sets it inactive. Sets the stacking order for a viewport's canvas. [code]layer[/code] is the actual canvas layer, while [code]sublayer[/code] specifies the stacking order of the canvas among those in the same layer. Sets the transformation of a viewport's canvas. Sets the clear mode of a viewport. See [enum ViewportClearMode] for options. Sets the debug draw mode of a viewport. See [enum ViewportDebugDraw] for options. If [code]true[/code], a viewport's 3D rendering is disabled. If [code]true[/code], rendering of a viewport's environment is disabled. Sets the viewport's global transformation matrix. If [code]true[/code], the viewport renders to hdr. If [code]true[/code], the viewport's canvas is not rendered. Currently unimplemented in Godot 3.x. Sets the anti-aliasing mode. See [enum ViewportMSAA] for options. Sets the viewport's parent to another viewport. If [code]true[/code], render the contents of the viewport directly to screen. This allows a low-level optimization where you can skip drawing a viewport to the root viewport. While this optimization can result in a significant increase in speed (especially on older devices), it comes at a cost of usability. When this is enabled, you cannot read from the viewport or from the [code]SCREEN_TEXTURE[/code]. You also lose the benefit of certain window settings, such as the various stretch modes. Another consequence to be aware of is that in 2D the rendering happens in window coordinates, so if you have a viewport that is double the size of the window, and you set this, then only the portion that fits within the window will be drawn, no automatic scaling is possible, even if your game scene is significantly larger than the window size. Sets a viewport's scenario. The scenario contains information about the [enum ScenarioDebugMode], environment information, reflection atlas etc. Sets the shadow atlas quadrant's subdivision. Sets the size of the shadow atlas's images (used for omni and spot lights). The value will be rounded up to the nearest power of 2. Sets the viewport's width and height. If [code]true[/code], the viewport renders its background as transparent. Sets when the viewport should be updated. See [enum ViewportUpdateMode] constants for options. Sets the viewport's 2D/3D mode. See [enum ViewportUsage] constants for options. If [code]true[/code], the viewport uses augmented or virtual reality technologies. See [ARVRInterface]. If [code]true[/code], the viewport's rendering is flipped vertically. Emitted at the end of the frame, after the VisualServer has finished updating all the Viewports. Emitted at the beginning of the frame, before the VisualServer updates all the Viewports. Marks an error that shows that the index array is empty. The minimum Z-layer for canvas items. The maximum Z-layer for canvas items. The minimum renderpriority of all materials. The maximum renderpriority of all materials. Marks the left side of a cubemap. Marks the right side of a cubemap. Marks the bottom side of a cubemap. Marks the top side of a cubemap. Marks the front side of a cubemap. Marks the back side of a cubemap. Generates mipmaps, which are smaller versions of the same texture to use when zoomed out, keeping the aspect ratio. Repeats the texture (instead of clamp to edge). Uses a magnifying filter, to enable smooth zooming in of the texture. Uses anisotropic mipmap filtering. Generates smaller versions of the same texture with different aspect ratios. This results in better-looking textures when viewed from oblique angles. Converts the texture to the sRGB color space. Repeats the texture with alternate sections mirrored. Texture is a video surface. Default flags. [constant TEXTURE_FLAG_MIPMAPS], [constant TEXTURE_FLAG_REPEAT] and [constant TEXTURE_FLAG_FILTER] are enabled. Shader is a 3D shader. Shader is a 2D shader. Shader is a particle shader. Represents the size of the [enum ShaderMode] enum. Array is a vertex array. Array is a normal array. Array is a tangent array. Array is a color array. Array is an UV coordinates array. Array is an UV coordinates array for the second UV coordinates. Array contains bone information. Array is weight information. Array is index array. Represents the size of the [enum ArrayType] enum. Flag used to mark a vertex array. Flag used to mark a normal array. Flag used to mark a tangent array. Flag used to mark a color array. Flag used to mark an UV coordinates array. Flag used to mark an UV coordinates array for the second UV coordinates. Flag used to mark a bone information array. Flag used to mark a weights array. Flag used to mark an index array. Flag used to mark a compressed (half float) vertex array. Flag used to mark a compressed (half float) normal array. Flag used to mark a compressed (half float) tangent array. Flag used to mark a compressed (half float) color array. Flag used to mark a compressed (half float) UV coordinates array. Flag used to mark a compressed (half float) UV coordinates array for the second UV coordinates. Flag used to mark a compressed (half float) weight array. Flag used to mark that the array contains 2D vertices. Flag used to mark that the array uses 16-bit bones instead of 8-bit. Used to set flags [constant ARRAY_COMPRESS_VERTEX], [constant ARRAY_COMPRESS_NORMAL], [constant ARRAY_COMPRESS_TANGENT], [constant ARRAY_COMPRESS_COLOR], [constant ARRAY_COMPRESS_TEX_UV], [constant ARRAY_COMPRESS_TEX_UV2] and [constant ARRAY_COMPRESS_WEIGHTS] quickly. Primitive to draw consists of points. Primitive to draw consists of lines. Primitive to draw consists of a line strip from start to end. Primitive to draw consists of a line loop (a line strip with a line between the last and the first vertex). Primitive to draw consists of triangles. Primitive to draw consists of a triangle strip (the last 3 vertices are always combined to make a triangle). Primitive to draw consists of a triangle strip (the last 2 vertices are always combined with the first to make a triangle). Represents the size of the [enum PrimitiveType] enum. Is a directional (sun) light. Is an omni light. Is a spot light. The light's energy. The light's influence on specularity. The light's range. The light's attenuation. The spotlight's angle. The spotlight's attenuation. Scales the shadow color. Represents the size of the [enum LightParam] enum. The viewport is always cleared before drawing. The viewport is never cleared before drawing. The viewport is cleared once, then the clear mode is set to [constant VIEWPORT_CLEAR_NEVER]. Multisample antialiasing is disabled. Multisample antialiasing is set to 2×. Multisample antialiasing is set to 4×. Multisample antialiasing is set to 8×. Multisample antialiasing is set to 16×. Multisample antialiasing is set to 2× on external texture. Special mode for GLES2 Android VR (Oculus Quest and Go). Multisample antialiasing is set to 4× on external texture. Special mode for GLES2 Android VR (Oculus Quest and Go). The Viewport does not render 3D but samples. The Viewport does not render 3D and does not sample. The Viewport renders 3D with effects. The Viewport renders 3D but without effects. Represents the size of the [enum ViewportRenderInfo] enum. Debug draw is disabled. Default setting. Debug draw sets objects to unshaded. Overwrites clear color to [code](0,0,0,0)[/code]. Debug draw draws objects in wireframe. The instance does not have a type. The instance is a mesh. The instance is a multimesh. The instance is an immediate geometry. The instance is a particle emitter. The instance is a light. Represents the size of the [enum InstanceType] enum. A combination of the flags of geometry instances (mesh, multimesh, immediate and particles). Allows the instance to be used in baked lighting. When set, manually requests to draw geometry on next frame. Represents the size of the [enum InstanceFlags] enum. Disable shadows from this instance. Cast shadows from this instance. Disable backface culling when rendering the shadow of the object. This is slightly slower but may result in more correct shadows. Only render the shadows from the object. The object itself will not be drawn. The nine patch gets stretched where needed. The nine patch gets filled with tiles where needed. The nine patch gets filled with tiles where needed and stretches them a bit if needed. Adds light color additive to the canvas. Adds light color subtractive to the canvas. The light adds color depending on transparency. The light adds color depending on mask. Culling of the canvas occluder is disabled. Culling of the canvas occluder is clockwise. Culling of the canvas occluder is counterclockwise. The amount of objects in the frame. The amount of vertices in the frame. The amount of modified materials in the frame. The amount of shader rebinds in the frame. The amount of surface changes in the frame. The amount of draw calls in frame. Unimplemented in the GLES2 and GLES3 rendering backends, always returns 0. The amount of video memory used, i.e. texture and vertex memory combined. The amount of texture memory used. The amount of vertex memory used. Represents the size of the [enum EnvironmentBG] enum.