// file: core/math/vector3.h // commit: bd282ff43f23fe845f29a3e25c8efc01bd65ffb0 // file: core/math/vector3.cpp // commit: 7ad14e7a3e6f87ddc450f7e34621eb5200808451 // file: core/variant_call.cpp // commit: 5ad9be4c24e9d7dc5672fdc42cea896622fe5685 using System; using System.Runtime.InteropServices; #if REAL_T_IS_DOUBLE using real_t = System.Double; #else using real_t = System.Single; #endif namespace Godot { /// /// 3-element structure that can be used to represent positions in 3D space or any other pair of numeric values. /// [Serializable] [StructLayout(LayoutKind.Sequential)] public struct Vector3 : IEquatable { public enum Axis { X = 0, Y, Z } public real_t x; public real_t y; public real_t z; public real_t this[int index] { get { switch (index) { case 0: return x; case 1: return y; case 2: return z; default: throw new IndexOutOfRangeException(); } } set { switch (index) { case 0: x = value; return; case 1: y = value; return; case 2: z = value; return; default: throw new IndexOutOfRangeException(); } } } internal void Normalize() { real_t lengthsq = LengthSquared(); if (lengthsq == 0) { x = y = z = 0f; } else { real_t length = Mathf.Sqrt(lengthsq); x /= length; y /= length; z /= length; } } public Vector3 Abs() { return new Vector3(Mathf.Abs(x), Mathf.Abs(y), Mathf.Abs(z)); } public real_t AngleTo(Vector3 to) { return Mathf.Atan2(Cross(to).Length(), Dot(to)); } public Vector3 Bounce(Vector3 n) { return -Reflect(n); } public Vector3 Ceil() { return new Vector3(Mathf.Ceil(x), Mathf.Ceil(y), Mathf.Ceil(z)); } public Vector3 Cross(Vector3 b) { return new Vector3 ( y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x ); } public Vector3 CubicInterpolate(Vector3 b, Vector3 preA, Vector3 postB, real_t t) { var p0 = preA; var p1 = this; var p2 = b; var p3 = postB; real_t t2 = t * t; real_t t3 = t2 * t; return 0.5f * ( p1 * 2.0f + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3 ); } public Vector3 DirectionTo(Vector3 b) { return new Vector3(b.x - x, b.y - y, b.z - z).Normalized(); } public real_t DistanceSquaredTo(Vector3 b) { return (b - this).LengthSquared(); } public real_t DistanceTo(Vector3 b) { return (b - this).Length(); } public real_t Dot(Vector3 b) { return x * b.x + y * b.y + z * b.z; } public Vector3 Floor() { return new Vector3(Mathf.Floor(x), Mathf.Floor(y), Mathf.Floor(z)); } public Vector3 Inverse() { return new Vector3(1.0f / x, 1.0f / y, 1.0f / z); } public bool IsNormalized() { return Mathf.Abs(LengthSquared() - 1.0f) < Mathf.Epsilon; } public real_t Length() { real_t x2 = x * x; real_t y2 = y * y; real_t z2 = z * z; return Mathf.Sqrt(x2 + y2 + z2); } public real_t LengthSquared() { real_t x2 = x * x; real_t y2 = y * y; real_t z2 = z * z; return x2 + y2 + z2; } public Vector3 LinearInterpolate(Vector3 b, real_t t) { return new Vector3 ( x + t * (b.x - x), y + t * (b.y - y), z + t * (b.z - z) ); } public Vector3 MoveToward(Vector3 to, real_t delta) { var v = this; var vd = to - v; var len = vd.Length(); return len <= delta || len < Mathf.Epsilon ? to : v + vd / len * delta; } public Axis MaxAxis() { return x < y ? (y < z ? Axis.Z : Axis.Y) : (x < z ? Axis.Z : Axis.X); } public Axis MinAxis() { return x < y ? (x < z ? Axis.X : Axis.Z) : (y < z ? Axis.Y : Axis.Z); } public Vector3 Normalized() { var v = this; v.Normalize(); return v; } public Basis Outer(Vector3 b) { return new Basis( x * b.x, x * b.y, x * b.z, y * b.x, y * b.y, y * b.z, z * b.x, z * b.y, z * b.z ); } public Vector3 PosMod(real_t mod) { Vector3 v; v.x = Mathf.PosMod(x, mod); v.y = Mathf.PosMod(y, mod); v.z = Mathf.PosMod(z, mod); return v; } public Vector3 PosMod(Vector3 modv) { Vector3 v; v.x = Mathf.PosMod(x, modv.x); v.y = Mathf.PosMod(y, modv.y); v.z = Mathf.PosMod(z, modv.z); return v; } public Vector3 Project(Vector3 onNormal) { return onNormal * (Dot(onNormal) / onNormal.LengthSquared()); } public Vector3 Reflect(Vector3 n) { #if DEBUG if (!n.IsNormalized()) throw new ArgumentException("Argument is not normalized", nameof(n)); #endif return 2.0f * n * Dot(n) - this; } public Vector3 Round() { return new Vector3(Mathf.Round(x), Mathf.Round(y), Mathf.Round(z)); } public Vector3 Rotated(Vector3 axis, real_t phi) { return new Basis(axis, phi).Xform(this); } public Vector3 Sign() { Vector3 v; v.x = Mathf.Sign(x); v.y = Mathf.Sign(y); v.z = Mathf.Sign(z); return v; } public Vector3 Slerp(Vector3 b, real_t t) { #if DEBUG if (!IsNormalized()) throw new InvalidOperationException("Vector3 is not normalized"); #endif real_t theta = AngleTo(b); return Rotated(Cross(b), theta * t); } public Vector3 Slide(Vector3 n) { return this - n * Dot(n); } public Vector3 Snapped(Vector3 by) { return new Vector3 ( Mathf.Stepify(x, by.x), Mathf.Stepify(y, by.y), Mathf.Stepify(z, by.z) ); } public Basis ToDiagonalMatrix() { return new Basis( x, 0f, 0f, 0f, y, 0f, 0f, 0f, z ); } // Constants private static readonly Vector3 _zero = new Vector3(0, 0, 0); private static readonly Vector3 _one = new Vector3(1, 1, 1); private static readonly Vector3 _negOne = new Vector3(-1, -1, -1); private static readonly Vector3 _inf = new Vector3(Mathf.Inf, Mathf.Inf, Mathf.Inf); private static readonly Vector3 _up = new Vector3(0, 1, 0); private static readonly Vector3 _down = new Vector3(0, -1, 0); private static readonly Vector3 _right = new Vector3(1, 0, 0); private static readonly Vector3 _left = new Vector3(-1, 0, 0); private static readonly Vector3 _forward = new Vector3(0, 0, -1); private static readonly Vector3 _back = new Vector3(0, 0, 1); public static Vector3 Zero { get { return _zero; } } public static Vector3 One { get { return _one; } } public static Vector3 NegOne { get { return _negOne; } } public static Vector3 Inf { get { return _inf; } } public static Vector3 Up { get { return _up; } } public static Vector3 Down { get { return _down; } } public static Vector3 Right { get { return _right; } } public static Vector3 Left { get { return _left; } } public static Vector3 Forward { get { return _forward; } } public static Vector3 Back { get { return _back; } } // Constructors public Vector3(real_t x, real_t y, real_t z) { this.x = x; this.y = y; this.z = z; } public Vector3(Vector3 v) { x = v.x; y = v.y; z = v.z; } public static Vector3 operator +(Vector3 left, Vector3 right) { left.x += right.x; left.y += right.y; left.z += right.z; return left; } public static Vector3 operator -(Vector3 left, Vector3 right) { left.x -= right.x; left.y -= right.y; left.z -= right.z; return left; } public static Vector3 operator -(Vector3 vec) { vec.x = -vec.x; vec.y = -vec.y; vec.z = -vec.z; return vec; } public static Vector3 operator *(Vector3 vec, real_t scale) { vec.x *= scale; vec.y *= scale; vec.z *= scale; return vec; } public static Vector3 operator *(real_t scale, Vector3 vec) { vec.x *= scale; vec.y *= scale; vec.z *= scale; return vec; } public static Vector3 operator *(Vector3 left, Vector3 right) { left.x *= right.x; left.y *= right.y; left.z *= right.z; return left; } public static Vector3 operator /(Vector3 vec, real_t scale) { vec.x /= scale; vec.y /= scale; vec.z /= scale; return vec; } public static Vector3 operator /(Vector3 left, Vector3 right) { left.x /= right.x; left.y /= right.y; left.z /= right.z; return left; } public static Vector3 operator %(Vector3 vec, real_t divisor) { vec.x %= divisor; vec.y %= divisor; vec.z %= divisor; return vec; } public static Vector3 operator %(Vector3 vec, Vector3 divisorv) { vec.x %= divisorv.x; vec.y %= divisorv.y; vec.z %= divisorv.z; return vec; } public static bool operator ==(Vector3 left, Vector3 right) { return left.Equals(right); } public static bool operator !=(Vector3 left, Vector3 right) { return !left.Equals(right); } public static bool operator <(Vector3 left, Vector3 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { if (Mathf.IsEqualApprox(left.y, right.y)) return left.z < right.z; return left.y < right.y; } return left.x < right.x; } public static bool operator >(Vector3 left, Vector3 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { if (Mathf.IsEqualApprox(left.y, right.y)) return left.z > right.z; return left.y > right.y; } return left.x > right.x; } public static bool operator <=(Vector3 left, Vector3 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { if (Mathf.IsEqualApprox(left.y, right.y)) return left.z <= right.z; return left.y < right.y; } return left.x < right.x; } public static bool operator >=(Vector3 left, Vector3 right) { if (Mathf.IsEqualApprox(left.x, right.x)) { if (Mathf.IsEqualApprox(left.y, right.y)) return left.z >= right.z; return left.y > right.y; } return left.x > right.x; } public override bool Equals(object obj) { if (obj is Vector3) { return Equals((Vector3)obj); } return false; } public bool Equals(Vector3 other) { return x == other.x && y == other.y && z == other.z; } public bool IsEqualApprox(Vector3 other) { return Mathf.IsEqualApprox(x, other.x) && Mathf.IsEqualApprox(y, other.y) && Mathf.IsEqualApprox(z, other.z); } public override int GetHashCode() { return y.GetHashCode() ^ x.GetHashCode() ^ z.GetHashCode(); } public override string ToString() { return String.Format("({0}, {1}, {2})", new object[] { x.ToString(), y.ToString(), z.ToString() }); } public string ToString(string format) { return String.Format("({0}, {1}, {2})", new object[] { x.ToString(format), y.ToString(format), z.ToString(format) }); } } }