// basisu_uastc_enc.cpp // Copyright (C) 2019-2021 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_uastc_enc.h" #include "basisu_astc_decomp.h" #include "basisu_gpu_texture.h" #include "basisu_bc7enc.h" #ifdef _DEBUG // When BASISU_VALIDATE_UASTC_ENC is 1, we pack and unpack to/from UASTC and ASTC, then validate that each codec returns the exact same results. This is slower. #define BASISU_VALIDATE_UASTC_ENC 1 #endif #define BASISU_SUPPORT_FORCE_MODE 0 using namespace basist; namespace basisu { const uint32_t MAX_ENCODE_RESULTS = 512; #if BASISU_VALIDATE_UASTC_ENC static void validate_func(bool condition, int line) { if (!condition) { fprintf(stderr, "basisu_uastc_enc: Internal validation failed on line %u!\n", line); } } #define VALIDATE(c) validate_func(c, __LINE__); #else #define VALIDATE(c) #endif enum dxt_constants { cDXT1SelectorBits = 2U, cDXT1SelectorValues = 1U << cDXT1SelectorBits, cDXT1SelectorMask = cDXT1SelectorValues - 1U, cDXT5SelectorBits = 3U, cDXT5SelectorValues = 1U << cDXT5SelectorBits, cDXT5SelectorMask = cDXT5SelectorValues - 1U, }; struct dxt1_block { enum { cTotalEndpointBytes = 2, cTotalSelectorBytes = 4 }; uint8_t m_low_color[cTotalEndpointBytes]; uint8_t m_high_color[cTotalEndpointBytes]; uint8_t m_selectors[cTotalSelectorBytes]; inline void clear() { basisu::clear_obj(*this); } inline uint32_t get_high_color() const { return m_high_color[0] | (m_high_color[1] << 8U); } inline uint32_t get_low_color() const { return m_low_color[0] | (m_low_color[1] << 8U); } inline void set_low_color(uint16_t c) { m_low_color[0] = static_cast(c & 0xFF); m_low_color[1] = static_cast((c >> 8) & 0xFF); } inline void set_high_color(uint16_t c) { m_high_color[0] = static_cast(c & 0xFF); m_high_color[1] = static_cast((c >> 8) & 0xFF); } inline uint32_t get_selector(uint32_t x, uint32_t y) const { assert((x < 4U) && (y < 4U)); return (m_selectors[y] >> (x * cDXT1SelectorBits))& cDXT1SelectorMask; } inline void set_selector(uint32_t x, uint32_t y, uint32_t val) { assert((x < 4U) && (y < 4U) && (val < 4U)); m_selectors[y] &= (~(cDXT1SelectorMask << (x * cDXT1SelectorBits))); m_selectors[y] |= (val << (x * cDXT1SelectorBits)); } static uint16_t pack_color(const color_rgba& color, bool scaled, uint32_t bias = 127U) { uint32_t r = color.r, g = color.g, b = color.b; if (scaled) { r = (r * 31U + bias) / 255U; g = (g * 63U + bias) / 255U; b = (b * 31U + bias) / 255U; } return static_cast(basisu::minimum(b, 31U) | (basisu::minimum(g, 63U) << 5U) | (basisu::minimum(r, 31U) << 11U)); } static uint16_t pack_unscaled_color(uint32_t r, uint32_t g, uint32_t b) { return static_cast(b | (g << 5U) | (r << 11U)); } }; #define UASTC_WRITE_MODE_DESCS 0 static inline void uastc_write_bits(uint8_t* pBuf, uint32_t& bit_offset, uint64_t code, uint32_t codesize, const char* pDesc) { (void)pDesc; #if UASTC_WRITE_MODE_DESCS if (pDesc) printf("%s: %u %u\n", pDesc, bit_offset, codesize); #endif assert((codesize == 64) || (code < (1ULL << codesize))); while (codesize) { uint32_t byte_bit_offset = bit_offset & 7; uint32_t bits_to_write = basisu::minimum(codesize, 8 - byte_bit_offset); pBuf[bit_offset >> 3] |= (code << byte_bit_offset); code >>= bits_to_write; codesize -= bits_to_write; bit_offset += bits_to_write; } } void pack_uastc(basist::uastc_block& blk, const uastc_encode_results& result, const etc_block& etc1_blk, uint32_t etc1_bias, const eac_a8_block& etc_eac_a8_blk, bool bc1_hint0, bool bc1_hint1) { if ((g_uastc_mode_has_alpha[result.m_uastc_mode]) && (result.m_uastc_mode != UASTC_MODE_INDEX_SOLID_COLOR)) { assert(etc_eac_a8_blk.m_multiplier >= 1); } uint8_t buf[32]; memset(buf, 0, sizeof(buf)); uint32_t block_bit_offset = 0; #if UASTC_WRITE_MODE_DESCS printf("**** Mode: %u\n", result.m_uastc_mode); #endif uastc_write_bits(buf, block_bit_offset, g_uastc_mode_huff_codes[result.m_uastc_mode][0], g_uastc_mode_huff_codes[result.m_uastc_mode][1], "mode"); if (result.m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR) { uastc_write_bits(buf, block_bit_offset, result.m_solid_color.r, 8, "R"); uastc_write_bits(buf, block_bit_offset, result.m_solid_color.g, 8, "G"); uastc_write_bits(buf, block_bit_offset, result.m_solid_color.b, 8, "B"); uastc_write_bits(buf, block_bit_offset, result.m_solid_color.a, 8, "A"); uastc_write_bits(buf, block_bit_offset, etc1_blk.get_diff_bit(), 1, "ETC1D"); uastc_write_bits(buf, block_bit_offset, etc1_blk.get_inten_table(0), 3, "ETC1I"); uastc_write_bits(buf, block_bit_offset, etc1_blk.get_selector(0, 0), 2, "ETC1S"); uint32_t r, g, b; if (etc1_blk.get_diff_bit()) etc_block::unpack_color5(r, g, b, etc1_blk.get_base5_color(), false); else etc_block::unpack_color4(r, g, b, etc1_blk.get_base4_color(0), false); uastc_write_bits(buf, block_bit_offset, r, 5, "ETC1R"); uastc_write_bits(buf, block_bit_offset, g, 5, "ETC1G"); uastc_write_bits(buf, block_bit_offset, b, 5, "ETC1B"); memcpy(&blk, buf, sizeof(blk)); return; } if (g_uastc_mode_has_bc1_hint0[result.m_uastc_mode]) uastc_write_bits(buf, block_bit_offset, bc1_hint0, 1, "BC1H0"); else { assert(bc1_hint0 == false); } if (g_uastc_mode_has_bc1_hint1[result.m_uastc_mode]) uastc_write_bits(buf, block_bit_offset, bc1_hint1, 1, "BC1H1"); else { assert(bc1_hint1 == false); } uastc_write_bits(buf, block_bit_offset, etc1_blk.get_flip_bit(), 1, "ETC1F"); uastc_write_bits(buf, block_bit_offset, etc1_blk.get_diff_bit(), 1, "ETC1D"); uastc_write_bits(buf, block_bit_offset, etc1_blk.get_inten_table(0), 3, "ETC1I0"); uastc_write_bits(buf, block_bit_offset, etc1_blk.get_inten_table(1), 3, "ETC1I1"); if (g_uastc_mode_has_etc1_bias[result.m_uastc_mode]) uastc_write_bits(buf, block_bit_offset, etc1_bias, 5, "ETC1BIAS"); else { assert(etc1_bias == 0); } if (g_uastc_mode_has_alpha[result.m_uastc_mode]) { const uint32_t etc2_hints = etc_eac_a8_blk.m_table | (etc_eac_a8_blk.m_multiplier << 4); assert(etc2_hints > 0 && etc2_hints <= 0xFF); uastc_write_bits(buf, block_bit_offset, etc2_hints, 8, "ETC2TM"); } uint32_t subsets = 1; switch (result.m_uastc_mode) { case 2: case 4: case 7: case 9: case 16: uastc_write_bits(buf, block_bit_offset, result.m_common_pattern, 5, "PAT"); subsets = 2; break; case 3: uastc_write_bits(buf, block_bit_offset, result.m_common_pattern, 4, "PAT"); subsets = 3; break; default: break; } #ifdef _DEBUG uint32_t part_seed = 0; switch (result.m_uastc_mode) { case 2: case 4: case 9: case 16: part_seed = g_astc_bc7_common_partitions2[result.m_common_pattern].m_astc; break; case 3: part_seed = g_astc_bc7_common_partitions3[result.m_common_pattern].m_astc; break; case 7: part_seed = g_bc7_3_astc2_common_partitions[result.m_common_pattern].m_astc2; break; default: break; } #endif uint32_t total_planes = 1; switch (result.m_uastc_mode) { case 6: case 11: case 13: uastc_write_bits(buf, block_bit_offset, result.m_astc.m_ccs, 2, "COMPSEL"); total_planes = 2; break; case 17: // CCS field is always 3 for dual plane LA. assert(result.m_astc.m_ccs == 3); total_planes = 2; break; default: break; } uint8_t weights[32]; memcpy(weights, result.m_astc.m_weights, 16 * total_planes); uint8_t endpoints[18]; memcpy(endpoints, result.m_astc.m_endpoints, sizeof(endpoints)); const uint32_t total_comps = g_uastc_mode_comps[result.m_uastc_mode]; // LLAA // LLAA LLAA // LLAA LLAA LLAA // RRGGBB // RRGGBB RRGGBB // RRGGBB RRGGBB RRGGBB // RRGGBBAA // RRGGBBAA RRGGBBAA const uint32_t weight_bits = g_uastc_mode_weight_bits[result.m_uastc_mode]; const uint8_t* pPartition_pattern; const uint8_t* pSubset_anchor_indices = basist::get_anchor_indices(subsets, result.m_uastc_mode, result.m_common_pattern, pPartition_pattern); for (uint32_t plane_index = 0; plane_index < total_planes; plane_index++) { for (uint32_t subset_index = 0; subset_index < subsets; subset_index++) { const uint32_t anchor_index = pSubset_anchor_indices[subset_index]; #ifdef _DEBUG if (subsets >= 2) { for (uint32_t i = 0; i < 16; i++) { const uint32_t part_index = astc_compute_texel_partition(part_seed, i & 3, i >> 2, 0, subsets, true); if (part_index == subset_index) { assert(anchor_index == i); break; } } } else { assert(!anchor_index); } #endif // Check anchor weight's MSB - if it's set then invert this subset's weights and swap the endpoints if (weights[anchor_index * total_planes + plane_index] & (1 << (weight_bits - 1))) { for (uint32_t i = 0; i < 16; i++) { const uint32_t part_index = pPartition_pattern[i]; #ifdef _DEBUG if (subsets >= 2) { assert(part_index == (uint32_t)astc_compute_texel_partition(part_seed, i & 3, i >> 2, 0, subsets, true)); } else { assert(!part_index); } #endif if (part_index == subset_index) weights[i * total_planes + plane_index] = ((1 << weight_bits) - 1) - weights[i * total_planes + plane_index]; } if (total_planes == 2) { for (int c = 0; c < (int)total_comps; c++) { const uint32_t comp_plane = (total_comps == 2) ? c : ((c == result.m_astc.m_ccs) ? 1 : 0); if (comp_plane == plane_index) std::swap(endpoints[c * 2 + 0], endpoints[c * 2 + 1]); } } else { for (uint32_t c = 0; c < total_comps; c++) std::swap(endpoints[subset_index * total_comps * 2 + c * 2 + 0], endpoints[subset_index * total_comps * 2 + c * 2 + 1]); } } } // subset_index } // plane_index const uint32_t total_values = total_comps * 2 * subsets; const uint32_t endpoint_range = g_uastc_mode_endpoint_ranges[result.m_uastc_mode]; uint32_t bit_values[18]; uint32_t tq_values[8]; uint32_t total_tq_values = 0; uint32_t tq_accum = 0; uint32_t tq_mul = 1; const uint32_t ep_bits = g_astc_bise_range_table[endpoint_range][0]; const uint32_t ep_trits = g_astc_bise_range_table[endpoint_range][1]; const uint32_t ep_quints = g_astc_bise_range_table[endpoint_range][2]; for (uint32_t i = 0; i < total_values; i++) { uint32_t val = endpoints[i]; uint32_t bits = val & ((1 << ep_bits) - 1); uint32_t tq = val >> ep_bits; bit_values[i] = bits; if (ep_trits) { assert(tq < 3); tq_accum += tq * tq_mul; tq_mul *= 3; if (tq_mul == 243) { tq_values[total_tq_values++] = tq_accum; tq_accum = 0; tq_mul = 1; } } else if (ep_quints) { assert(tq < 5); tq_accum += tq * tq_mul; tq_mul *= 5; if (tq_mul == 125) { tq_values[total_tq_values++] = tq_accum; tq_accum = 0; tq_mul = 1; } } } uint32_t total_endpoint_bits = 0; for (uint32_t i = 0; i < total_tq_values; i++) { const uint32_t num_bits = ep_trits ? 8 : 7; uastc_write_bits(buf, block_bit_offset, tq_values[i], num_bits, "ETQ"); total_endpoint_bits += num_bits; } if (tq_mul > 1) { uint32_t num_bits; if (ep_trits) { if (tq_mul == 3) num_bits = 2; else if (tq_mul == 9) num_bits = 4; else if (tq_mul == 27) num_bits = 5; else //if (tq_mul == 81) num_bits = 7; } else { if (tq_mul == 5) num_bits = 3; else //if (tq_mul == 25) num_bits = 5; } uastc_write_bits(buf, block_bit_offset, tq_accum, num_bits, "ETQ"); total_endpoint_bits += num_bits; } for (uint32_t i = 0; i < total_values; i++) { uastc_write_bits(buf, block_bit_offset, bit_values[i], ep_bits, "EBITS"); total_endpoint_bits += ep_bits; } #if UASTC_WRITE_MODE_DESCS uint32_t weight_start = block_bit_offset; #endif uint32_t total_weight_bits = 0; const uint32_t plane_shift = (total_planes == 2) ? 1 : 0; for (uint32_t i = 0; i < 16 * total_planes; i++) { uint32_t numbits = weight_bits; for (uint32_t s = 0; s < subsets; s++) { if (pSubset_anchor_indices[s] == (i >> plane_shift)) { numbits--; break; } } uastc_write_bits(buf, block_bit_offset, weights[i], numbits, nullptr); total_weight_bits += numbits; } #if UASTC_WRITE_MODE_DESCS printf("WEIGHTS: %u %u\n", weight_start, total_weight_bits); #endif assert(block_bit_offset <= 128); memcpy(&blk, buf, sizeof(blk)); #if UASTC_WRITE_MODE_DESCS printf("Total bits: %u, endpoint bits: %u, weight bits: %u\n", block_bit_offset, total_endpoint_bits, total_weight_bits); #endif } // MODE 0 // 0. DualPlane: 0, WeightRange: 8 (16), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 19 (192) MODE6 RGB // 18. DualPlane: 0, WeightRange: 11 (32), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 11 (32) MODE6 RGB static void astc_mode0_or_18(uint32_t mode, const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, const uint8_t *pForce_selectors = nullptr) { const uint32_t endpoint_range = (mode == 18) ? 11 : 19; const uint32_t weight_range = (mode == 18) ? 11 : 8; color_cell_compressor_params ccell_params; memset(&ccell_params, 0, sizeof(ccell_params)); ccell_params.m_num_pixels = 16; ccell_params.m_pPixels = (color_quad_u8*)&block[0][0]; ccell_params.m_num_selector_weights = (mode == 18) ? 32 : 16; ccell_params.m_pSelector_weights = (mode == 18) ? g_astc_weights5 : g_astc_weights4; ccell_params.m_pSelector_weightsx = (mode == 18) ? (const bc7enc_vec4F*)g_astc_weights5x : (const bc7enc_vec4F*)g_astc_weights4x; ccell_params.m_astc_endpoint_range = endpoint_range; ccell_params.m_weights[0] = 1; ccell_params.m_weights[1] = 1; ccell_params.m_weights[2] = 1; ccell_params.m_weights[3] = 1; ccell_params.m_pForce_selectors = pForce_selectors; color_cell_compressor_results ccell_results; uint8_t ccell_result_selectors[16]; uint8_t ccell_result_selectors_temp[16]; memset(&ccell_results, 0, sizeof(ccell_results)); ccell_results.m_pSelectors = &ccell_result_selectors[0]; ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params); // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = weight_range;// (mode == 18) ? 11 : 8; astc_results.m_ccs = 0; astc_results.m_subsets = 1; astc_results.m_partition_seed = 0; astc_results.m_cem = 8; astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2]; bool invert = false; if (pForce_selectors == nullptr) { int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]); std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]); std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]); invert = true; } } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4]; if (invert) astc_results.m_weights[x + y * 4] = ((mode == 18) ? 31 : 15) - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = mode; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = part_err; total_results++; } } // MODE 1 // 1-subset, 2-bit indices, 8-bit endpoints, BC7 mode 3 // DualPlane: 0, WeightRange: 2 (4), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 20 (256) MODE3 or MODE5 RGB static void astc_mode1(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { color_cell_compressor_params ccell_params; memset(&ccell_params, 0, sizeof(ccell_params)); ccell_params.m_num_pixels = 16; ccell_params.m_pPixels = (color_quad_u8*)&block[0][0]; ccell_params.m_num_selector_weights = 4; ccell_params.m_pSelector_weights = g_bc7_weights2; ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params.m_astc_endpoint_range = 20; ccell_params.m_weights[0] = 1; ccell_params.m_weights[1] = 1; ccell_params.m_weights[2] = 1; ccell_params.m_weights[3] = 1; color_cell_compressor_results ccell_results; uint8_t ccell_result_selectors[16]; uint8_t ccell_result_selectors_temp[16]; memset(&ccell_results, 0, sizeof(ccell_results)); ccell_results.m_pSelectors = &ccell_result_selectors[0]; ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params); // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = 2; astc_results.m_ccs = 0; astc_results.m_subsets = 1; astc_results.m_partition_seed = 0; astc_results.m_cem = 8; astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2]; const uint32_t range = 20; bool invert = false; int s0 = g_astc_unquant[range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]); std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]); std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]); invert = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4]; if (invert) astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 1; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = part_err; total_results++; } } static uint32_t estimate_partition2(uint32_t num_weights, uint32_t num_comps, const uint32_t* pWeights, const color_rgba block[4][4], const uint32_t weights[4]) { assert(pWeights[0] == 0 && pWeights[num_weights - 1] == 64); uint64_t best_err = UINT64_MAX; uint32_t best_common_pattern = 0; for (uint32_t common_pattern = 0; common_pattern < TOTAL_ASTC_BC7_COMMON_PARTITIONS2; common_pattern++) { const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7; const uint8_t* pPartition = &g_bc7_partition2[bc7_pattern * 16]; color_quad_u8 subset_colors[2][16]; uint32_t subset_total_colors[2] = { 0, 0 }; for (uint32_t index = 0; index < 16; index++) subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index]; uint64_t total_subset_err = 0; for (uint32_t subset = 0; (subset < 2) && (total_subset_err < best_err); subset++) total_subset_err += color_cell_compression_est_astc(num_weights, num_comps, pWeights, subset_total_colors[subset], &subset_colors[subset][0], best_err, weights); if (total_subset_err < best_err) { best_err = total_subset_err; best_common_pattern = common_pattern; } } return best_common_pattern; } // MODE 2 // 2-subset, 3-bit indices, 4-bit endpoints, BC7 mode 1 // DualPlane: 0, WeightRange: 5 (8), Subsets: 2, CEM: 8 (RGB Direct ), EndpointRange: 8 (16) MODE1 static void astc_mode2(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition) { uint32_t first_common_pattern = 0; uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS2; if (estimate_partition) { const uint32_t weights[4] = { 1, 1, 1, 1 }; first_common_pattern = estimate_partition2(8, 3, g_bc7_weights3, block, weights); last_common_pattern = first_common_pattern + 1; } for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++) { const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7; color_rgba part_pixels[2][16]; uint32_t part_pixel_index[4][4]; uint32_t num_part_pixels[2] = { 0, 0 }; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t part = g_bc7_partition2[16 * bc7_pattern + x + y * 4]; part_pixel_index[y][x] = num_part_pixels[part]; part_pixels[part][num_part_pixels[part]++] = block[y][x]; } } color_cell_compressor_params ccell_params[2]; color_cell_compressor_results ccell_results[2]; uint8_t ccell_result_selectors[2][16]; uint8_t ccell_result_selectors_temp[2][16]; uint64_t total_part_err = 0; for (uint32_t part = 0; part < 2; part++) { memset(&ccell_params[part], 0, sizeof(ccell_params[part])); ccell_params[part].m_num_pixels = num_part_pixels[part]; ccell_params[part].m_pPixels = (color_quad_u8*)&part_pixels[part][0]; ccell_params[part].m_num_selector_weights = 8; ccell_params[part].m_pSelector_weights = g_bc7_weights3; ccell_params[part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights3x; ccell_params[part].m_astc_endpoint_range = 8; ccell_params[part].m_weights[0] = 1; ccell_params[part].m_weights[1] = 1; ccell_params[part].m_weights[2] = 1; ccell_params[part].m_weights[3] = 1; memset(&ccell_results[part], 0, sizeof(ccell_results[part])); ccell_results[part].m_pSelectors = &ccell_result_selectors[part][0]; ccell_results[part].m_pSelectors_temp = &ccell_result_selectors_temp[part][0]; uint64_t part_err = color_cell_compression(255, &ccell_params[part], &ccell_results[part], &comp_params); total_part_err += part_err; } // part { // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = 5; astc_results.m_ccs = 0; astc_results.m_subsets = 2; astc_results.m_partition_seed = g_astc_bc7_common_partitions2[common_pattern].m_astc; astc_results.m_cem = 8; uint32_t p0 = 0; uint32_t p1 = 1; if (g_astc_bc7_common_partitions2[common_pattern].m_invert) std::swap(p0, p1); astc_results.m_endpoints[0] = ccell_results[p0].m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results[p0].m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results[p0].m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[3] = ccell_results[p0].m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[4] = ccell_results[p0].m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[5] = ccell_results[p0].m_astc_high_endpoint.m_c[2]; const uint32_t range = 8; bool invert[2] = { false, false }; int s0 = g_astc_unquant[range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]); std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]); std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]); invert[0] = true; } astc_results.m_endpoints[6] = ccell_results[p1].m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[7] = ccell_results[p1].m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[8] = ccell_results[p1].m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[9] = ccell_results[p1].m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[10] = ccell_results[p1].m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[11] = ccell_results[p1].m_astc_high_endpoint.m_c[2]; s0 = g_astc_unquant[range][astc_results.m_endpoints[0 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[2 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[4 + 6]].m_unquant; s1 = g_astc_unquant[range][astc_results.m_endpoints[1 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[3 + 6]].m_unquant + g_astc_unquant[range][astc_results.m_endpoints[5 + 6]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0 + 6], astc_results.m_endpoints[1 + 6]); std::swap(astc_results.m_endpoints[2 + 6], astc_results.m_endpoints[3 + 6]); std::swap(astc_results.m_endpoints[4 + 6], astc_results.m_endpoints[5 + 6]); invert[1] = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t bc7_part = g_bc7_partition2[16 * bc7_pattern + x + y * 4]; astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]]; uint32_t astc_part = bc7_part; if (g_astc_bc7_common_partitions2[common_pattern].m_invert) astc_part = 1 - astc_part; if (invert[astc_part]) astc_results.m_weights[x + y * 4] = 7 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 2; pResults[total_results].m_common_pattern = common_pattern; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = total_part_err; total_results++; } } } // common_pattern } // MODE 3 // 3-subsets, 2-bit indices, [0,11] endpoints, BC7 mode 2 // DualPlane: 0, WeightRange: 2 (4), Subsets: 3, CEM: 8 (RGB Direct ), EndpointRange: 7 (12) MODE2 static void astc_mode3(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition) { uint32_t first_common_pattern = 0; uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS3; if (estimate_partition) { uint64_t best_err = UINT64_MAX; uint32_t best_common_pattern = 0; const uint32_t weights[4] = { 1, 1, 1, 1 }; for (uint32_t common_pattern = 0; common_pattern < TOTAL_ASTC_BC7_COMMON_PARTITIONS3; common_pattern++) { const uint32_t bc7_pattern = g_astc_bc7_common_partitions3[common_pattern].m_bc7; const uint8_t* pPartition = &g_bc7_partition3[bc7_pattern * 16]; color_quad_u8 subset_colors[3][16]; uint32_t subset_total_colors[3] = { 0, 0 }; for (uint32_t index = 0; index < 16; index++) subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index]; uint64_t total_subset_err = 0; for (uint32_t subset = 0; (subset < 3) && (total_subset_err < best_err); subset++) total_subset_err += color_cell_compression_est_astc(4, 3, g_bc7_weights2, subset_total_colors[subset], &subset_colors[subset][0], best_err, weights); if (total_subset_err < best_err) { best_err = total_subset_err; best_common_pattern = common_pattern; } } first_common_pattern = best_common_pattern; last_common_pattern = best_common_pattern + 1; } for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++) { const uint32_t endpoint_range = 7; const uint32_t bc7_pattern = g_astc_bc7_common_partitions3[common_pattern].m_bc7; color_rgba part_pixels[3][16]; uint32_t part_pixel_index[4][4]; uint32_t num_part_pixels[3] = { 0, 0, 0 }; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t bc7_part = g_bc7_partition3[16 * bc7_pattern + x + y * 4]; part_pixel_index[y][x] = num_part_pixels[bc7_part]; part_pixels[bc7_part][num_part_pixels[bc7_part]++] = block[y][x]; } } color_cell_compressor_params ccell_params[3]; color_cell_compressor_results ccell_results[3]; uint8_t ccell_result_selectors[3][16]; uint8_t ccell_result_selectors_temp[3][16]; uint64_t total_part_err = 0; for (uint32_t bc7_part = 0; bc7_part < 3; bc7_part++) { memset(&ccell_params[bc7_part], 0, sizeof(ccell_params[bc7_part])); ccell_params[bc7_part].m_num_pixels = num_part_pixels[bc7_part]; ccell_params[bc7_part].m_pPixels = (color_quad_u8*)&part_pixels[bc7_part][0]; ccell_params[bc7_part].m_num_selector_weights = 4; ccell_params[bc7_part].m_pSelector_weights = g_bc7_weights2; ccell_params[bc7_part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params[bc7_part].m_astc_endpoint_range = endpoint_range; ccell_params[bc7_part].m_weights[0] = 1; ccell_params[bc7_part].m_weights[1] = 1; ccell_params[bc7_part].m_weights[2] = 1; ccell_params[bc7_part].m_weights[3] = 1; memset(&ccell_results[bc7_part], 0, sizeof(ccell_results[bc7_part])); ccell_results[bc7_part].m_pSelectors = &ccell_result_selectors[bc7_part][0]; ccell_results[bc7_part].m_pSelectors_temp = &ccell_result_selectors_temp[bc7_part][0]; uint64_t part_err = color_cell_compression(255, &ccell_params[bc7_part], &ccell_results[bc7_part], &comp_params); total_part_err += part_err; } // part { // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = 2; astc_results.m_ccs = 0; astc_results.m_subsets = 3; astc_results.m_partition_seed = g_astc_bc7_common_partitions3[common_pattern].m_astc; astc_results.m_cem = 8; uint32_t astc_to_bc7_part[3]; // converts ASTC to BC7 partition index const uint32_t perm = g_astc_bc7_common_partitions3[common_pattern].m_astc_to_bc7_perm; astc_to_bc7_part[0] = g_astc_to_bc7_partition_index_perm_tables[perm][0]; astc_to_bc7_part[1] = g_astc_to_bc7_partition_index_perm_tables[perm][1]; astc_to_bc7_part[2] = g_astc_to_bc7_partition_index_perm_tables[perm][2]; bool invert_astc_part[3] = { false, false, false }; for (uint32_t astc_part = 0; astc_part < 3; astc_part++) { uint8_t* pEndpoints = &astc_results.m_endpoints[6 * astc_part]; pEndpoints[0] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_low_endpoint.m_c[0]; pEndpoints[1] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_high_endpoint.m_c[0]; pEndpoints[2] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_low_endpoint.m_c[1]; pEndpoints[3] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_high_endpoint.m_c[1]; pEndpoints[4] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_low_endpoint.m_c[2]; pEndpoints[5] = ccell_results[astc_to_bc7_part[astc_part]].m_astc_high_endpoint.m_c[2]; int s0 = g_astc_unquant[endpoint_range][pEndpoints[0]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[2]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][pEndpoints[1]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[3]].m_unquant + g_astc_unquant[endpoint_range][pEndpoints[5]].m_unquant; if (s1 < s0) { std::swap(pEndpoints[0], pEndpoints[1]); std::swap(pEndpoints[2], pEndpoints[3]); std::swap(pEndpoints[4], pEndpoints[5]); invert_astc_part[astc_part] = true; } } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t bc7_part = g_bc7_partition3[16 * bc7_pattern + x + y * 4]; astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]]; uint32_t astc_part = 0; for (uint32_t i = 0; i < 3; i++) { if (astc_to_bc7_part[i] == bc7_part) { astc_part = i; break; } } if (invert_astc_part[astc_part]) astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 3; pResults[total_results].m_common_pattern = common_pattern; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = total_part_err; total_results++; } } } // common_pattern } // MODE 4 // DualPlane: 0, WeightRange: 2 (4), Subsets: 2, CEM: 8 (RGB Direct ), EndpointRange: 12 (40) MODE3 static void astc_mode4(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition) { //const uint32_t weight_range = 2; const uint32_t endpoint_range = 12; uint32_t first_common_pattern = 0; uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS2; if (estimate_partition) { const uint32_t weights[4] = { 1, 1, 1, 1 }; first_common_pattern = estimate_partition2(4, 3, g_bc7_weights2, block, weights); last_common_pattern = first_common_pattern + 1; } for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++) { const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7; color_rgba part_pixels[2][16]; uint32_t part_pixel_index[4][4]; uint32_t num_part_pixels[2] = { 0, 0 }; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t part = g_bc7_partition2[16 * bc7_pattern + x + y * 4]; part_pixel_index[y][x] = num_part_pixels[part]; part_pixels[part][num_part_pixels[part]++] = block[y][x]; } } color_cell_compressor_params ccell_params[2]; color_cell_compressor_results ccell_results[2]; uint8_t ccell_result_selectors[2][16]; uint8_t ccell_result_selectors_temp[2][16]; uint64_t total_part_err = 0; for (uint32_t part = 0; part < 2; part++) { memset(&ccell_params[part], 0, sizeof(ccell_params[part])); ccell_params[part].m_num_pixels = num_part_pixels[part]; ccell_params[part].m_pPixels = (color_quad_u8*)&part_pixels[part][0]; ccell_params[part].m_num_selector_weights = 4; ccell_params[part].m_pSelector_weights = g_bc7_weights2; ccell_params[part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params[part].m_astc_endpoint_range = endpoint_range; ccell_params[part].m_weights[0] = 1; ccell_params[part].m_weights[1] = 1; ccell_params[part].m_weights[2] = 1; ccell_params[part].m_weights[3] = 1; memset(&ccell_results[part], 0, sizeof(ccell_results[part])); ccell_results[part].m_pSelectors = &ccell_result_selectors[part][0]; ccell_results[part].m_pSelectors_temp = &ccell_result_selectors_temp[part][0]; uint64_t part_err = color_cell_compression(255, &ccell_params[part], &ccell_results[part], &comp_params); total_part_err += part_err; } // part // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = 2; astc_results.m_ccs = 0; astc_results.m_subsets = 2; astc_results.m_partition_seed = g_astc_bc7_common_partitions2[common_pattern].m_astc; astc_results.m_cem = 8; uint32_t p0 = 0; uint32_t p1 = 1; if (g_astc_bc7_common_partitions2[common_pattern].m_invert) std::swap(p0, p1); astc_results.m_endpoints[0] = ccell_results[p0].m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results[p0].m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results[p0].m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[3] = ccell_results[p0].m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[4] = ccell_results[p0].m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[5] = ccell_results[p0].m_astc_high_endpoint.m_c[2]; bool invert[2] = { false, false }; int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]); std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]); std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]); invert[0] = true; } astc_results.m_endpoints[6] = ccell_results[p1].m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[7] = ccell_results[p1].m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[8] = ccell_results[p1].m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[9] = ccell_results[p1].m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[10] = ccell_results[p1].m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[11] = ccell_results[p1].m_astc_high_endpoint.m_c[2]; s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4 + 6]].m_unquant; s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3 + 6]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5 + 6]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0 + 6], astc_results.m_endpoints[1 + 6]); std::swap(astc_results.m_endpoints[2 + 6], astc_results.m_endpoints[3 + 6]); std::swap(astc_results.m_endpoints[4 + 6], astc_results.m_endpoints[5 + 6]); invert[1] = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t bc7_part = g_bc7_partition2[16 * bc7_pattern + x + y * 4]; astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]]; uint32_t astc_part = bc7_part; if (g_astc_bc7_common_partitions2[common_pattern].m_invert) astc_part = 1 - astc_part; if (invert[astc_part]) astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 4; pResults[total_results].m_common_pattern = common_pattern; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = total_part_err; total_results++; } } // common_pattern } // MODE 5 // DualPlane: 0, WeightRange: 5 (8), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 20 (256) BC7 MODE 6 (or MODE 1 1-subset) static void astc_mode5(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { const uint32_t weight_range = 5; const uint32_t endpoint_range = 20; color_cell_compressor_params ccell_params; memset(&ccell_params, 0, sizeof(ccell_params)); ccell_params.m_num_pixels = 16; ccell_params.m_pPixels = (color_quad_u8*)&block[0][0]; ccell_params.m_num_selector_weights = 8; ccell_params.m_pSelector_weights = g_bc7_weights3; ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights3x; ccell_params.m_astc_endpoint_range = endpoint_range; ccell_params.m_weights[0] = 1; ccell_params.m_weights[1] = 1; ccell_params.m_weights[2] = 1; ccell_params.m_weights[3] = 1; color_cell_compressor_results ccell_results; uint8_t ccell_result_selectors[16]; uint8_t ccell_result_selectors_temp[16]; memset(&ccell_results, 0, sizeof(ccell_results)); ccell_results.m_pSelectors = &ccell_result_selectors[0]; ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params); // ASTC astc_block_desc blk; memset(&blk, 0, sizeof(blk)); blk.m_dual_plane = false; blk.m_weight_range = weight_range; blk.m_ccs = 0; blk.m_subsets = 1; blk.m_partition_seed = 0; blk.m_cem = 8; blk.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0]; blk.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0]; blk.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1]; blk.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1]; blk.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2]; blk.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2]; bool invert = false; int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(blk.m_endpoints[0], blk.m_endpoints[1]); std::swap(blk.m_endpoints[2], blk.m_endpoints[3]); std::swap(blk.m_endpoints[4], blk.m_endpoints[5]); invert = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { blk.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4]; if (invert) blk.m_weights[x + y * 4] = 7 - blk.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 5; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = blk; pResults[total_results].m_astc_err = part_err; total_results++; } } // MODE 6 // DualPlane: 1, WeightRange: 2 (4), Subsets: 1, CEM: 8 (RGB Direct ), EndpointRange: 18 (160) BC7 MODE5 static void astc_mode6(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { for (uint32_t rot_comp = 0; rot_comp < 3; rot_comp++) { const uint32_t weight_range = 2; const uint32_t endpoint_range = 18; color_quad_u8 block_rgb[16]; color_quad_u8 block_a[16]; for (uint32_t i = 0; i < 16; i++) { block_rgb[i] = ((color_quad_u8*)&block[0][0])[i]; block_a[i] = block_rgb[i]; uint8_t c = block_a[i].m_c[rot_comp]; block_a[i].m_c[0] = c; block_a[i].m_c[1] = c; block_a[i].m_c[2] = c; block_a[i].m_c[3] = 255; block_rgb[i].m_c[rot_comp] = 255; } uint8_t ccell_result_selectors_temp[16]; color_cell_compressor_params ccell_params_rgb; memset(&ccell_params_rgb, 0, sizeof(ccell_params_rgb)); ccell_params_rgb.m_num_pixels = 16; ccell_params_rgb.m_pPixels = block_rgb; ccell_params_rgb.m_num_selector_weights = 4; ccell_params_rgb.m_pSelector_weights = g_bc7_weights2; ccell_params_rgb.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params_rgb.m_astc_endpoint_range = endpoint_range; ccell_params_rgb.m_weights[0] = 1; ccell_params_rgb.m_weights[1] = 1; ccell_params_rgb.m_weights[2] = 1; ccell_params_rgb.m_weights[3] = 1; color_cell_compressor_results ccell_results_rgb; uint8_t ccell_result_selectors_rgb[16]; memset(&ccell_results_rgb, 0, sizeof(ccell_results_rgb)); ccell_results_rgb.m_pSelectors = &ccell_result_selectors_rgb[0]; ccell_results_rgb.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err_rgb = color_cell_compression(255, &ccell_params_rgb, &ccell_results_rgb, &comp_params); color_cell_compressor_params ccell_params_a; memset(&ccell_params_a, 0, sizeof(ccell_params_a)); ccell_params_a.m_num_pixels = 16; ccell_params_a.m_pPixels = block_a; ccell_params_a.m_num_selector_weights = 4; ccell_params_a.m_pSelector_weights = g_bc7_weights2; ccell_params_a.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params_a.m_astc_endpoint_range = endpoint_range; ccell_params_a.m_weights[0] = 1; ccell_params_a.m_weights[1] = 1; ccell_params_a.m_weights[2] = 1; ccell_params_a.m_weights[3] = 1; color_cell_compressor_results ccell_results_a; uint8_t ccell_result_selectors_a[16]; memset(&ccell_results_a, 0, sizeof(ccell_results_a)); ccell_results_a.m_pSelectors = &ccell_result_selectors_a[0]; ccell_results_a.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err_a = color_cell_compression(255, &ccell_params_a, &ccell_results_a, &comp_params) / 3; uint64_t total_err = part_err_rgb + part_err_a; // ASTC astc_block_desc blk; memset(&blk, 0, sizeof(blk)); blk.m_dual_plane = true; blk.m_weight_range = weight_range; blk.m_ccs = rot_comp; blk.m_subsets = 1; blk.m_partition_seed = 0; blk.m_cem = 8; blk.m_endpoints[0] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[0]; blk.m_endpoints[1] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[0]; blk.m_endpoints[2] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[1]; blk.m_endpoints[3] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[1]; blk.m_endpoints[4] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[2]; blk.m_endpoints[5] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[2]; bool invert = false; int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(blk.m_endpoints[0], blk.m_endpoints[1]); std::swap(blk.m_endpoints[2], blk.m_endpoints[3]); std::swap(blk.m_endpoints[4], blk.m_endpoints[5]); invert = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t rgb_index = ccell_result_selectors_rgb[x + y * 4]; uint32_t a_index = ccell_result_selectors_a[x + y * 4]; if (invert) { rgb_index = 3 - rgb_index; a_index = 3 - a_index; } blk.m_weights[(x + y * 4) * 2 + 0] = (uint8_t)rgb_index; blk.m_weights[(x + y * 4) * 2 + 1] = (uint8_t)a_index; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 6; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = blk; pResults[total_results].m_astc_err = total_err; total_results++; } } // rot_comp } // MODE 7 - 2 subset ASTC, 3 subset BC7 // DualPlane: 0, WeightRange: 2 (4), Subsets: 2, CEM: 8 (RGB Direct ), EndpointRange: 12 (40) MODE2 static void astc_mode7(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, bool estimate_partition) { uint32_t first_common_pattern = 0; uint32_t last_common_pattern = TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS; if (estimate_partition) { uint64_t best_err = UINT64_MAX; uint32_t best_common_pattern = 0; const uint32_t weights[4] = { 1, 1, 1, 1 }; for (uint32_t common_pattern = 0; common_pattern < TOTAL_BC7_3_ASTC2_COMMON_PARTITIONS; common_pattern++) { const uint8_t* pPartition = &g_bc7_3_astc2_patterns2[common_pattern][0]; #ifdef _DEBUG const uint32_t astc_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_astc2; const uint32_t bc7_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_bc73; const uint32_t common_pattern_k = g_bc7_3_astc2_common_partitions[common_pattern].k; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t astc_part = bc7_convert_partition_index_3_to_2(g_bc7_partition3[16 * bc7_pattern + x + y * 4], common_pattern_k); assert((int)astc_part == astc_compute_texel_partition(astc_pattern, x, y, 0, 2, true)); assert(astc_part == pPartition[x + y * 4]); } } #endif color_quad_u8 subset_colors[2][16]; uint32_t subset_total_colors[2] = { 0, 0 }; for (uint32_t index = 0; index < 16; index++) subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index]; uint64_t total_subset_err = 0; for (uint32_t subset = 0; (subset < 2) && (total_subset_err < best_err); subset++) total_subset_err += color_cell_compression_est_astc(4, 3, g_bc7_weights2, subset_total_colors[subset], &subset_colors[subset][0], best_err, weights); if (total_subset_err < best_err) { best_err = total_subset_err; best_common_pattern = common_pattern; } } first_common_pattern = best_common_pattern; last_common_pattern = best_common_pattern + 1; } //const uint32_t weight_range = 2; const uint32_t endpoint_range = 12; for (uint32_t common_pattern = first_common_pattern; common_pattern < last_common_pattern; common_pattern++) { const uint32_t astc_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_astc2; const uint32_t bc7_pattern = g_bc7_3_astc2_common_partitions[common_pattern].m_bc73; const uint32_t common_pattern_k = g_bc7_3_astc2_common_partitions[common_pattern].k; color_rgba part_pixels[2][16]; uint32_t part_pixel_index[4][4]; uint32_t num_part_pixels[2] = { 0, 0 }; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t astc_part = bc7_convert_partition_index_3_to_2(g_bc7_partition3[16 * bc7_pattern + x + y * 4], common_pattern_k); #ifdef _DEBUG assert((int)astc_part == astc_compute_texel_partition(astc_pattern, x, y, 0, 2, true)); #endif part_pixel_index[y][x] = num_part_pixels[astc_part]; part_pixels[astc_part][num_part_pixels[astc_part]++] = block[y][x]; } } color_cell_compressor_params ccell_params[2]; color_cell_compressor_results ccell_results[2]; uint8_t ccell_result_selectors[2][16]; uint8_t ccell_result_selectors_temp[2][16]; uint64_t total_part_err = 0; for (uint32_t part = 0; part < 2; part++) { memset(&ccell_params[part], 0, sizeof(ccell_params[part])); ccell_params[part].m_num_pixels = num_part_pixels[part]; ccell_params[part].m_pPixels = (color_quad_u8*)&part_pixels[part][0]; ccell_params[part].m_num_selector_weights = 4; ccell_params[part].m_pSelector_weights = g_bc7_weights2; ccell_params[part].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params[part].m_astc_endpoint_range = endpoint_range; ccell_params[part].m_weights[0] = 1; ccell_params[part].m_weights[1] = 1; ccell_params[part].m_weights[2] = 1; ccell_params[part].m_weights[3] = 1; memset(&ccell_results[part], 0, sizeof(ccell_results[part])); ccell_results[part].m_pSelectors = &ccell_result_selectors[part][0]; ccell_results[part].m_pSelectors_temp = &ccell_result_selectors_temp[part][0]; uint64_t part_err = color_cell_compression(255, &ccell_params[part], &ccell_results[part], &comp_params); total_part_err += part_err; } // part // ASTC astc_block_desc blk; memset(&blk, 0, sizeof(blk)); blk.m_dual_plane = false; blk.m_weight_range = 2; blk.m_ccs = 0; blk.m_subsets = 2; blk.m_partition_seed = astc_pattern; blk.m_cem = 8; const uint32_t p0 = 0; const uint32_t p1 = 1; blk.m_endpoints[0] = ccell_results[p0].m_astc_low_endpoint.m_c[0]; blk.m_endpoints[1] = ccell_results[p0].m_astc_high_endpoint.m_c[0]; blk.m_endpoints[2] = ccell_results[p0].m_astc_low_endpoint.m_c[1]; blk.m_endpoints[3] = ccell_results[p0].m_astc_high_endpoint.m_c[1]; blk.m_endpoints[4] = ccell_results[p0].m_astc_low_endpoint.m_c[2]; blk.m_endpoints[5] = ccell_results[p0].m_astc_high_endpoint.m_c[2]; bool invert[2] = { false, false }; int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(blk.m_endpoints[0], blk.m_endpoints[1]); std::swap(blk.m_endpoints[2], blk.m_endpoints[3]); std::swap(blk.m_endpoints[4], blk.m_endpoints[5]); invert[0] = true; } blk.m_endpoints[6] = ccell_results[p1].m_astc_low_endpoint.m_c[0]; blk.m_endpoints[7] = ccell_results[p1].m_astc_high_endpoint.m_c[0]; blk.m_endpoints[8] = ccell_results[p1].m_astc_low_endpoint.m_c[1]; blk.m_endpoints[9] = ccell_results[p1].m_astc_high_endpoint.m_c[1]; blk.m_endpoints[10] = ccell_results[p1].m_astc_low_endpoint.m_c[2]; blk.m_endpoints[11] = ccell_results[p1].m_astc_high_endpoint.m_c[2]; s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4 + 6]].m_unquant; s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3 + 6]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5 + 6]].m_unquant; if (s1 < s0) { std::swap(blk.m_endpoints[0 + 6], blk.m_endpoints[1 + 6]); std::swap(blk.m_endpoints[2 + 6], blk.m_endpoints[3 + 6]); std::swap(blk.m_endpoints[4 + 6], blk.m_endpoints[5 + 6]); invert[1] = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t astc_part = bc7_convert_partition_index_3_to_2(g_bc7_partition3[16 * bc7_pattern + x + y * 4], common_pattern_k); blk.m_weights[x + y * 4] = ccell_result_selectors[astc_part][part_pixel_index[y][x]]; if (invert[astc_part]) blk.m_weights[x + y * 4] = 3 - blk.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 7; pResults[total_results].m_common_pattern = common_pattern; pResults[total_results].m_astc = blk; pResults[total_results].m_astc_err = total_part_err; total_results++; } } // common_pattern } static void estimate_partition2_list(uint32_t num_weights, uint32_t num_comps, const uint32_t* pWeights, const color_rgba block[4][4], uint32_t* pParts, uint32_t max_parts, const uint32_t weights[4]) { assert(pWeights[0] == 0 && pWeights[num_weights - 1] == 64); const uint32_t MAX_PARTS = 8; assert(max_parts <= MAX_PARTS); uint64_t part_error[MAX_PARTS]; memset(part_error, 0xFF, sizeof(part_error)); memset(pParts, 0, sizeof(pParts[0]) * max_parts); for (uint32_t common_pattern = 0; common_pattern < TOTAL_ASTC_BC7_COMMON_PARTITIONS2; common_pattern++) { const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7; const uint8_t* pPartition = &g_bc7_partition2[bc7_pattern * 16]; color_quad_u8 subset_colors[2][16]; uint32_t subset_total_colors[2] = { 0, 0 }; for (uint32_t index = 0; index < 16; index++) subset_colors[pPartition[index]][subset_total_colors[pPartition[index]]++] = ((const color_quad_u8*)block)[index]; uint64_t total_subset_err = 0; for (uint32_t subset = 0; subset < 2; subset++) total_subset_err += color_cell_compression_est_astc(num_weights, num_comps, pWeights, subset_total_colors[subset], &subset_colors[subset][0], UINT64_MAX, weights); for (int i = 0; i < (int)max_parts; i++) { if (total_subset_err < part_error[i]) { for (int j = max_parts - 1; j > i; --j) { pParts[j] = pParts[j - 1]; part_error[j] = part_error[j - 1]; } pParts[i] = common_pattern; part_error[i] = total_subset_err; break; } } } #ifdef _DEBUG for (uint32_t i = 0; i < max_parts - 1; i++) { assert(part_error[i] <= part_error[i + 1]); } #endif } // 9. DualPlane: 0, WeightRange: 2 (4), Subsets: 2, CEM: 12 (RGBA Direct), EndpointRange: 8 (16) - BC7 MODE 7 // 16. DualPlane: 0, WeightRange : 2 (4), Subsets : 2, CEM: 4 (LA Direct), EndpointRange : 20 (256) - BC7 MODE 7 static void astc_mode9_or_16(uint32_t mode, const color_rgba source_block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params, uint32_t estimate_partition_list_size) { assert(mode == 9 || mode == 16); const color_rgba* pBlock = &source_block[0][0]; color_rgba temp_block[16]; if (mode == 16) { for (uint32_t i = 0; i < 16; i++) { if (mode == 16) { assert(pBlock[i].r == pBlock[i].g); assert(pBlock[i].r == pBlock[i].b); } const uint32_t l = pBlock[i].r; const uint32_t a = pBlock[i].a; // Use (l,0,0,a) not (l,l,l,a) so both components are treated equally. temp_block[i].set_noclamp_rgba(l, 0, 0, a); } pBlock = temp_block; } const uint32_t weights[4] = { 1, 1, 1, 1 }; //const uint32_t weight_range = 2; const uint32_t endpoint_range = (mode == 16) ? 20 : 8; uint32_t first_common_pattern = 0; uint32_t last_common_pattern = TOTAL_ASTC_BC7_COMMON_PARTITIONS2; bool use_part_list = false; const uint32_t MAX_PARTS = 8; uint32_t parts[MAX_PARTS]; if (estimate_partition_list_size == 1) { first_common_pattern = estimate_partition2(4, 4, g_bc7_weights2, (const color_rgba(*)[4])pBlock, weights); last_common_pattern = first_common_pattern + 1; } else if (estimate_partition_list_size > 0) { assert(estimate_partition_list_size <= MAX_PARTS); estimate_partition_list_size = basisu::minimum(estimate_partition_list_size, MAX_PARTS); estimate_partition2_list(4, 4, g_bc7_weights2, (const color_rgba(*)[4])pBlock, parts, estimate_partition_list_size, weights); first_common_pattern = 0; last_common_pattern = estimate_partition_list_size; use_part_list = true; #ifdef _DEBUG assert(parts[0] == estimate_partition2(4, 4, g_bc7_weights2, (const color_rgba(*)[4])pBlock, weights)); #endif } for (uint32_t common_pattern_iter = first_common_pattern; common_pattern_iter < last_common_pattern; common_pattern_iter++) { const uint32_t common_pattern = use_part_list ? parts[common_pattern_iter] : common_pattern_iter; const uint32_t bc7_pattern = g_astc_bc7_common_partitions2[common_pattern].m_bc7; color_rgba part_pixels[2][16]; uint32_t part_pixel_index[4][4]; uint32_t num_part_pixels[2] = { 0, 0 }; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t part = g_bc7_partition2[16 * bc7_pattern + x + y * 4]; part_pixel_index[y][x] = num_part_pixels[part]; part_pixels[part][num_part_pixels[part]++] = pBlock[y * 4 + x]; } } color_cell_compressor_params ccell_params[2]; color_cell_compressor_results ccell_results[2]; uint8_t ccell_result_selectors[2][16]; uint8_t ccell_result_selectors_temp[2][16]; uint64_t total_err = 0; for (uint32_t subset = 0; subset < 2; subset++) { memset(&ccell_params[subset], 0, sizeof(ccell_params[subset])); ccell_params[subset].m_num_pixels = num_part_pixels[subset]; ccell_params[subset].m_pPixels = (color_quad_u8*)&part_pixels[subset][0]; ccell_params[subset].m_num_selector_weights = 4; ccell_params[subset].m_pSelector_weights = g_bc7_weights2; ccell_params[subset].m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params[subset].m_astc_endpoint_range = endpoint_range; ccell_params[subset].m_weights[0] = weights[0]; ccell_params[subset].m_weights[1] = weights[1]; ccell_params[subset].m_weights[2] = weights[2]; ccell_params[subset].m_weights[3] = weights[3]; ccell_params[subset].m_has_alpha = true; memset(&ccell_results[subset], 0, sizeof(ccell_results[subset])); ccell_results[subset].m_pSelectors = &ccell_result_selectors[subset][0]; ccell_results[subset].m_pSelectors_temp = &ccell_result_selectors_temp[subset][0]; uint64_t subset_err = color_cell_compression(255, &ccell_params[subset], &ccell_results[subset], &comp_params); if (mode == 16) { color_rgba colors[4]; for (uint32_t c = 0; c < 4; c++) { colors[0].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results[subset].m_astc_low_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant; colors[3].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results[subset].m_astc_high_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant; } for (uint32_t i = 1; i < 4 - 1; i++) for (uint32_t c = 0; c < 4; c++) colors[i].m_comps[c] = (uint8_t)astc_interpolate(colors[0].m_comps[c], colors[3].m_comps[c], g_bc7_weights2[i], false); for (uint32_t p = 0; p < ccell_params[subset].m_num_pixels; p++) { color_rgba orig_pix(part_pixels[subset][p]); orig_pix.g = orig_pix.r; orig_pix.b = orig_pix.r; total_err += color_distance_la(orig_pix, colors[ccell_result_selectors[subset][p]]); } } else { total_err += subset_err; } } // subset // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = 2; astc_results.m_ccs = 0; astc_results.m_subsets = 2; astc_results.m_partition_seed = g_astc_bc7_common_partitions2[common_pattern].m_astc; astc_results.m_cem = (mode == 16) ? 4 : 12; uint32_t part[2] = { 0, 1 }; if (g_astc_bc7_common_partitions2[common_pattern].m_invert) std::swap(part[0], part[1]); bool invert[2] = { false, false }; for (uint32_t p = 0; p < 2; p++) { if (mode == 16) { astc_results.m_endpoints[p * 4 + 0] = ccell_results[part[p]].m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[p * 4 + 1] = ccell_results[part[p]].m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[p * 4 + 2] = ccell_results[part[p]].m_astc_low_endpoint.m_c[3]; astc_results.m_endpoints[p * 4 + 3] = ccell_results[part[p]].m_astc_high_endpoint.m_c[3]; } else { for (uint32_t c = 0; c < 4; c++) { astc_results.m_endpoints[p * 8 + c * 2] = ccell_results[part[p]].m_astc_low_endpoint.m_c[c]; astc_results.m_endpoints[p * 8 + c * 2 + 1] = ccell_results[part[p]].m_astc_high_endpoint.m_c[c]; } int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[p * 8 + 5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[p * 8 + 0], astc_results.m_endpoints[p * 8 + 1]); std::swap(astc_results.m_endpoints[p * 8 + 2], astc_results.m_endpoints[p * 8 + 3]); std::swap(astc_results.m_endpoints[p * 8 + 4], astc_results.m_endpoints[p * 8 + 5]); std::swap(astc_results.m_endpoints[p * 8 + 6], astc_results.m_endpoints[p * 8 + 7]); invert[p] = true; } } } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const uint32_t bc7_part = g_bc7_partition2[16 * bc7_pattern + x + y * 4]; astc_results.m_weights[x + y * 4] = ccell_result_selectors[bc7_part][part_pixel_index[y][x]]; uint32_t astc_part = bc7_part; if (g_astc_bc7_common_partitions2[common_pattern].m_invert) astc_part = 1 - astc_part; if (invert[astc_part]) astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = mode; pResults[total_results].m_common_pattern = common_pattern; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = total_err; total_results++; } } // common_pattern } // MODE 10 // DualPlane: 0, WeightRange: 8 (16), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 13 (48) MODE6 static void astc_mode10(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { const uint32_t weight_range = 8; const uint32_t endpoint_range = 13; color_cell_compressor_params ccell_params; memset(&ccell_params, 0, sizeof(ccell_params)); ccell_params.m_num_pixels = 16; ccell_params.m_pPixels = (color_quad_u8*)&block[0][0]; ccell_params.m_num_selector_weights = 16; ccell_params.m_pSelector_weights = g_astc_weights4; ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_astc_weights4x; ccell_params.m_astc_endpoint_range = endpoint_range; ccell_params.m_weights[0] = 1; ccell_params.m_weights[1] = 1; ccell_params.m_weights[2] = 1; ccell_params.m_weights[3] = 1; ccell_params.m_has_alpha = true; color_cell_compressor_results ccell_results; uint8_t ccell_result_selectors[16]; uint8_t ccell_result_selectors_temp[16]; memset(&ccell_results, 0, sizeof(ccell_results)); ccell_results.m_pSelectors = &ccell_result_selectors[0]; ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params); // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = weight_range; astc_results.m_ccs = 0; astc_results.m_subsets = 1; astc_results.m_partition_seed = 0; astc_results.m_cem = 12; astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2]; astc_results.m_endpoints[6] = ccell_results.m_astc_low_endpoint.m_c[3]; astc_results.m_endpoints[7] = ccell_results.m_astc_high_endpoint.m_c[3]; bool invert = false; int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]); std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]); std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]); std::swap(astc_results.m_endpoints[6], astc_results.m_endpoints[7]); invert = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4]; if (invert) astc_results.m_weights[x + y * 4] = 15 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 10; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = part_err; total_results++; } } // 11. DualPlane: 1, WeightRange: 2 (4), Subsets: 1, CEM: 12 (RGBA Direct), EndpointRange: 13 (48) MODE5 // 17. DualPlane: 1, WeightRange : 2 (4), Subsets : 1, CEM : 4 (LA Direct), EndpointRange : 20 (256) BC7 MODE5 static void astc_mode11_or_17(uint32_t mode, const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { assert((mode == 11) || (mode == 17)); const uint32_t weight_range = 2; const uint32_t endpoint_range = (mode == 17) ? 20 : 13; bc7enc_compress_block_params local_comp_params(comp_params); local_comp_params.m_perceptual = false; local_comp_params.m_weights[0] = 1; local_comp_params.m_weights[1] = 1; local_comp_params.m_weights[2] = 1; local_comp_params.m_weights[3] = 1; const uint32_t last_rot_comp = (mode == 17) ? 1 : 4; for (uint32_t rot_comp = 0; rot_comp < last_rot_comp; rot_comp++) { color_quad_u8 block_rgb[16]; color_quad_u8 block_a[16]; for (uint32_t i = 0; i < 16; i++) { block_rgb[i] = ((color_quad_u8*)&block[0][0])[i]; block_a[i] = block_rgb[i]; if (mode == 17) { assert(block_rgb[i].m_c[0] == block_rgb[i].m_c[1]); assert(block_rgb[i].m_c[0] == block_rgb[i].m_c[2]); block_a[i].m_c[0] = block_rgb[i].m_c[3]; block_a[i].m_c[1] = block_rgb[i].m_c[3]; block_a[i].m_c[2] = block_rgb[i].m_c[3]; block_a[i].m_c[3] = 255; block_rgb[i].m_c[1] = block_rgb[i].m_c[0]; block_rgb[i].m_c[2] = block_rgb[i].m_c[0]; block_rgb[i].m_c[3] = 255; } else { uint8_t c = block_a[i].m_c[rot_comp]; block_a[i].m_c[0] = c; block_a[i].m_c[1] = c; block_a[i].m_c[2] = c; block_a[i].m_c[3] = 255; block_rgb[i].m_c[rot_comp] = block_rgb[i].m_c[3]; block_rgb[i].m_c[3] = 255; } } uint8_t ccell_result_selectors_temp[16]; color_cell_compressor_params ccell_params_rgb; memset(&ccell_params_rgb, 0, sizeof(ccell_params_rgb)); ccell_params_rgb.m_num_pixels = 16; ccell_params_rgb.m_pPixels = block_rgb; ccell_params_rgb.m_num_selector_weights = 4; ccell_params_rgb.m_pSelector_weights = g_bc7_weights2; ccell_params_rgb.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params_rgb.m_astc_endpoint_range = endpoint_range; ccell_params_rgb.m_weights[0] = 1; ccell_params_rgb.m_weights[1] = 1; ccell_params_rgb.m_weights[2] = 1; ccell_params_rgb.m_weights[3] = 1; color_cell_compressor_results ccell_results_rgb; uint8_t ccell_result_selectors_rgb[16]; memset(&ccell_results_rgb, 0, sizeof(ccell_results_rgb)); ccell_results_rgb.m_pSelectors = &ccell_result_selectors_rgb[0]; ccell_results_rgb.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err_rgb = color_cell_compression(255, &ccell_params_rgb, &ccell_results_rgb, &local_comp_params); color_cell_compressor_params ccell_params_a; memset(&ccell_params_a, 0, sizeof(ccell_params_a)); ccell_params_a.m_num_pixels = 16; ccell_params_a.m_pPixels = block_a; ccell_params_a.m_num_selector_weights = 4; ccell_params_a.m_pSelector_weights = g_bc7_weights2; ccell_params_a.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params_a.m_astc_endpoint_range = endpoint_range; ccell_params_a.m_weights[0] = 1; ccell_params_a.m_weights[1] = 1; ccell_params_a.m_weights[2] = 1; ccell_params_a.m_weights[3] = 1; color_cell_compressor_results ccell_results_a; uint8_t ccell_result_selectors_a[16]; memset(&ccell_results_a, 0, sizeof(ccell_results_a)); ccell_results_a.m_pSelectors = &ccell_result_selectors_a[0]; ccell_results_a.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err_a = color_cell_compression(255, &ccell_params_a, &ccell_results_a, &local_comp_params) / 3; uint64_t total_err = (mode == 17) ? ((part_err_rgb / 3) + part_err_a) : (part_err_rgb + part_err_a); // ASTC astc_block_desc blk; memset(&blk, 0, sizeof(blk)); blk.m_dual_plane = true; blk.m_weight_range = weight_range; blk.m_ccs = (mode == 17) ? 3 : rot_comp; blk.m_subsets = 1; blk.m_partition_seed = 0; blk.m_cem = (mode == 17) ? 4 : 12; bool invert = false; if (mode == 17) { assert(ccell_results_rgb.m_astc_low_endpoint.m_c[0] == ccell_results_rgb.m_astc_low_endpoint.m_c[1]); assert(ccell_results_rgb.m_astc_low_endpoint.m_c[0] == ccell_results_rgb.m_astc_low_endpoint.m_c[2]); assert(ccell_results_rgb.m_astc_high_endpoint.m_c[0] == ccell_results_rgb.m_astc_high_endpoint.m_c[1]); assert(ccell_results_rgb.m_astc_high_endpoint.m_c[0] == ccell_results_rgb.m_astc_high_endpoint.m_c[2]); blk.m_endpoints[0] = ccell_results_rgb.m_astc_low_endpoint.m_c[0]; blk.m_endpoints[1] = ccell_results_rgb.m_astc_high_endpoint.m_c[0]; blk.m_endpoints[2] = ccell_results_a.m_astc_low_endpoint.m_c[0]; blk.m_endpoints[3] = ccell_results_a.m_astc_high_endpoint.m_c[0]; } else { blk.m_endpoints[0] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[0]; blk.m_endpoints[1] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[0]; blk.m_endpoints[2] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[1]; blk.m_endpoints[3] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[1]; blk.m_endpoints[4] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[2]; blk.m_endpoints[5] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[2]; if (rot_comp == 3) { blk.m_endpoints[6] = ccell_results_a.m_astc_low_endpoint.m_c[0]; blk.m_endpoints[7] = ccell_results_a.m_astc_high_endpoint.m_c[0]; } else { blk.m_endpoints[6] = ccell_results_rgb.m_astc_low_endpoint.m_c[rot_comp]; blk.m_endpoints[7] = ccell_results_rgb.m_astc_high_endpoint.m_c[rot_comp]; } int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(blk.m_endpoints[0], blk.m_endpoints[1]); std::swap(blk.m_endpoints[2], blk.m_endpoints[3]); std::swap(blk.m_endpoints[4], blk.m_endpoints[5]); std::swap(blk.m_endpoints[6], blk.m_endpoints[7]); invert = true; } } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t rgb_index = ccell_result_selectors_rgb[x + y * 4]; uint32_t a_index = ccell_result_selectors_a[x + y * 4]; if (invert) { rgb_index = 3 - rgb_index; a_index = 3 - a_index; } blk.m_weights[(x + y * 4) * 2 + 0] = (uint8_t)rgb_index; blk.m_weights[(x + y * 4) * 2 + 1] = (uint8_t)a_index; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = mode; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = blk; pResults[total_results].m_astc_err = total_err; total_results++; } } // rot_comp } // MODE 12 // DualPlane: 0, WeightRange: 5 (8), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 19 (192) MODE6 static void astc_mode12(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { const uint32_t weight_range = 5; const uint32_t endpoint_range = 19; color_cell_compressor_params ccell_params; memset(&ccell_params, 0, sizeof(ccell_params)); ccell_params.m_num_pixels = 16; ccell_params.m_pPixels = (color_quad_u8*)&block[0][0]; ccell_params.m_num_selector_weights = 8; ccell_params.m_pSelector_weights = g_bc7_weights3; ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights3x; ccell_params.m_astc_endpoint_range = endpoint_range; ccell_params.m_weights[0] = 1; ccell_params.m_weights[1] = 1; ccell_params.m_weights[2] = 1; ccell_params.m_weights[3] = 1; ccell_params.m_has_alpha = true; color_cell_compressor_results ccell_results; uint8_t ccell_result_selectors[16]; uint8_t ccell_result_selectors_temp[16]; memset(&ccell_results, 0, sizeof(ccell_results)); ccell_results.m_pSelectors = &ccell_result_selectors[0]; ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params); // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = weight_range; astc_results.m_ccs = 0; astc_results.m_subsets = 1; astc_results.m_partition_seed = 0; astc_results.m_cem = 12; astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2]; astc_results.m_endpoints[6] = ccell_results.m_astc_low_endpoint.m_c[3]; astc_results.m_endpoints[7] = ccell_results.m_astc_high_endpoint.m_c[3]; bool invert = false; int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]); std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]); std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]); std::swap(astc_results.m_endpoints[6], astc_results.m_endpoints[7]); invert = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4]; if (invert) astc_results.m_weights[x + y * 4] = 7 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 12; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = part_err; total_results++; } } // 13. DualPlane: 1, WeightRange: 0 (2), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 20 (256) MODE5 static void astc_mode13(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { bc7enc_compress_block_params local_comp_params(comp_params); local_comp_params.m_perceptual = false; local_comp_params.m_weights[0] = 1; local_comp_params.m_weights[1] = 1; local_comp_params.m_weights[2] = 1; local_comp_params.m_weights[3] = 1; for (uint32_t rot_comp = 0; rot_comp < 4; rot_comp++) { const uint32_t weight_range = 0; const uint32_t endpoint_range = 20; color_quad_u8 block_rgb[16]; color_quad_u8 block_a[16]; for (uint32_t i = 0; i < 16; i++) { block_rgb[i] = ((color_quad_u8*)&block[0][0])[i]; block_a[i] = block_rgb[i]; uint8_t c = block_a[i].m_c[rot_comp]; block_a[i].m_c[0] = c; block_a[i].m_c[1] = c; block_a[i].m_c[2] = c; block_a[i].m_c[3] = 255; block_rgb[i].m_c[rot_comp] = block_rgb[i].m_c[3]; block_rgb[i].m_c[3] = 255; } uint8_t ccell_result_selectors_temp[16]; color_cell_compressor_params ccell_params_rgb; memset(&ccell_params_rgb, 0, sizeof(ccell_params_rgb)); ccell_params_rgb.m_num_pixels = 16; ccell_params_rgb.m_pPixels = block_rgb; ccell_params_rgb.m_num_selector_weights = 2; ccell_params_rgb.m_pSelector_weights = g_bc7_weights1; ccell_params_rgb.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights1x; ccell_params_rgb.m_astc_endpoint_range = endpoint_range; ccell_params_rgb.m_weights[0] = 1; ccell_params_rgb.m_weights[1] = 1; ccell_params_rgb.m_weights[2] = 1; ccell_params_rgb.m_weights[3] = 1; color_cell_compressor_results ccell_results_rgb; uint8_t ccell_result_selectors_rgb[16]; memset(&ccell_results_rgb, 0, sizeof(ccell_results_rgb)); ccell_results_rgb.m_pSelectors = &ccell_result_selectors_rgb[0]; ccell_results_rgb.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err_rgb = color_cell_compression(255, &ccell_params_rgb, &ccell_results_rgb, &local_comp_params); color_cell_compressor_params ccell_params_a; memset(&ccell_params_a, 0, sizeof(ccell_params_a)); ccell_params_a.m_num_pixels = 16; ccell_params_a.m_pPixels = block_a; ccell_params_a.m_num_selector_weights = 2; ccell_params_a.m_pSelector_weights = g_bc7_weights1; ccell_params_a.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights1x; ccell_params_a.m_astc_endpoint_range = endpoint_range; ccell_params_a.m_weights[0] = 1; ccell_params_a.m_weights[1] = 1; ccell_params_a.m_weights[2] = 1; ccell_params_a.m_weights[3] = 1; color_cell_compressor_results ccell_results_a; uint8_t ccell_result_selectors_a[16]; memset(&ccell_results_a, 0, sizeof(ccell_results_a)); ccell_results_a.m_pSelectors = &ccell_result_selectors_a[0]; ccell_results_a.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err_a = color_cell_compression(255, &ccell_params_a, &ccell_results_a, &local_comp_params) / 3; uint64_t total_err = part_err_rgb + part_err_a; // ASTC astc_block_desc blk; memset(&blk, 0, sizeof(blk)); blk.m_dual_plane = true; blk.m_weight_range = weight_range; blk.m_ccs = rot_comp; blk.m_subsets = 1; blk.m_partition_seed = 0; blk.m_cem = 12; blk.m_endpoints[0] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[0]; blk.m_endpoints[1] = (rot_comp == 0 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[0]; blk.m_endpoints[2] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[1]; blk.m_endpoints[3] = (rot_comp == 1 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[1]; blk.m_endpoints[4] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_low_endpoint.m_c[2]; blk.m_endpoints[5] = (rot_comp == 2 ? ccell_results_a : ccell_results_rgb).m_astc_high_endpoint.m_c[2]; if (rot_comp == 3) { blk.m_endpoints[6] = ccell_results_a.m_astc_low_endpoint.m_c[0]; blk.m_endpoints[7] = ccell_results_a.m_astc_high_endpoint.m_c[0]; } else { blk.m_endpoints[6] = ccell_results_rgb.m_astc_low_endpoint.m_c[rot_comp]; blk.m_endpoints[7] = ccell_results_rgb.m_astc_high_endpoint.m_c[rot_comp]; } bool invert = false; int s0 = g_astc_unquant[endpoint_range][blk.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][blk.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][blk.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(blk.m_endpoints[0], blk.m_endpoints[1]); std::swap(blk.m_endpoints[2], blk.m_endpoints[3]); std::swap(blk.m_endpoints[4], blk.m_endpoints[5]); std::swap(blk.m_endpoints[6], blk.m_endpoints[7]); invert = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { uint32_t rgb_index = ccell_result_selectors_rgb[x + y * 4]; uint32_t a_index = ccell_result_selectors_a[x + y * 4]; if (invert) { rgb_index = 1 - rgb_index; a_index = 1 - a_index; } blk.m_weights[(x + y * 4) * 2 + 0] = (uint8_t)rgb_index; blk.m_weights[(x + y * 4) * 2 + 1] = (uint8_t)a_index; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 13; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = blk; pResults[total_results].m_astc_err = total_err; total_results++; } } // rot_comp } // MODE14 // DualPlane: 0, WeightRange: 2 (4), Subsets: 1, CEM: 12 (RGBA Direct ), EndpointRange: 20 (256) MODE6 static void astc_mode14(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { const uint32_t weight_range = 2; const uint32_t endpoint_range = 20; color_cell_compressor_params ccell_params; memset(&ccell_params, 0, sizeof(ccell_params)); ccell_params.m_num_pixels = 16; ccell_params.m_pPixels = (color_quad_u8*)&block[0][0]; ccell_params.m_num_selector_weights = 4; ccell_params.m_pSelector_weights = g_bc7_weights2; ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_bc7_weights2x; ccell_params.m_astc_endpoint_range = endpoint_range; ccell_params.m_weights[0] = 1; ccell_params.m_weights[1] = 1; ccell_params.m_weights[2] = 1; ccell_params.m_weights[3] = 1; ccell_params.m_has_alpha = true; color_cell_compressor_results ccell_results; uint8_t ccell_result_selectors[16]; uint8_t ccell_result_selectors_temp[16]; memset(&ccell_results, 0, sizeof(ccell_results)); ccell_results.m_pSelectors = &ccell_result_selectors[0]; ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0]; uint64_t part_err = color_cell_compression(255, &ccell_params, &ccell_results, &comp_params); // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = weight_range; astc_results.m_ccs = 0; astc_results.m_subsets = 1; astc_results.m_partition_seed = 0; astc_results.m_cem = 12; astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[1]; astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[1]; astc_results.m_endpoints[4] = ccell_results.m_astc_low_endpoint.m_c[2]; astc_results.m_endpoints[5] = ccell_results.m_astc_high_endpoint.m_c[2]; astc_results.m_endpoints[6] = ccell_results.m_astc_low_endpoint.m_c[3]; astc_results.m_endpoints[7] = ccell_results.m_astc_high_endpoint.m_c[3]; bool invert = false; int s0 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[0]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[2]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[4]].m_unquant; int s1 = g_astc_unquant[endpoint_range][astc_results.m_endpoints[1]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[3]].m_unquant + g_astc_unquant[endpoint_range][astc_results.m_endpoints[5]].m_unquant; if (s1 < s0) { std::swap(astc_results.m_endpoints[0], astc_results.m_endpoints[1]); std::swap(astc_results.m_endpoints[2], astc_results.m_endpoints[3]); std::swap(astc_results.m_endpoints[4], astc_results.m_endpoints[5]); std::swap(astc_results.m_endpoints[6], astc_results.m_endpoints[7]); invert = true; } for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4]; if (invert) astc_results.m_weights[x + y * 4] = 3 - astc_results.m_weights[x + y * 4]; } } assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 14; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = part_err; total_results++; } } // MODE 15 // DualPlane: 0, WeightRange : 8 (16), Subsets : 1, CEM : 4 (LA Direct), EndpointRange : 20 (256) BC7 MODE6 static void astc_mode15(const color_rgba block[4][4], uastc_encode_results* pResults, uint32_t& total_results, bc7enc_compress_block_params& comp_params) { const uint32_t weight_range = 8; const uint32_t endpoint_range = 20; color_cell_compressor_params ccell_params; memset(&ccell_params, 0, sizeof(ccell_params)); color_rgba temp_block[16]; for (uint32_t i = 0; i < 16; i++) { const uint32_t l = ((const color_rgba*)block)[i].r; const uint32_t a = ((const color_rgba*)block)[i].a; // Use (l,0,0,a) not (l,l,l,a) so both components are treated equally. temp_block[i].set_noclamp_rgba(l, 0, 0, a); } ccell_params.m_num_pixels = 16; //ccell_params.m_pPixels = (color_quad_u8*)&block[0][0]; ccell_params.m_pPixels = (color_quad_u8*)temp_block; ccell_params.m_num_selector_weights = 16; ccell_params.m_pSelector_weights = g_astc_weights4; ccell_params.m_pSelector_weightsx = (const bc7enc_vec4F*)g_astc_weights4x; ccell_params.m_astc_endpoint_range = endpoint_range; ccell_params.m_weights[0] = 1; ccell_params.m_weights[1] = 1; ccell_params.m_weights[2] = 1; ccell_params.m_weights[3] = 1; ccell_params.m_has_alpha = true; color_cell_compressor_results ccell_results; uint8_t ccell_result_selectors[16]; uint8_t ccell_result_selectors_temp[16]; memset(&ccell_results, 0, sizeof(ccell_results)); ccell_results.m_pSelectors = &ccell_result_selectors[0]; ccell_results.m_pSelectors_temp = &ccell_result_selectors_temp[0]; color_cell_compression(255, &ccell_params, &ccell_results, &comp_params); // ASTC astc_block_desc astc_results; memset(&astc_results, 0, sizeof(astc_results)); astc_results.m_dual_plane = false; astc_results.m_weight_range = weight_range; astc_results.m_ccs = 0; astc_results.m_subsets = 1; astc_results.m_partition_seed = 0; astc_results.m_cem = 4; astc_results.m_endpoints[0] = ccell_results.m_astc_low_endpoint.m_c[0]; astc_results.m_endpoints[1] = ccell_results.m_astc_high_endpoint.m_c[0]; astc_results.m_endpoints[2] = ccell_results.m_astc_low_endpoint.m_c[3]; astc_results.m_endpoints[3] = ccell_results.m_astc_high_endpoint.m_c[3]; for (uint32_t y = 0; y < 4; y++) for (uint32_t x = 0; x < 4; x++) astc_results.m_weights[x + y * 4] = ccell_result_selectors[x + y * 4]; color_rgba colors[16]; for (uint32_t c = 0; c < 4; c++) { colors[0].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results.m_astc_low_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant; colors[15].m_comps[c] = g_astc_unquant[endpoint_range][ccell_results.m_astc_high_endpoint.m_c[(c < 3) ? 0 : 3]].m_unquant; } for (uint32_t i = 1; i < 16 - 1; i++) for (uint32_t c = 0; c < 4; c++) colors[i].m_comps[c] = (uint8_t)astc_interpolate(colors[0].m_comps[c], colors[15].m_comps[c], g_astc_weights4[i], false); uint64_t total_err = 0; for (uint32_t p = 0; p < 16; p++) total_err += color_distance_la(((const color_rgba*)block)[p], colors[ccell_result_selectors[p]]); assert(total_results < MAX_ENCODE_RESULTS); if (total_results < MAX_ENCODE_RESULTS) { pResults[total_results].m_uastc_mode = 15; pResults[total_results].m_common_pattern = 0; pResults[total_results].m_astc = astc_results; pResults[total_results].m_astc_err = total_err; total_results++; } } static void compute_block_error(const color_rgba block[4][4], const color_rgba decoded_block[4][4], uint64_t &total_rgb_err, uint64_t &total_rgba_err, uint64_t &total_la_err) { uint64_t total_err_r = 0, total_err_g = 0, total_err_b = 0, total_err_a = 0; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { const int dr = (int)block[y][x].m_comps[0] - (int)decoded_block[y][x].m_comps[0]; const int dg = (int)block[y][x].m_comps[1] - (int)decoded_block[y][x].m_comps[1]; const int db = (int)block[y][x].m_comps[2] - (int)decoded_block[y][x].m_comps[2]; const int da = (int)block[y][x].m_comps[3] - (int)decoded_block[y][x].m_comps[3]; total_err_r += dr * dr; total_err_g += dg * dg; total_err_b += db * db; total_err_a += da * da; } } total_la_err = total_err_r + total_err_a; total_rgb_err = total_err_r + total_err_g + total_err_b; total_rgba_err = total_rgb_err + total_err_a; } static void compute_bc1_hints(bool &bc1_hint0, bool &bc1_hint1, const uastc_encode_results &best_results, const color_rgba block[4][4], const color_rgba decoded_uastc_block[4][4]) { const uint32_t best_mode = best_results.m_uastc_mode; const bool perceptual = false; bc1_hint0 = false; bc1_hint1 = false; if (best_mode == UASTC_MODE_INDEX_SOLID_COLOR) return; if (!g_uastc_mode_has_bc1_hint0[best_mode] && !g_uastc_mode_has_bc1_hint1[best_mode]) return; color_rgba tblock_bc1[4][4]; dxt1_block tbc1_block[8]; basist::encode_bc1(tbc1_block, (const uint8_t*)&decoded_uastc_block[0][0], 0); unpack_block(texture_format::cBC1, tbc1_block, &tblock_bc1[0][0]); color_rgba tblock_hint0_bc1[4][4]; color_rgba tblock_hint1_bc1[4][4]; etc_block etc1_blk; memset(&etc1_blk, 0, sizeof(etc1_blk)); eac_a8_block etc2_blk; memset(&etc2_blk, 0, sizeof(etc2_blk)); etc2_blk.m_multiplier = 1; // Pack to UASTC, then unpack, because the endpoints may be swapped. uastc_block temp_ublock; pack_uastc(temp_ublock, best_results, etc1_blk, 0, etc2_blk, false, false); unpacked_uastc_block temp_ublock_unpacked; unpack_uastc(temp_ublock, temp_ublock_unpacked, false); unpacked_uastc_block ublock; memset(&ublock, 0, sizeof(ublock)); ublock.m_mode = best_results.m_uastc_mode; ublock.m_common_pattern = best_results.m_common_pattern; ublock.m_astc = temp_ublock_unpacked.m_astc; dxt1_block b; // HINT1 if (!g_uastc_mode_has_bc1_hint1[best_mode]) { memset(tblock_hint1_bc1, 0, sizeof(tblock_hint1_bc1)); } else { transcode_uastc_to_bc1_hint1(ublock, (color32 (*)[4]) decoded_uastc_block, &b, false); unpack_block(texture_format::cBC1, &b, &tblock_hint1_bc1[0][0]); } // HINT0 if (!g_uastc_mode_has_bc1_hint0[best_mode]) { memset(tblock_hint0_bc1, 0, sizeof(tblock_hint0_bc1)); } else { transcode_uastc_to_bc1_hint0(ublock, &b); unpack_block(texture_format::cBC1, &b, &tblock_hint0_bc1[0][0]); } // Compute block errors uint64_t total_t_err = 0, total_hint0_err = 0, total_hint1_err = 0; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { total_t_err += color_distance(perceptual, block[y][x], tblock_bc1[y][x], false); total_hint0_err += color_distance(perceptual, block[y][x], tblock_hint0_bc1[y][x], false); total_hint1_err += color_distance(perceptual, block[y][x], tblock_hint1_bc1[y][x], false); } } const float t_err = sqrtf((float)total_t_err); const float t_err_hint0 = sqrtf((float)total_hint0_err); const float t_err_hint1 = sqrtf((float)total_hint1_err); const float err_thresh0 = 1.075f; const float err_thresh1 = 1.075f; if ((g_uastc_mode_has_bc1_hint0[best_mode]) && (t_err_hint0 <= t_err * err_thresh0)) bc1_hint0 = true; if ((g_uastc_mode_has_bc1_hint1[best_mode]) && (t_err_hint1 <= t_err * err_thresh1)) bc1_hint1 = true; } struct ycbcr { int32_t m_y; int32_t m_cb; int32_t m_cr; }; static inline void rgb_to_y_cb_cr(const color_rgba& c, ycbcr& dst) { const int y = c.r * 54 + c.g * 183 + c.b * 19; dst.m_y = y; dst.m_cb = (c.b << 8) - y; dst.m_cr = (c.r << 8) - y; } static inline uint64_t color_diff(const ycbcr& a, const ycbcr& b) { const int y_delta = a.m_y - b.m_y; const int cb_delta = a.m_cb - b.m_cb; const int cr_delta = a.m_cr - b.m_cr; return ((int64_t)y_delta * y_delta * 4) + ((int64_t)cr_delta * cr_delta) + ((int64_t)cb_delta * cb_delta); } static inline int gray_distance2(const color_rgba& c, int r, int g, int b) { int gray_dist = (((int)c[0] - r) + ((int)c[1] - g) + ((int)c[2] - b) + 1) / 3; int gray_point_r = clamp255(r + gray_dist); int gray_point_g = clamp255(g + gray_dist); int gray_point_b = clamp255(b + gray_dist); int dist_to_gray_point_r = c[0] - gray_point_r; int dist_to_gray_point_g = c[1] - gray_point_g; int dist_to_gray_point_b = c[2] - gray_point_b; return (dist_to_gray_point_r * dist_to_gray_point_r) + (dist_to_gray_point_g * dist_to_gray_point_g) + (dist_to_gray_point_b * dist_to_gray_point_b); } static bool pack_etc1_estimate_flipped(const color_rgba* pSrc_pixels) { int sums[3][2][2]; #define GET_XY(x, y, c) pSrc_pixels[(x) + ((y) * 4)][c] for (uint32_t c = 0; c < 3; c++) { sums[c][0][0] = GET_XY(0, 0, c) + GET_XY(0, 1, c) + GET_XY(1, 0, c) + GET_XY(1, 1, c); sums[c][1][0] = GET_XY(2, 0, c) + GET_XY(2, 1, c) + GET_XY(3, 0, c) + GET_XY(3, 1, c); sums[c][0][1] = GET_XY(0, 2, c) + GET_XY(0, 3, c) + GET_XY(1, 2, c) + GET_XY(1, 3, c); sums[c][1][1] = GET_XY(2, 2, c) + GET_XY(2, 3, c) + GET_XY(3, 2, c) + GET_XY(3, 3, c); } int upper_avg[3], lower_avg[3], left_avg[3], right_avg[3]; for (uint32_t c = 0; c < 3; c++) { upper_avg[c] = (sums[c][0][0] + sums[c][1][0] + 4) / 8; lower_avg[c] = (sums[c][0][1] + sums[c][1][1] + 4) / 8; left_avg[c] = (sums[c][0][0] + sums[c][0][1] + 4) / 8; right_avg[c] = (sums[c][1][0] + sums[c][1][1] + 4) / 8; } #undef GET_XY #define GET_XY(x, y, a) gray_distance2(pSrc_pixels[(x) + ((y) * 4)], a[0], a[1], a[2]) int upper_gray_dist = 0, lower_gray_dist = 0, left_gray_dist = 0, right_gray_dist = 0; for (uint32_t i = 0; i < 4; i++) { for (uint32_t j = 0; j < 2; j++) { upper_gray_dist += GET_XY(i, j, upper_avg); lower_gray_dist += GET_XY(i, 2 + j, lower_avg); left_gray_dist += GET_XY(j, i, left_avg); right_gray_dist += GET_XY(2 + j, i, right_avg); } } #undef GET_XY int upper_lower_sum = upper_gray_dist + lower_gray_dist; int left_right_sum = left_gray_dist + right_gray_dist; return upper_lower_sum < left_right_sum; } static void compute_etc1_hints(etc_block& best_etc1_blk, uint32_t& best_etc1_bias, const uastc_encode_results& best_results, const color_rgba block[4][4], const color_rgba decoded_uastc_block[4][4], int level, uint32_t flags) { best_etc1_bias = 0; if (best_results.m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR) { pack_etc1_block_solid_color(best_etc1_blk, &best_results.m_solid_color.m_comps[0]); return; } const bool faster_etc1 = (flags & cPackUASTCETC1FasterHints) != 0; const bool fastest_etc1 = (flags & cPackUASTCETC1FastestHints) != 0; const bool has_bias = g_uastc_mode_has_etc1_bias[best_results.m_uastc_mode]; // 0 should be at the top, but we need 13 first because it represents bias (0,0,0). const uint8_t s_sorted_bias_modes[32] = { 13, 0, 22, 29, 27, 12, 26, 9, 30, 31, 8, 10, 25, 2, 23, 5, 15, 7, 3, 11, 6, 17, 28, 18, 1, 19, 20, 21, 24, 4, 14, 16 }; uint32_t last_bias = 1; bool use_faster_bias_mode_table = false; const bool flip_estimate = (level <= cPackUASTCLevelFaster) || (faster_etc1) || (fastest_etc1); if (has_bias) { switch (level) { case cPackUASTCLevelFastest: { last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 1 : 2); use_faster_bias_mode_table = true; break; } case cPackUASTCLevelFaster: { last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 3 : 5); use_faster_bias_mode_table = true; break; } case cPackUASTCLevelDefault: { last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 10 : 20); use_faster_bias_mode_table = true; break; } case cPackUASTCLevelSlower: { last_bias = fastest_etc1 ? 1 : (faster_etc1 ? 16 : 32); use_faster_bias_mode_table = true; break; } default: { last_bias = 32; break; } } } memset(&best_etc1_blk, 0, sizeof(best_etc1_blk)); uint64_t best_err = UINT64_MAX; etc_block trial_block; memset(&trial_block, 0, sizeof(trial_block)); ycbcr block_ycbcr[4][4], decoded_uastc_block_ycbcr[4][4]; for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { rgb_to_y_cb_cr(block[y][x], block_ycbcr[y][x]); rgb_to_y_cb_cr(decoded_uastc_block[y][x], decoded_uastc_block_ycbcr[y][x]); } } uint32_t first_flip = 0, last_flip = 2; uint32_t first_individ = 0, last_individ = 2; if (flags & cPackUASTCETC1DisableFlipAndIndividual) { last_flip = 1; last_individ = 1; } else if (flip_estimate) { if (pack_etc1_estimate_flipped(&decoded_uastc_block[0][0])) first_flip = 1; last_flip = first_flip + 1; } for (uint32_t flip = first_flip; flip < last_flip; flip++) { trial_block.set_flip_bit(flip != 0); for (uint32_t individ = first_individ; individ < last_individ; individ++) { const uint32_t mul = individ ? 15 : 31; trial_block.set_diff_bit(individ == 0); color_rgba unbiased_block_colors[2]; int min_r[2] = { 255, 255 }, min_g[2] = { 255, 255 }, min_b[2] = { 255, 255 }, max_r[2] = { 0, 0 }, max_g[2] = { 0, 0 }, max_b[2] = { 0, 0 }; for (uint32_t subset = 0; subset < 2; subset++) { uint32_t avg_color[3]; memset(avg_color, 0, sizeof(avg_color)); for (uint32_t j = 0; j < 8; j++) { const etc_coord2 &c = g_etc1_pixel_coords[flip][subset][j]; const color_rgba& p = decoded_uastc_block[c.m_y][c.m_x]; avg_color[0] += p.r; avg_color[1] += p.g; avg_color[2] += p.b; min_r[subset] = basisu::minimum(min_r[subset], p.r); min_g[subset] = basisu::minimum(min_g[subset], p.g); min_b[subset] = basisu::minimum(min_b[subset], p.b); max_r[subset] = basisu::maximum(max_r[subset], p.r); max_g[subset] = basisu::maximum(max_g[subset], p.g); max_b[subset] = basisu::maximum(max_b[subset], p.b); } // j unbiased_block_colors[subset][0] = (uint8_t)((avg_color[0] * mul + 1020) / (8 * 255)); unbiased_block_colors[subset][1] = (uint8_t)((avg_color[1] * mul + 1020) / (8 * 255)); unbiased_block_colors[subset][2] = (uint8_t)((avg_color[2] * mul + 1020) / (8 * 255)); unbiased_block_colors[subset][3] = 0; } // subset for (uint32_t bias_iter = 0; bias_iter < last_bias; bias_iter++) { const uint32_t bias = use_faster_bias_mode_table ? s_sorted_bias_modes[bias_iter] : bias_iter; color_rgba block_colors[2]; for (uint32_t subset = 0; subset < 2; subset++) block_colors[subset] = has_bias ? apply_etc1_bias((color32&)unbiased_block_colors[subset], bias, mul, subset) : unbiased_block_colors[subset]; if (individ) trial_block.set_block_color4(block_colors[0], block_colors[1]); else trial_block.set_block_color5_clamp(block_colors[0], block_colors[1]); uint32_t range[2]; for (uint32_t subset = 0; subset < 2; subset++) { const color_rgba base_c(trial_block.get_block_color(subset, true)); const int pos_r = iabs(max_r[subset] - base_c.r); const int neg_r = iabs(base_c.r - min_r[subset]); const int pos_g = iabs(max_g[subset] - base_c.g); const int neg_g = iabs(base_c.g - min_g[subset]); const int pos_b = iabs(max_b[subset] - base_c.b); const int neg_b = iabs(base_c.b - min_b[subset]); range[subset] = maximum(maximum(pos_r, neg_r, pos_g, neg_g), pos_b, neg_b); } uint32_t best_inten_table[2] = { 0, 0 }; for (uint32_t subset = 0; subset < 2; subset++) { uint64_t best_subset_err = UINT64_MAX; const uint32_t inten_table_limit = (level == cPackUASTCLevelVerySlow) ? 8 : ((range[subset] > 51) ? 8 : (range[subset] >= 7 ? 4 : 2)); for (uint32_t inten_table = 0; inten_table < inten_table_limit; inten_table++) { trial_block.set_inten_table(subset, inten_table); color_rgba color_table[4]; trial_block.get_block_colors(color_table, subset); ycbcr color_table_ycbcr[4]; for (uint32_t i = 0; i < 4; i++) rgb_to_y_cb_cr(color_table[i], color_table_ycbcr[i]); uint64_t total_error = 0; if (flip) { for (uint32_t y = 0; y < 2; y++) { { const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][0]; total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c)); } { const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][1]; total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c)); } { const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][2]; total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c)); } { const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][3]; total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c)); } if (total_error >= best_subset_err) break; } } else { for (uint32_t y = 0; y < 4; y++) { { const ycbcr& c = decoded_uastc_block_ycbcr[y][subset * 2 + 0]; total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c)); } { const ycbcr& c = decoded_uastc_block_ycbcr[y][subset * 2 + 1]; total_error += minimum(color_diff(color_table_ycbcr[0], c), color_diff(color_table_ycbcr[1], c), color_diff(color_table_ycbcr[2], c), color_diff(color_table_ycbcr[3], c)); } } if (total_error >= best_subset_err) break; } if (total_error < best_subset_err) { best_subset_err = total_error; best_inten_table[subset] = inten_table; } } // inten_table } // subset trial_block.set_inten_table(0, best_inten_table[0]); trial_block.set_inten_table(1, best_inten_table[1]); // Compute error against the ORIGINAL block. uint64_t err = 0; for (uint32_t subset = 0; subset < 2; subset++) { color_rgba color_table[4]; trial_block.get_block_colors(color_table, subset); ycbcr color_table_ycbcr[4]; for (uint32_t i = 0; i < 4; i++) rgb_to_y_cb_cr(color_table[i], color_table_ycbcr[i]); if (flip) { for (uint32_t y = 0; y < 2; y++) { for (uint32_t x = 0; x < 4; x++) { const ycbcr& c = decoded_uastc_block_ycbcr[subset * 2 + y][x]; const uint64_t best_index_err = minimum(color_diff(color_table_ycbcr[0], c) << 2, (color_diff(color_table_ycbcr[1], c) << 2) + 1, (color_diff(color_table_ycbcr[2], c) << 2) + 2, (color_diff(color_table_ycbcr[3], c) << 2) + 3); const uint32_t best_index = (uint32_t)best_index_err & 3; err += color_diff(block_ycbcr[subset * 2 + y][x], color_table_ycbcr[best_index]); } if (err >= best_err) break; } } else { for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 2; x++) { const ycbcr& c = decoded_uastc_block_ycbcr[y][subset * 2 + x]; const uint64_t best_index_err = minimum(color_diff(color_table_ycbcr[0], c) << 2, (color_diff(color_table_ycbcr[1], c) << 2) + 1, (color_diff(color_table_ycbcr[2], c) << 2) + 2, (color_diff(color_table_ycbcr[3], c) << 2) + 3); const uint32_t best_index = (uint32_t)best_index_err & 3; err += color_diff(block_ycbcr[y][subset * 2 + x], color_table_ycbcr[best_index]); } if (err >= best_err) break; } } } // subset if (err < best_err) { best_err = err; best_etc1_blk = trial_block; best_etc1_bias = bias; } } // bias_iter } // individ } // flip } struct uastc_pack_eac_a8_results { uint32_t m_base; uint32_t m_table; uint32_t m_multiplier; }; static uint64_t uastc_pack_eac_a8(uastc_pack_eac_a8_results& results, const uint8_t* pPixels, uint32_t num_pixels, uint32_t base_search_rad, uint32_t mul_search_rad, uint32_t table_mask) { assert(num_pixels <= 16); uint32_t min_alpha = 255, max_alpha = 0; for (uint32_t i = 0; i < num_pixels; i++) { const uint32_t a = pPixels[i]; if (a < min_alpha) min_alpha = a; if (a > max_alpha) max_alpha = a; } if (min_alpha == max_alpha) { results.m_base = min_alpha; results.m_table = 13; results.m_multiplier = 1; return 0; } const uint32_t alpha_range = max_alpha - min_alpha; uint64_t best_err = UINT64_MAX; for (uint32_t table = 0; table < 16; table++) { if ((table_mask & (1U << table)) == 0) continue; const float range = (float)(g_etc2_eac_tables[table][ETC2_EAC_MAX_VALUE_SELECTOR] - g_etc2_eac_tables[table][ETC2_EAC_MIN_VALUE_SELECTOR]); const int center = (int)roundf(lerp((float)min_alpha, (float)max_alpha, (float)(0 - g_etc2_eac_tables[table][ETC2_EAC_MIN_VALUE_SELECTOR]) / range)); const int base_min = clamp255(center - base_search_rad); const int base_max = clamp255(center + base_search_rad); const int mul = (int)roundf(alpha_range / range); const int mul_low = clamp(mul - mul_search_rad, 1, 15); const int mul_high = clamp(mul + mul_search_rad, 1, 15); for (int base = base_min; base <= base_max; base++) { for (int multiplier = mul_low; multiplier <= mul_high; multiplier++) { uint64_t total_err = 0; for (uint32_t i = 0; i < num_pixels; i++) { const int a = pPixels[i]; uint32_t best_s_err = UINT32_MAX; //uint32_t best_s = 0; for (uint32_t s = 0; s < 8; s++) { const int v = clamp255((int)multiplier * g_etc2_eac_tables[table][s] + (int)base); uint32_t err = iabs(a - v); if (err < best_s_err) { best_s_err = err; //best_s = s; } } total_err += best_s_err * best_s_err; if (total_err >= best_err) break; } if (total_err < best_err) { best_err = total_err; results.m_base = base; results.m_multiplier = multiplier; results.m_table = table; if (!best_err) return best_err; } } // table } // multiplier } // base return best_err; } const int32_t DEFAULT_BC7_ERROR_WEIGHT = 50; const float UASTC_ERROR_THRESH = 1.3f; // TODO: This is a quick hack to favor certain modes when we know we'll be followed up with an RDO postprocess. static inline float get_uastc_mode_weight(uint32_t mode) { const float FAVORED_MODE_WEIGHT = .8f; switch (mode) { case 0: case 10: return FAVORED_MODE_WEIGHT; default: break; } return 1.0f; } void encode_uastc(const uint8_t* pRGBAPixels, uastc_block& output_block, uint32_t flags) { // printf("encode_uastc: \n"); // for (int i = 0; i < 16; i++) // printf("[%u %u %u %u] ", pRGBAPixels[i * 4 + 0], pRGBAPixels[i * 4 + 1], pRGBAPixels[i * 4 + 2], pRGBAPixels[i * 4 + 3]); // printf("\n"); const color_rgba(*block)[4] = reinterpret_cast(pRGBAPixels); bool solid_color = true, has_alpha = false, is_la = true; const color_rgba first_color(block[0][0]); for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { if (block[y][x].a < 255) has_alpha = true; if (block[y][x] != first_color) solid_color = false; if ((block[y][x].r != block[y][x].g) || (block[y][x].r != block[y][x].b)) is_la = false; } } if (solid_color) { // Solid color blocks are so common that we handle them specially and as quickly as we can. uastc_encode_results solid_results; solid_results.m_uastc_mode = UASTC_MODE_INDEX_SOLID_COLOR; solid_results.m_astc_err = 0; solid_results.m_common_pattern = 0; solid_results.m_solid_color = first_color; memset(&solid_results.m_astc, 0, sizeof(solid_results.m_astc)); etc_block etc1_blk; uint32_t etc1_bias = 0; pack_etc1_block_solid_color(etc1_blk, &first_color.m_comps[0]); eac_a8_block eac_a8_blk; eac_a8_blk.m_table = 0; eac_a8_blk.m_multiplier = 1; pack_uastc(output_block, solid_results, etc1_blk, etc1_bias, eac_a8_blk, false, false); // printf(" Solid\n"); return; } int level = flags & 7; const bool favor_uastc_error = (flags & cPackUASTCFavorUASTCError) != 0; const bool favor_bc7_error = !favor_uastc_error && ((flags & cPackUASTCFavorBC7Error) != 0); //const bool etc1_perceptual = true; uastc_encode_results results[MAX_ENCODE_RESULTS]; level = clampi(level, cPackUASTCLevelFastest, cPackUASTCLevelVerySlow); // Set all options to slowest, then configure from there depending on the selected level. uint32_t mode_mask = UINT32_MAX; uint32_t uber_level = 6; bool estimate_partition = false; bool always_try_alpha_modes = true; uint32_t eac_a8_mul_search_rad = 3; uint32_t eac_a8_table_mask = UINT32_MAX; uint32_t least_squares_passes = 2; bool bc1_hints = true; bool only_use_la_on_transparent_blocks = false; switch (level) { case cPackUASTCLevelFastest: { mode_mask = (1 << 0) | (1 << 8) | (1 << 11) | (1 << 12) | (1 << 15); always_try_alpha_modes = false; eac_a8_mul_search_rad = 0; eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13); uber_level = 0; least_squares_passes = 1; bc1_hints = false; estimate_partition = true; only_use_la_on_transparent_blocks = true; break; } case cPackUASTCLevelFaster: { mode_mask = (1 << 0) | (1 << 4) | (1 << 6) | (1 << 8) | (1 << 9) | (1 << 11) | (1 << 12) | (1 << 15) | (1 << 17); always_try_alpha_modes = false; eac_a8_mul_search_rad = 0; eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13); uber_level = 0; least_squares_passes = 1; estimate_partition = true; break; } case cPackUASTCLevelDefault: { mode_mask = (1 << 0) | (1 << 1) | (1 << 4) | (1 << 5) | (1 << 6) | (1 << 8) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 12) | (1 << 13) | (1 << 15) | (1 << 16) | (1 << 17); always_try_alpha_modes = false; eac_a8_mul_search_rad = 1; eac_a8_table_mask = (1 << 0) | (1 << 2) | (1 << 6) | (1 << 7) | (1 << 8) | (1 << 10) | (1 << 11) | (1 << 13); uber_level = 1; least_squares_passes = 1; estimate_partition = true; break; } case cPackUASTCLevelSlower: { always_try_alpha_modes = false; eac_a8_mul_search_rad = 2; uber_level = 3; estimate_partition = true; break; } case cPackUASTCLevelVerySlow: { break; } } #if BASISU_SUPPORT_FORCE_MODE static int force_mode = -1; force_mode = (force_mode + 1) % TOTAL_UASTC_MODES; mode_mask = UINT32_MAX; always_try_alpha_modes = true; only_use_la_on_transparent_blocks = false; #endif // HACK HACK //mode_mask &= ~(1 << 18); //mode_mask = (1 << 18)| (1 << 10); uint32_t total_results = 0; if (only_use_la_on_transparent_blocks) { if ((is_la) && (!has_alpha)) is_la = false; } const bool try_alpha_modes = has_alpha || always_try_alpha_modes; bc7enc_compress_block_params comp_params; memset(&comp_params, 0, sizeof(comp_params)); comp_params.m_max_partitions_mode1 = 64; comp_params.m_least_squares_passes = least_squares_passes; comp_params.m_weights[0] = 1; comp_params.m_weights[1] = 1; comp_params.m_weights[2] = 1; comp_params.m_weights[3] = 1; comp_params.m_uber_level = uber_level; if (is_la) { if (mode_mask & (1U << 15)) astc_mode15(block, results, total_results, comp_params); if (mode_mask & (1U << 16)) astc_mode9_or_16(16, block, results, total_results, comp_params, estimate_partition ? 4 : 0); if (mode_mask & (1U << 17)) astc_mode11_or_17(17, block, results, total_results, comp_params); } if (!has_alpha) { if (mode_mask & (1U << 0)) astc_mode0_or_18(0, block, results, total_results, comp_params); if (mode_mask & (1U << 1)) astc_mode1(block, results, total_results, comp_params); if (mode_mask & (1U << 2)) astc_mode2(block, results, total_results, comp_params, estimate_partition); if (mode_mask & (1U << 3)) astc_mode3(block, results, total_results, comp_params, estimate_partition); if (mode_mask & (1U << 4)) astc_mode4(block, results, total_results, comp_params, estimate_partition); if (mode_mask & (1U << 5)) astc_mode5(block, results, total_results, comp_params); if (mode_mask & (1U << 6)) astc_mode6(block, results, total_results, comp_params); if (mode_mask & (1U << 7)) astc_mode7(block, results, total_results, comp_params, estimate_partition); if (mode_mask & (1U << 18)) astc_mode0_or_18(18, block, results, total_results, comp_params); } if (try_alpha_modes) { if (mode_mask & (1U << 9)) astc_mode9_or_16(9, block, results, total_results, comp_params, estimate_partition ? 4 : 0); if (mode_mask & (1U << 10)) astc_mode10(block, results, total_results, comp_params); if (mode_mask & (1U << 11)) astc_mode11_or_17(11, block, results, total_results, comp_params); if (mode_mask & (1U << 12)) astc_mode12(block, results, total_results, comp_params); if (mode_mask & (1U << 13)) astc_mode13(block, results, total_results, comp_params); if (mode_mask & (1U << 14)) astc_mode14(block, results, total_results, comp_params); } assert(total_results); // Fix up the errors so we consistently have LA, RGB, or RGBA error. for (uint32_t i = 0; i < total_results; i++) { uastc_encode_results& r = results[i]; if (!is_la) { if (g_uastc_mode_is_la[r.m_uastc_mode]) { color_rgba unpacked_block[16]; unpack_uastc(r.m_uastc_mode, r.m_common_pattern, r.m_solid_color.get_color32(), r.m_astc, (basist::color32 *)unpacked_block, false); uint64_t total_err = 0; for (uint32_t j = 0; j < 16; j++) total_err += color_distance(unpacked_block[j], ((const color_rgba*)block)[j], true); r.m_astc_err = total_err; } } else { if (!g_uastc_mode_is_la[r.m_uastc_mode]) { color_rgba unpacked_block[16]; unpack_uastc(r.m_uastc_mode, r.m_common_pattern, r.m_solid_color.get_color32(), r.m_astc, (basist::color32 *)unpacked_block, false); uint64_t total_err = 0; for (uint32_t j = 0; j < 16; j++) total_err += color_distance_la(unpacked_block[j], ((const color_rgba*)block)[j]); r.m_astc_err = total_err; } } } unpacked_uastc_block unpacked_ublock; memset(&unpacked_ublock, 0, sizeof(unpacked_ublock)); uint64_t total_overall_err[MAX_ENCODE_RESULTS]; float uastc_err_f[MAX_ENCODE_RESULTS]; double best_uastc_err_f = 1e+20f; int best_index = -1; if (total_results == 1) { best_index = 0; } else { const uint32_t bc7_err_weight = favor_bc7_error ? 100 : ((favor_uastc_error ? 0 : DEFAULT_BC7_ERROR_WEIGHT)); const uint32_t uastc_err_weight = favor_bc7_error ? 0 : 100; // Find best overall results, balancing UASTC and UASTC->BC7 error. // We purposely allow UASTC error to increase a little, if doing so lowers the BC7 error. for (uint32_t i = 0; i < total_results; i++) { #if BASISU_SUPPORT_FORCE_MODE if (results[i].m_uastc_mode == force_mode) { best_index = i; break; } #endif unpacked_ublock.m_mode = results[i].m_uastc_mode; unpacked_ublock.m_astc = results[i].m_astc; unpacked_ublock.m_common_pattern = results[i].m_common_pattern; unpacked_ublock.m_solid_color = results[i].m_solid_color.get_color32(); color_rgba decoded_uastc_block[4][4]; bool success = unpack_uastc(results[i].m_uastc_mode, results[i].m_common_pattern, results[i].m_solid_color.get_color32(), results[i].m_astc, (basist::color32 *)&decoded_uastc_block[0][0], false); (void)success; VALIDATE(success); uint64_t total_uastc_rgb_err, total_uastc_rgba_err, total_uastc_la_err; compute_block_error(block, decoded_uastc_block, total_uastc_rgb_err, total_uastc_rgba_err, total_uastc_la_err); // Validate the computed error, or we're go mad if it's inaccurate. if (results[i].m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR) { VALIDATE(total_uastc_rgba_err == 0); } else if (is_la) { VALIDATE(total_uastc_la_err == results[i].m_astc_err); } else if (g_uastc_mode_has_alpha[results[i].m_uastc_mode]) { VALIDATE(total_uastc_rgba_err == results[i].m_astc_err); } else { VALIDATE(total_uastc_rgb_err == results[i].m_astc_err); } // Transcode to BC7 bc7_optimization_results bc7_results; transcode_uastc_to_bc7(unpacked_ublock, bc7_results); bc7_block bc7_data; encode_bc7_block(&bc7_data, &bc7_results); color_rgba decoded_bc7_block[4][4]; unpack_block(texture_format::cBC7, &bc7_data, &decoded_bc7_block[0][0]); // Compute BC7 error uint64_t total_bc7_la_err, total_bc7_rgb_err, total_bc7_rgba_err; compute_block_error(block, decoded_bc7_block, total_bc7_rgb_err, total_bc7_rgba_err, total_bc7_la_err); if (results[i].m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR) { VALIDATE(total_bc7_rgba_err == 0); best_index = i; break; } uint64_t total_uastc_err = 0, total_bc7_err = 0; if (is_la) { total_bc7_err = total_bc7_la_err; total_uastc_err = total_uastc_la_err; } else if (has_alpha) { total_bc7_err = total_bc7_rgba_err; total_uastc_err = total_uastc_rgba_err; } else { total_bc7_err = total_bc7_rgb_err; total_uastc_err = total_uastc_rgb_err; } total_overall_err[i] = ((total_bc7_err * bc7_err_weight) / 100) + ((total_uastc_err * uastc_err_weight) / 100); if (!total_overall_err[i]) { best_index = i; break; } uastc_err_f[i] = sqrtf((float)total_uastc_err); if (uastc_err_f[i] < best_uastc_err_f) { best_uastc_err_f = uastc_err_f[i]; } } // total_results if (best_index < 0) { uint64_t best_err = UINT64_MAX; if ((best_uastc_err_f == 0.0f) || (favor_bc7_error)) { for (uint32_t i = 0; i < total_results; i++) { // TODO: This is a quick hack to favor modes 0 or 10 for better RDO compression. const float err_weight = (flags & cPackUASTCFavorSimplerModes) ? get_uastc_mode_weight(results[i].m_uastc_mode) : 1.0f; const uint64_t w = (uint64_t)(total_overall_err[i] * err_weight); if (w < best_err) { best_err = w; best_index = i; if (!best_err) break; } } // i } else { // Scan the UASTC results, and consider all results within a window that has the best UASTC+BC7 error. for (uint32_t i = 0; i < total_results; i++) { double err_delta = uastc_err_f[i] / best_uastc_err_f; if (err_delta <= UASTC_ERROR_THRESH) { // TODO: This is a quick hack to favor modes 0 or 10 for better RDO compression. const float err_weight = (flags & cPackUASTCFavorSimplerModes) ? get_uastc_mode_weight(results[i].m_uastc_mode) : 1.0f; const uint64_t w = (uint64_t)(total_overall_err[i] * err_weight); if (w < best_err) { best_err = w; best_index = i; if (!best_err) break; } } } // i } } } const uastc_encode_results& best_results = results[best_index]; const uint32_t best_mode = best_results.m_uastc_mode; const astc_block_desc& best_astc_results = best_results.m_astc; color_rgba decoded_uastc_block[4][4]; bool success = unpack_uastc(best_mode, best_results.m_common_pattern, best_results.m_solid_color.get_color32(), best_astc_results, (basist::color32 *)&decoded_uastc_block[0][0], false); (void)success; VALIDATE(success); #if BASISU_VALIDATE_UASTC_ENC // Make sure that the UASTC block unpacks to the same exact pixels as the ASTC block does, using two different decoders. { // Round trip to packed UASTC and back, then decode to pixels. etc_block etc1_blk; memset(&etc1_blk, 0, sizeof(etc1_blk)); eac_a8_block etc_eac_a8_blk; memset(&etc_eac_a8_blk, 0, sizeof(etc_eac_a8_blk)); etc_eac_a8_blk.m_multiplier = 1; basist::uastc_block temp_block; pack_uastc(temp_block, best_results, etc1_blk, 0, etc_eac_a8_blk, false, false); basist::color32 temp_block_unpacked[4][4]; success = basist::unpack_uastc(temp_block, (basist::color32 *)temp_block_unpacked, false); VALIDATE(success); // Now round trip to packed ASTC and back, then decode to pixels. uint32_t astc_data[4]; if (best_results.m_uastc_mode == UASTC_MODE_INDEX_SOLID_COLOR) pack_astc_solid_block(astc_data, (color32 &)best_results.m_solid_color); else { success = pack_astc_block(astc_data, &best_astc_results, best_results.m_uastc_mode); VALIDATE(success); } color_rgba decoded_astc_block[4][4]; success = basisu_astc::astc::decompress((uint8_t*)decoded_astc_block, (uint8_t*)&astc_data, false, 4, 4); VALIDATE(success); for (uint32_t y = 0; y < 4; y++) { for (uint32_t x = 0; x < 4; x++) { VALIDATE(decoded_astc_block[y][x] == decoded_uastc_block[y][x]); VALIDATE(temp_block_unpacked[y][x].c[0] == decoded_uastc_block[y][x].r); VALIDATE(temp_block_unpacked[y][x].c[1] == decoded_uastc_block[y][x].g); VALIDATE(temp_block_unpacked[y][x].c[2] == decoded_uastc_block[y][x].b); VALIDATE(temp_block_unpacked[y][x].c[3] == decoded_uastc_block[y][x].a); } } } #endif // Compute BC1 hints bool bc1_hint0 = false, bc1_hint1 = false; if (bc1_hints) compute_bc1_hints(bc1_hint0, bc1_hint1, best_results, block, decoded_uastc_block); eac_a8_block eac_a8_blk; if ((g_uastc_mode_has_alpha[best_mode]) && (best_mode != UASTC_MODE_INDEX_SOLID_COLOR)) { // Compute ETC2 hints uint8_t decoded_uastc_block_alpha[16]; for (uint32_t i = 0; i < 16; i++) decoded_uastc_block_alpha[i] = decoded_uastc_block[i >> 2][i & 3].a; uastc_pack_eac_a8_results eac8_a8_results; memset(&eac8_a8_results, 0, sizeof(eac8_a8_results)); uastc_pack_eac_a8(eac8_a8_results, decoded_uastc_block_alpha, 16, 0, eac_a8_mul_search_rad, eac_a8_table_mask); // All we care about for hinting is the table and multiplier. eac_a8_blk.m_table = eac8_a8_results.m_table; eac_a8_blk.m_multiplier = eac8_a8_results.m_multiplier; } else { memset(&eac_a8_blk, 0, sizeof(eac_a8_blk)); } // Compute ETC1 hints etc_block etc1_blk; uint32_t etc1_bias = 0; compute_etc1_hints(etc1_blk, etc1_bias, best_results, block, decoded_uastc_block, level, flags); // Finally, pack the UASTC block with its hints and we're done. pack_uastc(output_block, best_results, etc1_blk, etc1_bias, eac_a8_blk, bc1_hint0, bc1_hint1); // printf(" Packed: "); // for (int i = 0; i < 16; i++) // printf("%X ", output_block.m_bytes[i]); // printf("\n"); } static bool uastc_recompute_hints(basist::uastc_block* pBlock, const color_rgba* pBlock_pixels, uint32_t flags, const unpacked_uastc_block *pUnpacked_blk) { unpacked_uastc_block unpacked_blk; if (pUnpacked_blk) unpacked_blk = *pUnpacked_blk; else { if (!unpack_uastc(*pBlock, unpacked_blk, false, true)) return false; } color_rgba decoded_uastc_block[4][4]; if (!unpack_uastc(unpacked_blk, (basist::color32 *)decoded_uastc_block, false)) return false; uastc_encode_results results; results.m_uastc_mode = unpacked_blk.m_mode; results.m_common_pattern = unpacked_blk.m_common_pattern; results.m_astc = unpacked_blk.m_astc; results.m_solid_color = unpacked_blk.m_solid_color; results.m_astc_err = 0; bool bc1_hints = true; uint32_t eac_a8_mul_search_rad = 3; uint32_t eac_a8_table_mask = UINT32_MAX; const uint32_t level = flags & cPackUASTCLevelMask; switch (level) { case cPackUASTCLevelFastest: { eac_a8_mul_search_rad = 0; eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13); bc1_hints = false; break; } case cPackUASTCLevelFaster: { eac_a8_mul_search_rad = 0; eac_a8_table_mask = (1 << 2) | (1 << 8) | (1 << 11) | (1 << 13); break; } case cPackUASTCLevelDefault: { eac_a8_mul_search_rad = 1; eac_a8_table_mask = (1 << 0) | (1 << 2) | (1 << 6) | (1 << 7) | (1 << 8) | (1 << 10) | (1 << 11) | (1 << 13); break; } case cPackUASTCLevelSlower: { eac_a8_mul_search_rad = 2; break; } case cPackUASTCLevelVerySlow: { break; } } bool bc1_hint0 = false, bc1_hint1 = false; if (bc1_hints) compute_bc1_hints(bc1_hint0, bc1_hint1, results, (color_rgba (*)[4])pBlock_pixels, decoded_uastc_block); const uint32_t best_mode = unpacked_blk.m_mode; eac_a8_block eac_a8_blk; if ((g_uastc_mode_has_alpha[best_mode]) && (best_mode != UASTC_MODE_INDEX_SOLID_COLOR)) { uint8_t decoded_uastc_block_alpha[16]; for (uint32_t i = 0; i < 16; i++) decoded_uastc_block_alpha[i] = decoded_uastc_block[i >> 2][i & 3].a; uastc_pack_eac_a8_results eac8_a8_results; memset(&eac8_a8_results, 0, sizeof(eac8_a8_results)); uastc_pack_eac_a8(eac8_a8_results, decoded_uastc_block_alpha, 16, 0, eac_a8_mul_search_rad, eac_a8_table_mask); eac_a8_blk.m_table = eac8_a8_results.m_table; eac_a8_blk.m_multiplier = eac8_a8_results.m_multiplier; } else { memset(&eac_a8_blk, 0, sizeof(eac_a8_blk)); } etc_block etc1_blk; uint32_t etc1_bias = 0; compute_etc1_hints(etc1_blk, etc1_bias, results, (color_rgba (*)[4])pBlock_pixels, decoded_uastc_block, level, flags); pack_uastc(*pBlock, results, etc1_blk, etc1_bias, eac_a8_blk, bc1_hint0, bc1_hint1); return true; } static const uint8_t g_uastc_mode_selector_bits[TOTAL_UASTC_MODES][2] = { { 65, 63 }, { 69, 31 }, { 73, 46 }, { 89, 29 }, { 89, 30 }, { 68, 47 }, { 66, 62 }, { 89, 30 }, { 0, 0 }, { 97, 30 }, { 65, 63 }, { 66, 62 }, { 81, 47 }, { 94, 30 }, { 92, 31 }, { 62, 63 }, { 98, 30 }, { 61, 62 }, { 49, 79 } }; static inline uint32_t set_block_bits(uint8_t* pBytes, uint64_t val, uint32_t num_bits, uint32_t cur_ofs) { assert(num_bits <= 64); assert((num_bits == 64) || (val < (1ULL << num_bits))); uint64_t mask = (num_bits == 64) ? UINT64_MAX : ((1ULL << num_bits) - 1); while (num_bits) { const uint32_t n = basisu::minimum(8U - (cur_ofs & 7U), num_bits); pBytes[cur_ofs >> 3] &= ~static_cast(mask << (cur_ofs & 7U)); pBytes[cur_ofs >> 3] |= static_cast(val << (cur_ofs & 7U)); val >>= n; mask >>= n; num_bits -= n; cur_ofs += n; } return cur_ofs; } static const uint8_t g_tdefl_small_dist_extra[512] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7 }; static const uint8_t g_tdefl_large_dist_extra[128] = { 0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13 }; static inline uint32_t compute_match_cost_estimate(uint32_t dist) { uint32_t len_cost = 7; uint32_t dist_cost = 5; if (dist < 512) dist_cost += g_tdefl_small_dist_extra[dist & 511]; else { dist_cost += g_tdefl_large_dist_extra[basisu::minimum(dist, 32767) >> 8]; while (dist >= 32768) { dist_cost++; dist >>= 1; } } return len_cost + dist_cost; } struct selector_bitsequence { uint64_t m_sel; uint32_t m_ofs; selector_bitsequence() { } selector_bitsequence(uint32_t bit_ofs, uint64_t sel) : m_sel(sel), m_ofs(bit_ofs) { } bool operator== (const selector_bitsequence& other) const { return (m_ofs == other.m_ofs) && (m_sel == other.m_sel); } bool operator< (const selector_bitsequence& other) const { if (m_ofs < other.m_ofs) return true; else if (m_ofs == other.m_ofs) return m_sel < other.m_sel; return false; } }; struct selector_bitsequence_hash { std::size_t operator()(selector_bitsequence const& s) const noexcept { return static_cast(hash_hsieh((uint8_t *)&s, sizeof(s)) ^ s.m_sel); } }; class tracked_stat { public: tracked_stat() { clear(); } void clear() { m_num = 0; m_total = 0; m_total2 = 0; } void update(uint32_t val) { m_num++; m_total += val; m_total2 += val * val; } tracked_stat& operator += (uint32_t val) { update(val); return *this; } uint32_t get_number_of_values() { return m_num; } uint64_t get_total() const { return m_total; } uint64_t get_total2() const { return m_total2; } float get_average() const { return m_num ? (float)m_total / m_num : 0.0f; }; float get_std_dev() const { return m_num ? sqrtf((float)(m_num * m_total2 - m_total * m_total)) / m_num : 0.0f; } float get_variance() const { float s = get_std_dev(); return s * s; } private: uint32_t m_num; uint64_t m_total; uint64_t m_total2; }; static bool uastc_rdo_blocks(uint32_t first_index, uint32_t last_index, basist::uastc_block* pBlocks, const color_rgba* pBlock_pixels, const uastc_rdo_params& params, uint32_t flags, uint32_t &total_skipped, uint32_t &total_refined, uint32_t &total_modified, uint32_t &total_smooth) { debug_printf("uastc_rdo_blocks: Processing blocks %u to %u\n", first_index, last_index); const int total_blocks_to_check = basisu::maximum(1U, params.m_lz_dict_size / sizeof(basist::uastc_block)); const bool perceptual = false; std::unordered_map selector_history; for (uint32_t block_index = first_index; block_index < last_index; block_index++) { const basist::uastc_block& blk = pBlocks[block_index]; const color_rgba* pPixels = &pBlock_pixels[16 * block_index]; unpacked_uastc_block unpacked_blk; if (!unpack_uastc(blk, unpacked_blk, false, true)) return false; const uint32_t block_mode = unpacked_blk.m_mode; if (block_mode == UASTC_MODE_INDEX_SOLID_COLOR) continue; tracked_stat r_stats, g_stats, b_stats, a_stats; for (uint32_t i = 0; i < 16; i++) { r_stats.update(pPixels[i].r); g_stats.update(pPixels[i].g); b_stats.update(pPixels[i].b); a_stats.update(pPixels[i].a); } const float max_std_dev = basisu::maximum(basisu::maximum(basisu::maximum(r_stats.get_std_dev(), g_stats.get_std_dev()), b_stats.get_std_dev()), a_stats.get_std_dev()); float yl = clamp(max_std_dev / params.m_max_smooth_block_std_dev, 0.0f, 1.0f); yl = yl * yl; const float smooth_block_error_scale = lerp(params.m_smooth_block_max_error_scale, 1.0f, yl); if (smooth_block_error_scale > 1.0f) total_smooth++; color_rgba decoded_uastc_block[4][4]; if (!unpack_uastc(unpacked_blk, (basist::color32*)decoded_uastc_block, false)) return false; uint64_t uastc_err = 0; for (uint32_t i = 0; i < 16; i++) uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_uastc_block)[i], true); // Transcode to BC7 bc7_optimization_results b7_results; if (!transcode_uastc_to_bc7(unpacked_blk, b7_results)) return false; basist::bc7_block b7_block; basist::encode_bc7_block(&b7_block, &b7_results); color_rgba decoded_b7_blk[4][4]; unpack_block(texture_format::cBC7, &b7_block, &decoded_b7_blk[0][0]); uint64_t bc7_err = 0; for (uint32_t i = 0; i < 16; i++) bc7_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_b7_blk)[i], true); uint64_t cur_err = (uastc_err + bc7_err) / 2; // Divide by 16*4 to compute RMS error const float cur_ms_err = (float)cur_err * (1.0f / 64.0f); const float cur_rms_err = sqrt(cur_ms_err); const uint32_t first_sel_bit = g_uastc_mode_selector_bits[block_mode][0]; const uint32_t total_sel_bits = g_uastc_mode_selector_bits[block_mode][1]; assert(first_sel_bit + total_sel_bits <= 128); assert(total_sel_bits > 0); uint32_t cur_bit_offset = first_sel_bit; uint64_t cur_sel_bits = read_bits((const uint8_t*)&blk, cur_bit_offset, basisu::minimum(64U, total_sel_bits)); if (cur_rms_err >= params.m_skip_block_rms_thresh) { auto cur_search_res = selector_history.insert(std::make_pair(selector_bitsequence(first_sel_bit, cur_sel_bits), block_index)); // Block already has too much error, so don't mess with it. if (!cur_search_res.second) (*cur_search_res.first).second = block_index; total_skipped++; continue; } int cur_bits; auto cur_find_res = selector_history.find(selector_bitsequence(first_sel_bit, cur_sel_bits)); if (cur_find_res == selector_history.end()) { // Wasn't found - wildly estimate literal cost //cur_bits = (total_sel_bits * 5) / 4; cur_bits = (total_sel_bits * params.m_lz_literal_cost) / 100; } else { // Was found - wildly estimate match cost uint32_t match_block_index = cur_find_res->second; const int block_dist_in_bytes = (block_index - match_block_index) * 16; cur_bits = compute_match_cost_estimate(block_dist_in_bytes); } int first_block_to_check = basisu::maximum(first_index, block_index - total_blocks_to_check); int last_block_to_check = block_index - 1; basist::uastc_block best_block(blk); uint32_t best_block_index = block_index; float best_t = cur_ms_err * smooth_block_error_scale + cur_bits * params.m_lambda; // Now scan through previous blocks, insert their selector bit patterns into the current block, and find // selector bit patterns which don't increase the overall block error too much. for (int prev_block_index = last_block_to_check; prev_block_index >= first_block_to_check; --prev_block_index) { const basist::uastc_block& prev_blk = pBlocks[prev_block_index]; uint32_t bit_offset = first_sel_bit; uint64_t sel_bits = read_bits((const uint8_t*)&prev_blk, bit_offset, basisu::minimum(64U, total_sel_bits)); int match_block_index = prev_block_index; auto res = selector_history.find(selector_bitsequence(first_sel_bit, sel_bits)); if (res != selector_history.end()) match_block_index = res->second; // Have we already checked this bit pattern? If so then skip this block. if (match_block_index > prev_block_index) continue; unpacked_uastc_block unpacked_prev_blk; if (!unpack_uastc(prev_blk, unpacked_prev_blk, false, true)) return false; basist::uastc_block trial_blk(blk); set_block_bits((uint8_t*)&trial_blk, sel_bits, basisu::minimum(64U, total_sel_bits), first_sel_bit); if (total_sel_bits > 64) { sel_bits = read_bits((const uint8_t*)&prev_blk, bit_offset, total_sel_bits - 64U); set_block_bits((uint8_t*)&trial_blk, sel_bits, total_sel_bits - 64U, first_sel_bit + basisu::minimum(64U, total_sel_bits)); } unpacked_uastc_block unpacked_trial_blk; if (!unpack_uastc(trial_blk, unpacked_trial_blk, false, true)) continue; color_rgba decoded_trial_uastc_block[4][4]; if (!unpack_uastc(unpacked_trial_blk, (basist::color32*)decoded_trial_uastc_block, false)) continue; uint64_t trial_uastc_err = 0; for (uint32_t i = 0; i < 16; i++) trial_uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_trial_uastc_block)[i], true); // Transcode trial to BC7, compute error bc7_optimization_results trial_b7_results; if (!transcode_uastc_to_bc7(unpacked_trial_blk, trial_b7_results)) return false; basist::bc7_block trial_b7_block; basist::encode_bc7_block(&trial_b7_block, &trial_b7_results); color_rgba decoded_trial_b7_blk[4][4]; unpack_block(texture_format::cBC7, &trial_b7_block, &decoded_trial_b7_blk[0][0]); uint64_t trial_bc7_err = 0; for (uint32_t i = 0; i < 16; i++) trial_bc7_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_trial_b7_blk)[i], true); uint64_t trial_err = (trial_uastc_err + trial_bc7_err) / 2; const float trial_ms_err = (float)trial_err * (1.0f / 64.0f); const float trial_rms_err = sqrtf(trial_ms_err); if (trial_rms_err > cur_rms_err * params.m_max_allowed_rms_increase_ratio) continue; const int block_dist_in_bytes = (block_index - match_block_index) * 16; const int match_bits = compute_match_cost_estimate(block_dist_in_bytes); float t = trial_ms_err * smooth_block_error_scale + match_bits * params.m_lambda; if (t < best_t) { best_t = t; best_block_index = prev_block_index; best_block = trial_blk; } } // prev_block_index if (best_block_index != block_index) { total_modified++; unpacked_uastc_block unpacked_best_blk; if (!unpack_uastc(best_block, unpacked_best_blk, false, false)) return false; if ((params.m_endpoint_refinement) && (block_mode == 0)) { // Attempt to refine mode 0 block's endpoints, using the new selectors. This doesn't help much, but it does help. // TODO: We could do this with the other modes too. color_rgba decoded_best_uastc_block[4][4]; if (!unpack_uastc(unpacked_best_blk, (basist::color32*)decoded_best_uastc_block, false)) return false; // Compute the block's current error (with the modified selectors). uint64_t best_uastc_err = 0; for (uint32_t i = 0; i < 16; i++) best_uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_best_uastc_block)[i], true); bc7enc_compress_block_params comp_params; memset(&comp_params, 0, sizeof(comp_params)); comp_params.m_max_partitions_mode1 = 64; comp_params.m_least_squares_passes = 1; comp_params.m_weights[0] = 1; comp_params.m_weights[1] = 1; comp_params.m_weights[2] = 1; comp_params.m_weights[3] = 1; comp_params.m_uber_level = 0; uastc_encode_results results; uint32_t total_results = 0; astc_mode0_or_18(0, (color_rgba(*)[4])pPixels, &results, total_results, comp_params, unpacked_best_blk.m_astc.m_weights); assert(total_results == 1); // See if the overall error has actually gone done. color_rgba decoded_trial_uastc_block[4][4]; bool success = unpack_uastc(results.m_uastc_mode, results.m_common_pattern, results.m_solid_color.get_color32(), results.m_astc, (basist::color32*) & decoded_trial_uastc_block[0][0], false); assert(success); BASISU_NOTE_UNUSED(success); uint64_t trial_uastc_err = 0; for (uint32_t i = 0; i < 16; i++) trial_uastc_err += color_distance(perceptual, pPixels[i], ((color_rgba*)decoded_trial_uastc_block)[i], true); if (trial_uastc_err < best_uastc_err) { // The error went down, so accept the new endpoints. // Ensure the selectors haven't changed, otherwise we'll invalidate the LZ matches. for (uint32_t i = 0; i < 16; i++) assert(unpacked_best_blk.m_astc.m_weights[i] == results.m_astc.m_weights[i]); unpacked_best_blk.m_astc = results.m_astc; total_refined++; } } // if ((params.m_endpoint_refinement) && (block_mode == 0)) // The selectors have changed, so go recompute the block hints. if (!uastc_recompute_hints(&best_block, pPixels, flags, &unpacked_best_blk)) return false; // Write the modified block pBlocks[block_index] = best_block; } // if (best_block_index != block_index) { uint32_t bit_offset = first_sel_bit; uint64_t sel_bits = read_bits((const uint8_t*)&best_block, bit_offset, basisu::minimum(64U, total_sel_bits)); auto res = selector_history.insert(std::make_pair(selector_bitsequence(first_sel_bit, sel_bits), block_index)); if (!res.second) (*res.first).second = block_index; } } // block_index return true; } // This function implements a basic form of rate distortion optimization (RDO) for UASTC. // It only changes selectors and then updates the hints. It uses very approximate LZ bitprice estimation. // There's A LOT that can be done better in here, but it's a start. // One nice advantage of the method used here is that it works for any input, no matter which or how many modes it uses. bool uastc_rdo(uint32_t num_blocks, basist::uastc_block* pBlocks, const color_rgba* pBlock_pixels, const uastc_rdo_params& params, uint32_t flags, job_pool* pJob_pool, uint32_t total_jobs) { assert(params.m_max_allowed_rms_increase_ratio > 1.0f); assert(params.m_lz_dict_size > 0); assert(params.m_lambda > 0.0f); uint32_t total_skipped = 0, total_modified = 0, total_refined = 0, total_smooth = 0; uint32_t blocks_per_job = total_jobs ? (num_blocks / total_jobs) : 0; std::mutex stat_mutex; bool status = false; if ((!pJob_pool) || (total_jobs <= 1) || (blocks_per_job <= 8)) { status = uastc_rdo_blocks(0, num_blocks, pBlocks, pBlock_pixels, params, flags, total_skipped, total_refined, total_modified, total_smooth); } else { bool all_succeeded = true; for (uint32_t block_index_iter = 0; block_index_iter < num_blocks; block_index_iter += blocks_per_job) { const uint32_t first_index = block_index_iter; const uint32_t last_index = minimum(num_blocks, block_index_iter + blocks_per_job); #ifndef __EMSCRIPTEN__ pJob_pool->add_job([first_index, last_index, pBlocks, pBlock_pixels, ¶ms, flags, &total_skipped, &total_modified, &total_refined, &total_smooth, &all_succeeded, &stat_mutex] { #endif uint32_t job_skipped = 0, job_modified = 0, job_refined = 0, job_smooth = 0; bool status = uastc_rdo_blocks(first_index, last_index, pBlocks, pBlock_pixels, params, flags, job_skipped, job_refined, job_modified, job_smooth); { std::lock_guard lck(stat_mutex); all_succeeded = all_succeeded && status; total_skipped += job_skipped; total_modified += job_modified; total_refined += job_refined; total_smooth += job_smooth; } #ifndef __EMSCRIPTEN__ } ); #endif } // block_index_iter #ifndef __EMSCRIPTEN__ pJob_pool->wait_for_all(); #endif status = all_succeeded; } debug_printf("uastc_rdo: Total modified: %3.2f%%, total skipped: %3.2f%%, total refined: %3.2f%%, total smooth: %3.2f%%\n", total_modified * 100.0f / num_blocks, total_skipped * 100.0f / num_blocks, total_refined * 100.0f / num_blocks, total_smooth * 100.0f / num_blocks); return status; } } // namespace basisu