// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include #include #include #ifndef TRACE #define TRACE 0 #endif #if TRACE #include #endif #if TRACE #define TRACESTATS(i) stats[i]++; #else #define TRACESTATS(i) (void)0 #endif // This work is based on: // Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997 // Michael Garland. Quadric-based polygonal surface simplification. 1999 // Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000 // Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003 // Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019 namespace meshopt { struct EdgeAdjacency { struct Edge { unsigned int next; unsigned int prev; }; unsigned int* counts; unsigned int* offsets; Edge* data; }; static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator) { adjacency.counts = allocator.allocate(vertex_count); adjacency.offsets = allocator.allocate(vertex_count); adjacency.data = allocator.allocate(index_count); } static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap) { size_t face_count = index_count / 3; // fill edge counts memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int)); for (size_t i = 0; i < index_count; ++i) { unsigned int v = remap ? remap[indices[i]] : indices[i]; assert(v < vertex_count); adjacency.counts[v]++; } // fill offset table unsigned int offset = 0; for (size_t i = 0; i < vertex_count; ++i) { adjacency.offsets[i] = offset; offset += adjacency.counts[i]; } assert(offset == index_count); // fill edge data for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; if (remap) { a = remap[a]; b = remap[b]; c = remap[c]; } adjacency.data[adjacency.offsets[a]].next = b; adjacency.data[adjacency.offsets[a]].prev = c; adjacency.offsets[a]++; adjacency.data[adjacency.offsets[b]].next = c; adjacency.data[adjacency.offsets[b]].prev = a; adjacency.offsets[b]++; adjacency.data[adjacency.offsets[c]].next = a; adjacency.data[adjacency.offsets[c]].prev = b; adjacency.offsets[c]++; } // fix offsets that have been disturbed by the previous pass for (size_t i = 0; i < vertex_count; ++i) { assert(adjacency.offsets[i] >= adjacency.counts[i]); adjacency.offsets[i] -= adjacency.counts[i]; } } struct PositionHasher { const float* vertex_positions; size_t vertex_stride_float; size_t hash(unsigned int index) const { const unsigned int* key = reinterpret_cast(vertex_positions + index * vertex_stride_float); // Optimized Spatial Hashing for Collision Detection of Deformable Objects return (key[0] * 73856093) ^ (key[1] * 19349663) ^ (key[2] * 83492791); } bool equal(unsigned int lhs, unsigned int rhs) const { return memcmp(vertex_positions + lhs * vertex_stride_float, vertex_positions + rhs * vertex_stride_float, sizeof(float) * 3) == 0; } }; static size_t hashBuckets2(size_t count) { size_t buckets = 1; while (buckets < count) buckets *= 2; return buckets; } template static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty) { assert(buckets > 0); assert((buckets & (buckets - 1)) == 0); size_t hashmod = buckets - 1; size_t bucket = hash.hash(key) & hashmod; for (size_t probe = 0; probe <= hashmod; ++probe) { T& item = table[bucket]; if (item == empty) return &item; if (hash.equal(item, key)) return &item; // hash collision, quadratic probing bucket = (bucket + probe + 1) & hashmod; } assert(false && "Hash table is full"); // unreachable return 0; } static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, meshopt_Allocator& allocator) { PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float)}; size_t table_size = hashBuckets2(vertex_count); unsigned int* table = allocator.allocate(table_size); memset(table, -1, table_size * sizeof(unsigned int)); // build forward remap: for each vertex, which other (canonical) vertex does it map to? // we use position equivalence for this, and remap vertices to other existing vertices for (size_t i = 0; i < vertex_count; ++i) { unsigned int index = unsigned(i); unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u); if (*entry == ~0u) *entry = index; remap[index] = *entry; } // build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex? // entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i for (size_t i = 0; i < vertex_count; ++i) wedge[i] = unsigned(i); for (size_t i = 0; i < vertex_count; ++i) if (remap[i] != i) { unsigned int r = remap[i]; wedge[i] = wedge[r]; wedge[r] = unsigned(i); } } enum VertexKind { Kind_Manifold, // not on an attribute seam, not on any boundary Kind_Border, // not on an attribute seam, has exactly two open edges Kind_Seam, // on an attribute seam with exactly two attribute seam edges Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex Kind_Locked, // none of the above; these vertices can't move Kind_Count }; // manifold vertices can collapse onto anything // border/seam vertices can only be collapsed onto border/seam respectively // complex vertices can collapse onto complex/locked // a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex // for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore const unsigned char kCanCollapse[Kind_Count][Kind_Count] = { {1, 1, 1, 1, 1}, {0, 1, 0, 0, 0}, {0, 0, 1, 0, 0}, {0, 0, 0, 1, 1}, {0, 0, 0, 0, 0}, }; // if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge // note that for seam edges, the opposite edge isn't present in the attribute-based topology // but is present if you consider a position-only mesh variant const unsigned char kHasOpposite[Kind_Count][Kind_Count] = { {1, 1, 1, 0, 1}, {1, 0, 1, 0, 0}, {1, 1, 1, 0, 1}, {0, 0, 0, 0, 0}, {1, 0, 1, 0, 0}, }; static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b) { unsigned int count = adjacency.counts[a]; const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a]; for (size_t i = 0; i < count; ++i) if (edges[i].next == b) return true; return false; } static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge) { memset(loop, -1, vertex_count * sizeof(unsigned int)); memset(loopback, -1, vertex_count * sizeof(unsigned int)); // incoming & outgoing open edges: ~0u if no open edges, i if there are more than 1 // note that this is the same data as required in loop[] arrays; loop[] data is only valid for border/seam // but here it's okay to fill the data out for other types of vertices as well unsigned int* openinc = loopback; unsigned int* openout = loop; for (size_t i = 0; i < vertex_count; ++i) { unsigned int vertex = unsigned(i); unsigned int count = adjacency.counts[vertex]; const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex]; for (size_t j = 0; j < count; ++j) { unsigned int target = edges[j].next; if (!hasEdge(adjacency, target, vertex)) { openinc[target] = (openinc[target] == ~0u) ? vertex : target; openout[vertex] = (openout[vertex] == ~0u) ? target : vertex; } } } #if TRACE size_t stats[4] = {}; #endif for (size_t i = 0; i < vertex_count; ++i) { if (remap[i] == i) { if (wedge[i] == i) { // no attribute seam, need to check if it's manifold unsigned int openi = openinc[i], openo = openout[i]; // note: we classify any vertices with no open edges as manifold // this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold // it's unclear if this is a problem in practice if (openi == ~0u && openo == ~0u) { result[i] = Kind_Manifold; } else if (openi != i && openo != i) { result[i] = Kind_Border; } else { result[i] = Kind_Locked; TRACESTATS(0); } } else if (wedge[wedge[i]] == i) { // attribute seam; need to distinguish between Seam and Locked unsigned int w = wedge[i]; unsigned int openiv = openinc[i], openov = openout[i]; unsigned int openiw = openinc[w], openow = openout[w]; // seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap if (openiv != ~0u && openiv != i && openov != ~0u && openov != i && openiw != ~0u && openiw != w && openow != ~0u && openow != w) { if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw]) { result[i] = Kind_Seam; } else { result[i] = Kind_Locked; TRACESTATS(1); } } else { result[i] = Kind_Locked; TRACESTATS(2); } } else { // more than one vertex maps to this one; we don't have classification available result[i] = Kind_Locked; TRACESTATS(3); } } else { assert(remap[i] < i); result[i] = result[remap[i]]; } } #if TRACE printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n", int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3])); #endif } struct Vector3 { float x, y, z; }; static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride) { size_t vertex_stride_float = vertex_positions_stride / sizeof(float); float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; for (size_t i = 0; i < vertex_count; ++i) { const float* v = vertex_positions_data + i * vertex_stride_float; if (result) { result[i].x = v[0]; result[i].y = v[1]; result[i].z = v[2]; } for (int j = 0; j < 3; ++j) { float vj = v[j]; minv[j] = minv[j] > vj ? vj : minv[j]; maxv[j] = maxv[j] < vj ? vj : maxv[j]; } } float extent = 0.f; extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); if (result) { float scale = extent == 0 ? 0.f : 1.f / extent; for (size_t i = 0; i < vertex_count; ++i) { result[i].x = (result[i].x - minv[0]) * scale; result[i].y = (result[i].y - minv[1]) * scale; result[i].z = (result[i].z - minv[2]) * scale; } } return extent; } struct Quadric { float a00, a11, a22; float a10, a20, a21; float b0, b1, b2, c; float w; }; struct Collapse { unsigned int v0; unsigned int v1; union { unsigned int bidi; float error; unsigned int errorui; }; }; static float normalize(Vector3& v) { float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z); if (length > 0) { v.x /= length; v.y /= length; v.z /= length; } return length; } static void quadricAdd(Quadric& Q, const Quadric& R) { Q.a00 += R.a00; Q.a11 += R.a11; Q.a22 += R.a22; Q.a10 += R.a10; Q.a20 += R.a20; Q.a21 += R.a21; Q.b0 += R.b0; Q.b1 += R.b1; Q.b2 += R.b2; Q.c += R.c; Q.w += R.w; } static float quadricError(const Quadric& Q, const Vector3& v) { float rx = Q.b0; float ry = Q.b1; float rz = Q.b2; rx += Q.a10 * v.y; ry += Q.a21 * v.z; rz += Q.a20 * v.x; rx *= 2; ry *= 2; rz *= 2; rx += Q.a00 * v.x; ry += Q.a11 * v.y; rz += Q.a22 * v.z; float r = Q.c; r += rx * v.x; r += ry * v.y; r += rz * v.z; float s = Q.w == 0.f ? 0.f : 1.f / Q.w; return fabsf(r) * s; } static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w) { float aw = a * w; float bw = b * w; float cw = c * w; float dw = d * w; Q.a00 = a * aw; Q.a11 = b * bw; Q.a22 = c * cw; Q.a10 = a * bw; Q.a20 = a * cw; Q.a21 = b * cw; Q.b0 = a * dw; Q.b1 = b * dw; Q.b2 = c * dw; Q.c = d * dw; Q.w = w; } static void quadricFromPoint(Quadric& Q, float x, float y, float z, float w) { // we need to encode (x - X) ^ 2 + (y - Y)^2 + (z - Z)^2 into the quadric Q.a00 = w; Q.a11 = w; Q.a22 = w; Q.a10 = 0.f; Q.a20 = 0.f; Q.a21 = 0.f; Q.b0 = -2.f * x * w; Q.b1 = -2.f * y * w; Q.b2 = -2.f * z * w; Q.c = (x * x + y * y + z * z) * w; Q.w = w; } static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight) { Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; // normal = cross(p1 - p0, p2 - p0) Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x}; float area = normalize(normal); float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z; // we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, sqrtf(area) * weight); } static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight) { Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; float length = normalize(p10); // p20p = length of projection of p2-p0 onto normalize(p1 - p0) Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z; // normal = altitude of triangle from point p2 onto edge p1-p0 Vector3 normal = {p20.x - p10.x * p20p, p20.y - p10.y * p20p, p20.z - p10.z * p20p}; normalize(normal); float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z; // note: the weight is scaled linearly with edge length; this has to match the triangle weight quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, length * weight); } static void fillFaceQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap) { for (size_t i = 0; i < index_count; i += 3) { unsigned int i0 = indices[i + 0]; unsigned int i1 = indices[i + 1]; unsigned int i2 = indices[i + 2]; Quadric Q; quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f); quadricAdd(vertex_quadrics[remap[i0]], Q); quadricAdd(vertex_quadrics[remap[i1]], Q); quadricAdd(vertex_quadrics[remap[i2]], Q); } } static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback) { for (size_t i = 0; i < index_count; i += 3) { static const int next[3] = {1, 2, 0}; for (int e = 0; e < 3; ++e) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; // check that either i0 or i1 are border/seam and are on the same edge loop // note that we need to add the error even for edged that connect e.g. border & locked // if we don't do that, the adjacent border->border edge won't have correct errors for corners if (k0 != Kind_Border && k0 != Kind_Seam && k1 != Kind_Border && k1 != Kind_Seam) continue; if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1) continue; if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0) continue; // seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges if (kHasOpposite[k0][k1] && remap[i1] > remap[i0]) continue; unsigned int i2 = indices[i + next[next[e]]]; // we try hard to maintain border edge geometry; seam edges can move more freely // due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical const float kEdgeWeightSeam = 1.f; const float kEdgeWeightBorder = 10.f; float edgeWeight = (k0 == Kind_Border || k1 == Kind_Border) ? kEdgeWeightBorder : kEdgeWeightSeam; Quadric Q; quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight); quadricAdd(vertex_quadrics[remap[i0]], Q); quadricAdd(vertex_quadrics[remap[i1]], Q); } } } // does triangle ABC flip when C is replaced with D? static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d) { Vector3 eb = {b.x - a.x, b.y - a.y, b.z - a.z}; Vector3 ec = {c.x - a.x, c.y - a.y, c.z - a.z}; Vector3 ed = {d.x - a.x, d.y - a.y, d.z - a.z}; Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x}; Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x}; return nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z < 0; } static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1) { assert(collapse_remap[i0] == i0); assert(collapse_remap[i1] == i1); const Vector3& v0 = vertex_positions[i0]; const Vector3& v1 = vertex_positions[i1]; const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]]; size_t count = adjacency.counts[i0]; for (size_t i = 0; i < count; ++i) { unsigned int a = collapse_remap[edges[i].next]; unsigned int b = collapse_remap[edges[i].prev]; // skip triangles that get collapsed // note: this is mathematically redundant as if either of these is true, the dot product in hasTriangleFlip should be 0 if (a == i1 || b == i1) continue; // early-out when at least one triangle flips due to a collapse if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1)) return true; } return false; } static size_t pickEdgeCollapses(Collapse* collapses, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop) { size_t collapse_count = 0; for (size_t i = 0; i < index_count; i += 3) { static const int next[3] = {1, 2, 0}; for (int e = 0; e < 3; ++e) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; // this can happen either when input has a zero-length edge, or when we perform collapses for complex // topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them // we leave edges like this alone since they may be important for preserving mesh integrity if (remap[i0] == remap[i1]) continue; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; // the edge has to be collapsible in at least one direction if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0])) continue; // manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges if (kHasOpposite[k0][k1] && remap[i1] > remap[i0]) continue; // two vertices are on a border or a seam, but there's no direct edge between them // this indicates that they belong to two different edge loops and we should not collapse this edge // loop[] tracks half edges so we only need to check i0->i1 if (k0 == k1 && (k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1) continue; // edge can be collapsed in either direction - we will pick the one with minimum error // note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0]) { Collapse c = {i0, i1, {/* bidi= */ 1}}; collapses[collapse_count++] = c; } else { // edge can only be collapsed in one direction unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1; unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0; Collapse c = {e0, e1, {/* bidi= */ 0}}; collapses[collapse_count++] = c; } } } return collapse_count; } static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const Quadric* vertex_quadrics, const unsigned int* remap) { for (size_t i = 0; i < collapse_count; ++i) { Collapse& c = collapses[i]; unsigned int i0 = c.v0; unsigned int i1 = c.v1; // most edges are bidirectional which means we need to evaluate errors for two collapses // to keep this code branchless we just use the same edge for unidirectional edges unsigned int j0 = c.bidi ? i1 : i0; unsigned int j1 = c.bidi ? i0 : i1; const Quadric& qi = vertex_quadrics[remap[i0]]; const Quadric& qj = vertex_quadrics[remap[j0]]; float ei = quadricError(qi, vertex_positions[i1]); float ej = quadricError(qj, vertex_positions[j1]); // pick edge direction with minimal error c.v0 = ei <= ej ? i0 : j0; c.v1 = ei <= ej ? i1 : j1; c.error = ei <= ej ? ei : ej; } } #if TRACE > 1 static void dumpEdgeCollapses(const Collapse* collapses, size_t collapse_count, const unsigned char* vertex_kind) { size_t ckinds[Kind_Count][Kind_Count] = {}; float cerrors[Kind_Count][Kind_Count] = {}; for (int k0 = 0; k0 < Kind_Count; ++k0) for (int k1 = 0; k1 < Kind_Count; ++k1) cerrors[k0][k1] = FLT_MAX; for (size_t i = 0; i < collapse_count; ++i) { unsigned int i0 = collapses[i].v0; unsigned int i1 = collapses[i].v1; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; ckinds[k0][k1]++; cerrors[k0][k1] = (collapses[i].error < cerrors[k0][k1]) ? collapses[i].error : cerrors[k0][k1]; } for (int k0 = 0; k0 < Kind_Count; ++k0) for (int k1 = 0; k1 < Kind_Count; ++k1) if (ckinds[k0][k1]) printf("collapses %d -> %d: %d, min error %e\n", k0, k1, int(ckinds[k0][k1]), ckinds[k0][k1] ? sqrtf(cerrors[k0][k1]) : 0.f); } static void dumpLockedCollapses(const unsigned int* indices, size_t index_count, const unsigned char* vertex_kind) { size_t locked_collapses[Kind_Count][Kind_Count] = {}; for (size_t i = 0; i < index_count; i += 3) { static const int next[3] = {1, 2, 0}; for (int e = 0; e < 3; ++e) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; locked_collapses[k0][k1] += !kCanCollapse[k0][k1] && !kCanCollapse[k1][k0]; } } for (int k0 = 0; k0 < Kind_Count; ++k0) for (int k1 = 0; k1 < Kind_Count; ++k1) if (locked_collapses[k0][k1]) printf("locked collapses %d -> %d: %d\n", k0, k1, int(locked_collapses[k0][k1])); } #endif static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count) { const int sort_bits = 11; // fill histogram for counting sort unsigned int histogram[1 << sort_bits]; memset(histogram, 0, sizeof(histogram)); for (size_t i = 0; i < collapse_count; ++i) { // skip sign bit since error is non-negative unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits); histogram[key]++; } // compute offsets based on histogram data size_t histogram_sum = 0; for (size_t i = 0; i < 1 << sort_bits; ++i) { size_t count = histogram[i]; histogram[i] = unsigned(histogram_sum); histogram_sum += count; } assert(histogram_sum == collapse_count); // compute sort order based on offsets for (size_t i = 0; i < collapse_count; ++i) { // skip sign bit since error is non-negative unsigned int key = (collapses[i].errorui << 1) >> (32 - sort_bits); sort_order[histogram[key]++] = unsigned(i); } } static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, Quadric* vertex_quadrics, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error) { size_t edge_collapses = 0; size_t triangle_collapses = 0; // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses size_t edge_collapse_goal = triangle_collapse_goal / 2; #if TRACE size_t stats[4] = {}; #endif for (size_t i = 0; i < collapse_count; ++i) { const Collapse& c = collapses[collapse_order[i]]; TRACESTATS(0); if (c.error > error_limit) break; if (triangle_collapses >= triangle_collapse_goal) break; // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked // as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX; // on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd // topology, we only abort if we got over 1/6 collapses accordingly. if (c.error > error_goal && triangle_collapses > triangle_collapse_goal / 6) break; unsigned int i0 = c.v0; unsigned int i1 = c.v1; unsigned int r0 = remap[i0]; unsigned int r1 = remap[i1]; // we don't collapse vertices that had source or target vertex involved in a collapse // it's important to not move the vertices twice since it complicates the tracking/remapping logic // it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass if (collapse_locked[r0] | collapse_locked[r1]) { TRACESTATS(1); continue; } if (hasTriangleFlips(adjacency, vertex_positions, collapse_remap, r0, r1)) { // adjust collapse goal since this collapse is invalid and shouldn't factor into error goal edge_collapse_goal++; TRACESTATS(2); continue; } assert(collapse_remap[r0] == r0); assert(collapse_remap[r1] == r1); quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]); if (vertex_kind[i0] == Kind_Complex) { unsigned int v = i0; do { collapse_remap[v] = r1; v = wedge[v]; } while (v != i0); } else if (vertex_kind[i0] == Kind_Seam) { // remap v0 to v1 and seam pair of v0 to seam pair of v1 unsigned int s0 = wedge[i0]; unsigned int s1 = wedge[i1]; assert(s0 != i0 && s1 != i1); assert(wedge[s0] == i0 && wedge[s1] == i1); collapse_remap[i0] = i1; collapse_remap[s0] = s1; } else { assert(wedge[i0] == i0); collapse_remap[i0] = i1; } collapse_locked[r0] = 1; collapse_locked[r1] = 1; // border edges collapse 1 triangle, other edges collapse 2 or more triangle_collapses += (vertex_kind[i0] == Kind_Border) ? 1 : 2; edge_collapses++; result_error = result_error < c.error ? c.error : result_error; } #if TRACE float error_goal_perfect = edge_collapse_goal < collapse_count ? collapses[collapse_order[edge_collapse_goal]].error : 0.f; printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d)\n", int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_perfect), int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2])); #endif return edge_collapses; } static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap) { size_t write = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int v0 = collapse_remap[indices[i + 0]]; unsigned int v1 = collapse_remap[indices[i + 1]]; unsigned int v2 = collapse_remap[indices[i + 2]]; // we never move the vertex twice during a single pass assert(collapse_remap[v0] == v0); assert(collapse_remap[v1] == v1); assert(collapse_remap[v2] == v2); if (v0 != v1 && v0 != v2 && v1 != v2) { indices[write + 0] = v0; indices[write + 1] = v1; indices[write + 2] = v2; write += 3; } } return write; } static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap) { for (size_t i = 0; i < vertex_count; ++i) { if (loop[i] != ~0u) { unsigned int l = loop[i]; unsigned int r = collapse_remap[l]; // i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes loop[i] = (i == r) ? loop[l] : r; } } } struct CellHasher { const unsigned int* vertex_ids; size_t hash(unsigned int i) const { unsigned int h = vertex_ids[i]; // MurmurHash2 finalizer h ^= h >> 13; h *= 0x5bd1e995; h ^= h >> 15; return h; } bool equal(unsigned int lhs, unsigned int rhs) const { return vertex_ids[lhs] == vertex_ids[rhs]; } }; struct IdHasher { size_t hash(unsigned int id) const { unsigned int h = id; // MurmurHash2 finalizer h ^= h >> 13; h *= 0x5bd1e995; h ^= h >> 15; return h; } bool equal(unsigned int lhs, unsigned int rhs) const { return lhs == rhs; } }; struct TriangleHasher { unsigned int* indices; size_t hash(unsigned int i) const { const unsigned int* tri = indices + i * 3; // Optimized Spatial Hashing for Collision Detection of Deformable Objects return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791); } bool equal(unsigned int lhs, unsigned int rhs) const { const unsigned int* lt = indices + lhs * 3; const unsigned int* rt = indices + rhs * 3; return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2]; } }; static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, size_t vertex_count, int grid_size) { assert(grid_size >= 1 && grid_size <= 1024); float cell_scale = float(grid_size - 1); for (size_t i = 0; i < vertex_count; ++i) { const Vector3& v = vertex_positions[i]; int xi = int(v.x * cell_scale + 0.5f); int yi = int(v.y * cell_scale + 0.5f); int zi = int(v.z * cell_scale + 0.5f); vertex_ids[i] = (xi << 20) | (yi << 10) | zi; } } static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count) { size_t result = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int id0 = vertex_ids[indices[i + 0]]; unsigned int id1 = vertex_ids[indices[i + 1]]; unsigned int id2 = vertex_ids[indices[i + 2]]; result += (id0 != id1) & (id0 != id2) & (id1 != id2); } return result; } static size_t fillVertexCells(unsigned int* table, size_t table_size, unsigned int* vertex_cells, const unsigned int* vertex_ids, size_t vertex_count) { CellHasher hasher = {vertex_ids}; memset(table, -1, table_size * sizeof(unsigned int)); size_t result = 0; for (size_t i = 0; i < vertex_count; ++i) { unsigned int* entry = hashLookup2(table, table_size, hasher, unsigned(i), ~0u); if (*entry == ~0u) { *entry = unsigned(i); vertex_cells[i] = unsigned(result++); } else { vertex_cells[i] = vertex_cells[*entry]; } } return result; } static size_t countVertexCells(unsigned int* table, size_t table_size, const unsigned int* vertex_ids, size_t vertex_count) { IdHasher hasher; memset(table, -1, table_size * sizeof(unsigned int)); size_t result = 0; for (size_t i = 0; i < vertex_count; ++i) { unsigned int id = vertex_ids[i]; unsigned int* entry = hashLookup2(table, table_size, hasher, id, ~0u); result += (*entry == ~0u); *entry = id; } return result; } static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* vertex_cells) { for (size_t i = 0; i < index_count; i += 3) { unsigned int i0 = indices[i + 0]; unsigned int i1 = indices[i + 1]; unsigned int i2 = indices[i + 2]; unsigned int c0 = vertex_cells[i0]; unsigned int c1 = vertex_cells[i1]; unsigned int c2 = vertex_cells[i2]; bool single_cell = (c0 == c1) & (c0 == c2); Quadric Q; quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f); if (single_cell) { quadricAdd(cell_quadrics[c0], Q); } else { quadricAdd(cell_quadrics[c0], Q); quadricAdd(cell_quadrics[c1], Q); quadricAdd(cell_quadrics[c2], Q); } } } static void fillCellQuadrics(Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count, const unsigned int* vertex_cells) { for (size_t i = 0; i < vertex_count; ++i) { unsigned int c = vertex_cells[i]; const Vector3& v = vertex_positions[i]; Quadric Q; quadricFromPoint(Q, v.x, v.y, v.z, 1.f); quadricAdd(cell_quadrics[c], Q); } } static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count) { memset(cell_remap, -1, cell_count * sizeof(unsigned int)); for (size_t i = 0; i < vertex_count; ++i) { unsigned int cell = vertex_cells[i]; float error = quadricError(cell_quadrics[cell], vertex_positions[i]); if (cell_remap[cell] == ~0u || cell_errors[cell] > error) { cell_remap[cell] = unsigned(i); cell_errors[cell] = error; } } } static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap) { TriangleHasher hasher = {destination}; memset(tritable, -1, tritable_size * sizeof(unsigned int)); size_t result = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int c0 = vertex_cells[indices[i + 0]]; unsigned int c1 = vertex_cells[indices[i + 1]]; unsigned int c2 = vertex_cells[indices[i + 2]]; if (c0 != c1 && c0 != c2 && c1 != c2) { unsigned int a = cell_remap[c0]; unsigned int b = cell_remap[c1]; unsigned int c = cell_remap[c2]; if (b < a && b < c) { unsigned int t = a; a = b, b = c, c = t; } else if (c < a && c < b) { unsigned int t = c; c = b, b = a, a = t; } destination[result * 3 + 0] = a; destination[result * 3 + 1] = b; destination[result * 3 + 2] = c; unsigned int* entry = hashLookup2(tritable, tritable_size, hasher, unsigned(result), ~0u); if (*entry == ~0u) *entry = unsigned(result++); } } return result * 3; } static float interpolate(float y, float x0, float y0, float x1, float y1, float x2, float y2) { // three point interpolation from "revenge of interpolation search" paper float num = (y1 - y) * (x1 - x2) * (x1 - x0) * (y2 - y0); float den = (y2 - y) * (x1 - x2) * (y0 - y1) + (y0 - y) * (x1 - x0) * (y1 - y2); return x1 + num / den; } } // namespace meshopt #ifndef NDEBUG unsigned char* meshopt_simplifyDebugKind = 0; unsigned int* meshopt_simplifyDebugLoop = 0; unsigned int* meshopt_simplifyDebugLoopBack = 0; #endif size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(target_index_count <= index_count); meshopt_Allocator allocator; unsigned int* result = destination; // build adjacency information EdgeAdjacency adjacency = {}; prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator); updateEdgeAdjacency(adjacency, indices, index_count, vertex_count, NULL); // build position remap that maps each vertex to the one with identical position unsigned int* remap = allocator.allocate(vertex_count); unsigned int* wedge = allocator.allocate(vertex_count); buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, allocator); // classify vertices; vertex kind determines collapse rules, see kCanCollapse unsigned char* vertex_kind = allocator.allocate(vertex_count); unsigned int* loop = allocator.allocate(vertex_count); unsigned int* loopback = allocator.allocate(vertex_count); classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge); #if TRACE size_t unique_positions = 0; for (size_t i = 0; i < vertex_count; ++i) unique_positions += remap[i] == i; printf("position remap: %d vertices => %d positions\n", int(vertex_count), int(unique_positions)); size_t kinds[Kind_Count] = {}; for (size_t i = 0; i < vertex_count; ++i) kinds[vertex_kind[i]] += remap[i] == i; printf("kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n", int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked])); #endif Vector3* vertex_positions = allocator.allocate(vertex_count); rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride); Quadric* vertex_quadrics = allocator.allocate(vertex_count); memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric)); fillFaceQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap); fillEdgeQuadrics(vertex_quadrics, indices, index_count, vertex_positions, remap, vertex_kind, loop, loopback); if (result != indices) memcpy(result, indices, index_count * sizeof(unsigned int)); #if TRACE size_t pass_count = 0; #endif Collapse* edge_collapses = allocator.allocate(index_count); unsigned int* collapse_order = allocator.allocate(index_count); unsigned int* collapse_remap = allocator.allocate(vertex_count); unsigned char* collapse_locked = allocator.allocate(vertex_count); size_t result_count = index_count; float result_error = 0; // target_error input is linear; we need to adjust it to match quadricError units float error_limit = target_error * target_error; while (result_count > target_index_count) { // note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap); size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, result, result_count, remap, vertex_kind, loop); // no edges can be collapsed any more due to topology restrictions if (edge_collapse_count == 0) break; rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_quadrics, remap); #if TRACE > 1 dumpEdgeCollapses(edge_collapses, edge_collapse_count, vertex_kind); #endif sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count); size_t triangle_collapse_goal = (result_count - target_index_count) / 3; for (size_t i = 0; i < vertex_count; ++i) collapse_remap[i] = unsigned(i); memset(collapse_locked, 0, vertex_count); #if TRACE printf("pass %d: ", int(pass_count++)); #endif size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, vertex_quadrics, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error); // no edges can be collapsed any more due to hitting the error limit or triangle collapse limit if (collapses == 0) break; remapEdgeLoops(loop, vertex_count, collapse_remap); remapEdgeLoops(loopback, vertex_count, collapse_remap); size_t new_count = remapIndexBuffer(result, result_count, collapse_remap); assert(new_count < result_count); result_count = new_count; } #if TRACE printf("result: %d triangles, error: %e; total %d passes\n", int(result_count), sqrtf(result_error), int(pass_count)); #endif #if TRACE > 1 dumpLockedCollapses(result, result_count, vertex_kind); #endif #ifndef NDEBUG if (meshopt_simplifyDebugKind) memcpy(meshopt_simplifyDebugKind, vertex_kind, vertex_count); if (meshopt_simplifyDebugLoop) memcpy(meshopt_simplifyDebugLoop, loop, vertex_count * sizeof(unsigned int)); if (meshopt_simplifyDebugLoopBack) memcpy(meshopt_simplifyDebugLoopBack, loopback, vertex_count * sizeof(unsigned int)); #endif // result_error is quadratic; we need to remap it back to linear if (out_result_error) *out_result_error = sqrtf(result_error); return result_count; } size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, float* out_result_error) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(target_index_count <= index_count); // we expect to get ~2 triangles/vertex in the output size_t target_cell_count = target_index_count / 6; meshopt_Allocator allocator; Vector3* vertex_positions = allocator.allocate(vertex_count); rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride); // find the optimal grid size using guided binary search #if TRACE printf("source: %d vertices, %d triangles\n", int(vertex_count), int(index_count / 3)); printf("target: %d cells, %d triangles\n", int(target_cell_count), int(target_index_count / 3)); #endif unsigned int* vertex_ids = allocator.allocate(vertex_count); const int kInterpolationPasses = 5; // invariant: # of triangles in min_grid <= target_count int min_grid = int(1.f / (target_error < 1e-3f ? 1e-3f : target_error)); int max_grid = 1025; size_t min_triangles = 0; size_t max_triangles = index_count / 3; // when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid if (min_grid > 1) { computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid); min_triangles = countTriangles(vertex_ids, indices, index_count); } // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f); for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass) { if (min_triangles >= target_index_count / 3 || max_grid - min_grid <= 1) break; // we clamp the prediction of the grid size to make sure that the search converges int grid_size = next_grid_size; grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size; computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size); size_t triangles = countTriangles(vertex_ids, indices, index_count); #if TRACE printf("pass %d (%s): grid size %d, triangles %d, %s\n", pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary", grid_size, int(triangles), (triangles <= target_index_count / 3) ? "under" : "over"); #endif float tip = interpolate(float(target_index_count / 3), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles)); if (triangles <= target_index_count / 3) { min_grid = grid_size; min_triangles = triangles; } else { max_grid = grid_size; max_triangles = triangles; } // we start by using interpolation search - it usually converges faster // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2; } if (min_triangles == 0) { if (out_result_error) *out_result_error = 1.f; return 0; } // build vertex->cell association by mapping all vertices with the same quantized position to the same cell size_t table_size = hashBuckets2(vertex_count); unsigned int* table = allocator.allocate(table_size); unsigned int* vertex_cells = allocator.allocate(vertex_count); computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid); size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count); // build a quadric for each target cell Quadric* cell_quadrics = allocator.allocate(cell_count); memset(cell_quadrics, 0, cell_count * sizeof(Quadric)); fillCellQuadrics(cell_quadrics, indices, index_count, vertex_positions, vertex_cells); // for each target cell, find the vertex with the minimal error unsigned int* cell_remap = allocator.allocate(cell_count); float* cell_errors = allocator.allocate(cell_count); fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count); // compute error float result_error = 0.f; for (size_t i = 0; i < cell_count; ++i) result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error; // collapse triangles! // note that we need to filter out triangles that we've already output because we very frequently generate redundant triangles between cells :( size_t tritable_size = hashBuckets2(min_triangles); unsigned int* tritable = allocator.allocate(tritable_size); size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap); #if TRACE printf("result: %d cells, %d triangles (%d unfiltered), error %e\n", int(cell_count), int(write / 3), int(min_triangles), sqrtf(result_error)); #endif if (out_result_error) *out_result_error = sqrtf(result_error); return write; } size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_vertex_count) { using namespace meshopt; assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(target_vertex_count <= vertex_count); size_t target_cell_count = target_vertex_count; if (target_cell_count == 0) return 0; meshopt_Allocator allocator; Vector3* vertex_positions = allocator.allocate(vertex_count); rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride); // find the optimal grid size using guided binary search #if TRACE printf("source: %d vertices\n", int(vertex_count)); printf("target: %d cells\n", int(target_cell_count)); #endif unsigned int* vertex_ids = allocator.allocate(vertex_count); size_t table_size = hashBuckets2(vertex_count); unsigned int* table = allocator.allocate(table_size); const int kInterpolationPasses = 5; // invariant: # of vertices in min_grid <= target_count int min_grid = 0; int max_grid = 1025; size_t min_vertices = 0; size_t max_vertices = vertex_count; // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f); for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass) { assert(min_vertices < target_vertex_count); assert(max_grid - min_grid > 1); // we clamp the prediction of the grid size to make sure that the search converges int grid_size = next_grid_size; grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid) ? max_grid - 1 : grid_size; computeVertexIds(vertex_ids, vertex_positions, vertex_count, grid_size); size_t vertices = countVertexCells(table, table_size, vertex_ids, vertex_count); #if TRACE printf("pass %d (%s): grid size %d, vertices %d, %s\n", pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses) ? "lerp" : "binary", grid_size, int(vertices), (vertices <= target_vertex_count) ? "under" : "over"); #endif float tip = interpolate(float(target_vertex_count), float(min_grid), float(min_vertices), float(grid_size), float(vertices), float(max_grid), float(max_vertices)); if (vertices <= target_vertex_count) { min_grid = grid_size; min_vertices = vertices; } else { max_grid = grid_size; max_vertices = vertices; } if (vertices == target_vertex_count || max_grid - min_grid <= 1) break; // we start by using interpolation search - it usually converges faster // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2; } if (min_vertices == 0) return 0; // build vertex->cell association by mapping all vertices with the same quantized position to the same cell unsigned int* vertex_cells = allocator.allocate(vertex_count); computeVertexIds(vertex_ids, vertex_positions, vertex_count, min_grid); size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count); // build a quadric for each target cell Quadric* cell_quadrics = allocator.allocate(cell_count); memset(cell_quadrics, 0, cell_count * sizeof(Quadric)); fillCellQuadrics(cell_quadrics, vertex_positions, vertex_count, vertex_cells); // for each target cell, find the vertex with the minimal error unsigned int* cell_remap = allocator.allocate(cell_count); float* cell_errors = allocator.allocate(cell_count); fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count); // copy results to the output assert(cell_count <= target_vertex_count); memcpy(destination, cell_remap, sizeof(unsigned int) * cell_count); #if TRACE printf("result: %d cells\n", int(cell_count)); #endif return cell_count; } float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); float extent = rescalePositions(NULL, vertex_positions, vertex_count, vertex_positions_stride); return extent; }