/*************************************************************************/ /* camera_matrix.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "camera_matrix.h" #include "math_funcs.h" #include "print_string.h" void CameraMatrix::set_identity() { for (int i=0;i<4;i++) { for (int j=0;j<4;j++) { matrix[i][j]=(i==j)?1:0; } } } void CameraMatrix::set_zero() { for (int i=0;i<4;i++) { for (int j=0;j<4;j++) { matrix[i][j]=0; } } } Plane CameraMatrix::xform4(const Plane& p_vec4) const { Plane ret; ret.normal.x = matrix[0][0] * p_vec4.normal.x + matrix[1][0] * p_vec4.normal.y + matrix[2][0] * p_vec4.normal.z + matrix[3][0] * p_vec4.d; ret.normal.y = matrix[0][1] * p_vec4.normal.x + matrix[1][1] * p_vec4.normal.y + matrix[2][1] * p_vec4.normal.z + matrix[3][1] * p_vec4.d; ret.normal.z = matrix[0][2] * p_vec4.normal.x + matrix[1][2] * p_vec4.normal.y + matrix[2][2] * p_vec4.normal.z + matrix[3][2] * p_vec4.d; ret.d = matrix[0][3] * p_vec4.normal.x + matrix[1][3] * p_vec4.normal.y + matrix[2][3] * p_vec4.normal.z + matrix[3][3] * p_vec4.d; return ret; } void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far,bool p_flip_fov) { if (p_flip_fov) { p_fovy_degrees=get_fovy(p_fovy_degrees,1.0/p_aspect); } real_t sine, cotangent, deltaZ; real_t radians = p_fovy_degrees / 2.0 * Math_PI / 180.0; deltaZ = p_z_far - p_z_near; sine = Math::sin(radians); if ((deltaZ == 0) || (sine == 0) || (p_aspect == 0)) { return ; } cotangent = Math::cos(radians) / sine; set_identity(); matrix[0][0] = cotangent / p_aspect; matrix[1][1] = cotangent; matrix[2][2] = -(p_z_far + p_z_near) / deltaZ; matrix[2][3] = -1; matrix[3][2] = -2 * p_z_near * p_z_far / deltaZ; matrix[3][3] = 0; } void CameraMatrix::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) { set_identity(); matrix[0][0] = 2.0/(p_right-p_left); matrix[3][0] = -((p_right+p_left)/(p_right-p_left)); matrix[1][1] = 2.0/(p_top-p_bottom); matrix[3][1] = -((p_top+p_bottom)/(p_top-p_bottom)); matrix[2][2] = -2.0/(p_zfar-p_znear); matrix[3][2] = -((p_zfar+p_znear)/(p_zfar-p_znear)); matrix[3][3] = 1.0; } void CameraMatrix::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar,bool p_flip_fov) { if (!p_flip_fov) { p_size*=p_aspect; } set_orthogonal(-p_size/2,+p_size/2,-p_size/p_aspect/2,+p_size/p_aspect/2,p_znear,p_zfar); } void CameraMatrix::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) { #if 0 ///@TODO, give a check to this. I'm not sure if it's working. set_identity(); matrix[0][0]=(2*p_near) / (p_right-p_left); matrix[0][2]=(p_right+p_left) / (p_right-p_left); matrix[1][1]=(2*p_near) / (p_top-p_bottom); matrix[1][2]=(p_top+p_bottom) / (p_top-p_bottom); matrix[2][2]=-(p_far+p_near) / ( p_far-p_near); matrix[2][3]=-(2*p_far*p_near) / (p_far-p_near); matrix[3][2]=-1; matrix[3][3]=0; #else real_t *te = &matrix[0][0]; real_t x = 2 * p_near / ( p_right - p_left ); real_t y = 2 * p_near / ( p_top - p_bottom ); real_t a = ( p_right + p_left ) / ( p_right - p_left ); real_t b = ( p_top + p_bottom ) / ( p_top - p_bottom ); real_t c = - ( p_far + p_near ) / ( p_far - p_near ); real_t d = - 2 * p_far * p_near / ( p_far - p_near ); te[0] = x; te[1] = 0; te[2] = 0; te[3] = 0; te[4] = 0; te[5] = y; te[6] = 0; te[7] = 0; te[8] = a; te[9] = b; te[10] = c; te[11] = -1; te[12] = 0; te[13] = 0; te[14] = d; te[15] = 0; #endif } real_t CameraMatrix::get_z_far() const { const real_t * matrix = (const real_t*)this->matrix; Plane new_plane=Plane(matrix[ 3] - matrix[ 2], matrix[ 7] - matrix[ 6], matrix[11] - matrix[10], matrix[15] - matrix[14]); new_plane.normal=-new_plane.normal; new_plane.normalize(); return new_plane.d; } real_t CameraMatrix::get_z_near() const { const real_t * matrix = (const real_t*)this->matrix; Plane new_plane=Plane(matrix[ 3] + matrix[ 2], matrix[ 7] + matrix[ 6], matrix[11] + matrix[10], -matrix[15] - matrix[14]); new_plane.normalize(); return new_plane.d; } void CameraMatrix::get_viewport_size(real_t& r_width, real_t& r_height) const { const real_t * matrix = (const real_t*)this->matrix; ///////--- Near Plane ---/////// Plane near_plane=Plane(matrix[ 3] + matrix[ 2], matrix[ 7] + matrix[ 6], matrix[11] + matrix[10], -matrix[15] - matrix[14]); near_plane.normalize(); ///////--- Right Plane ---/////// Plane right_plane=Plane(matrix[ 3] - matrix[ 0], matrix[ 7] - matrix[ 4], matrix[11] - matrix[ 8], - matrix[15] + matrix[12]); right_plane.normalize(); Plane top_plane=Plane(matrix[ 3] - matrix[ 1], matrix[ 7] - matrix[ 5], matrix[11] - matrix[ 9], -matrix[15] + matrix[13]); top_plane.normalize(); Vector3 res; near_plane.intersect_3(right_plane,top_plane,&res); r_width=res.x; r_height=res.y; } bool CameraMatrix::get_endpoints(const Transform& p_transform, Vector3 *p_8points) const { const real_t * matrix = (const real_t*)this->matrix; ///////--- Near Plane ---/////// Plane near_plane=Plane(matrix[ 3] + matrix[ 2], matrix[ 7] + matrix[ 6], matrix[11] + matrix[10], -matrix[15] - matrix[14]); near_plane.normalize(); ///////--- Far Plane ---/////// Plane far_plane=Plane(matrix[ 2] - matrix[ 3], matrix[ 6] - matrix[ 7], matrix[10] - matrix[11], matrix[15] - matrix[14]); far_plane.normalize(); ///////--- Right Plane ---/////// Plane right_plane=Plane(matrix[ 0] - matrix[ 3], matrix[ 4] - matrix[ 7], matrix[8] - matrix[ 11], - matrix[15] + matrix[12]); right_plane.normalize(); ///////--- Top Plane ---/////// Plane top_plane=Plane(matrix[ 1] - matrix[ 3], matrix[ 5] - matrix[ 7], matrix[9] - matrix[ 11], -matrix[15] + matrix[13]); top_plane.normalize(); Vector3 near_endpoint; Vector3 far_endpoint; bool res=near_plane.intersect_3(right_plane,top_plane,&near_endpoint); ERR_FAIL_COND_V(!res,false); res=far_plane.intersect_3(right_plane,top_plane,&far_endpoint); ERR_FAIL_COND_V(!res,false); p_8points[0]=p_transform.xform( Vector3( near_endpoint.x, near_endpoint.y, near_endpoint.z ) ); p_8points[1]=p_transform.xform( Vector3( near_endpoint.x,-near_endpoint.y, near_endpoint.z ) ); p_8points[2]=p_transform.xform( Vector3(-near_endpoint.x, near_endpoint.y, near_endpoint.z ) ); p_8points[3]=p_transform.xform( Vector3(-near_endpoint.x,-near_endpoint.y, near_endpoint.z ) ); p_8points[4]=p_transform.xform( Vector3( far_endpoint.x, far_endpoint.y, far_endpoint.z ) ); p_8points[5]=p_transform.xform( Vector3( far_endpoint.x,-far_endpoint.y, far_endpoint.z ) ); p_8points[6]=p_transform.xform( Vector3(-far_endpoint.x, far_endpoint.y, far_endpoint.z ) ); p_8points[7]=p_transform.xform( Vector3(-far_endpoint.x,-far_endpoint.y, far_endpoint.z ) ); return true; } Vector CameraMatrix::get_projection_planes(const Transform& p_transform) const { /** Fast Plane Extraction from combined modelview/projection matrices. * References: * http://www.markmorley.com/opengl/frustumculling.html * http://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf */ Vector planes; const real_t * matrix = (const real_t*)this->matrix; Plane new_plane; ///////--- Near Plane ---/////// new_plane=Plane(matrix[ 3] + matrix[ 2], matrix[ 7] + matrix[ 6], matrix[11] + matrix[10], matrix[15] + matrix[14]); new_plane.normal=-new_plane.normal; new_plane.normalize(); planes.push_back( p_transform.xform(new_plane) ); ///////--- Far Plane ---/////// new_plane=Plane(matrix[ 3] - matrix[ 2], matrix[ 7] - matrix[ 6], matrix[11] - matrix[10], matrix[15] - matrix[14]); new_plane.normal=-new_plane.normal; new_plane.normalize(); planes.push_back( p_transform.xform(new_plane) ); ///////--- Left Plane ---/////// new_plane=Plane(matrix[ 3] + matrix[ 0], matrix[ 7] + matrix[ 4], matrix[11] + matrix[ 8], matrix[15] + matrix[12]); new_plane.normal=-new_plane.normal; new_plane.normalize(); planes.push_back( p_transform.xform(new_plane) ); ///////--- Top Plane ---/////// new_plane=Plane(matrix[ 3] - matrix[ 1], matrix[ 7] - matrix[ 5], matrix[11] - matrix[ 9], matrix[15] - matrix[13]); new_plane.normal=-new_plane.normal; new_plane.normalize(); planes.push_back( p_transform.xform(new_plane) ); ///////--- Right Plane ---/////// new_plane=Plane(matrix[ 3] - matrix[ 0], matrix[ 7] - matrix[ 4], matrix[11] - matrix[ 8], matrix[15] - matrix[12]); new_plane.normal=-new_plane.normal; new_plane.normalize(); planes.push_back( p_transform.xform(new_plane) ); ///////--- Bottom Plane ---/////// new_plane=Plane(matrix[ 3] + matrix[ 1], matrix[ 7] + matrix[ 5], matrix[11] + matrix[ 9], matrix[15] + matrix[13]); new_plane.normal=-new_plane.normal; new_plane.normalize(); planes.push_back( p_transform.xform(new_plane) ); return planes; } CameraMatrix CameraMatrix::inverse() const { CameraMatrix cm = *this; cm.invert(); return cm; } void CameraMatrix::invert() { int i,j,k; int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */ real_t pvt_val; /* Value of current pivot element */ real_t hold; /* Temporary storage */ real_t determinat; /* Determinant */ determinat = 1.0; for (k=0; k<4; k++) { /** Locate k'th pivot element **/ pvt_val=matrix[k][k]; /** Initialize for search **/ pvt_i[k]=k; pvt_j[k]=k; for (i=k; i<4; i++) { for (j=k; j<4; j++) { if (Math::absd(matrix[i][j]) > Math::absd(pvt_val)) { pvt_i[k]=i; pvt_j[k]=j; pvt_val=matrix[i][j]; } } } /** Product of pivots, gives determinant when finished **/ determinat*=pvt_val; if (Math::absd(determinat)<1e-7) { return; //(false); /** Matrix is singular (zero determinant). **/ } /** "Interchange" rows (with sign change stuff) **/ i=pvt_i[k]; if (i!=k) { /** If rows are different **/ for (j=0; j<4; j++) { hold=-matrix[k][j]; matrix[k][j]=matrix[i][j]; matrix[i][j]=hold; } } /** "Interchange" columns **/ j=pvt_j[k]; if (j!=k) { /** If columns are different **/ for (i=0; i<4; i++) { hold=-matrix[i][k]; matrix[i][k]=matrix[i][j]; matrix[i][j]=hold; } } /** Divide column by minus pivot value **/ for (i=0; i<4; i++) { if (i!=k) matrix[i][k]/=( -pvt_val) ; } /** Reduce the matrix **/ for (i=0; i<4; i++) { hold = matrix[i][k]; for (j=0; j<4; j++) { if (i!=k && j!=k) matrix[i][j]+=hold*matrix[k][j]; } } /** Divide row by pivot **/ for (j=0; j<4; j++) { if (j!=k) matrix[k][j]/=pvt_val; } /** Replace pivot by reciprocal (at last we can touch it). **/ matrix[k][k] = 1.0/pvt_val; } /* That was most of the work, one final pass of row/column interchange */ /* to finish */ for (k=4-2; k>=0; k--) { /* Don't need to work with 1 by 1 corner*/ i=pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */ if (i!=k) { /* If rows are different */ for(j=0; j<4; j++) { hold = matrix[k][j]; matrix[k][j]=-matrix[i][j]; matrix[i][j]=hold; } } j=pvt_i[k]; /* Columns to swap correspond to pivot ROW */ if (j!=k) /* If columns are different */ for (i=0; i<4; i++) { hold=matrix[i][k]; matrix[i][k]=-matrix[i][j]; matrix[i][j]=hold; } } } CameraMatrix::CameraMatrix() { set_identity(); } CameraMatrix CameraMatrix::operator*(const CameraMatrix& p_matrix) const { CameraMatrix new_matrix; for( int j = 0; j < 4; j++ ) { for( int i = 0; i < 4; i++ ) { real_t ab = 0; for( int k = 0; k < 4; k++ ) ab += matrix[k][i] * p_matrix.matrix[j][k] ; new_matrix.matrix[j][i] = ab; } } return new_matrix; } void CameraMatrix::set_light_bias() { real_t *m=&matrix[0][0]; m[0]=0.5, m[1]=0.0, m[2]=0.0, m[3]=0.0, m[4]=0.0, m[5]=0.5, m[6]=0.0, m[7]=0.0, m[8]=0.0, m[9]=0.0, m[10]=0.5, m[11]=0.0, m[12]=0.5, m[13]=0.5, m[14]=0.5, m[15]=1.0; } void CameraMatrix::set_light_atlas_rect(const Rect2& p_rect) { real_t *m=&matrix[0][0]; m[0]=p_rect.size.width, m[1]=0.0, m[2]=0.0, m[3]=0.0, m[4]=0.0, m[5]=p_rect.size.height, m[6]=0.0, m[7]=0.0, m[8]=0.0, m[9]=0.0, m[10]=1.0, m[11]=0.0, m[12]=p_rect.pos.x, m[13]=p_rect.pos.y, m[14]=0.0, m[15]=1.0; } CameraMatrix::operator String() const { String str; for (int i=0;i<4;i++) for (int j=0;j<4;j++) str+=String((j>0)?", ":"\n")+rtos(matrix[i][j]); return str; } real_t CameraMatrix::get_aspect() const { real_t w,h; get_viewport_size(w,h); return w/h; } int CameraMatrix::get_pixels_per_meter(int p_for_pixel_width) const { Vector3 result = xform(Vector3(1,0,-1)); return int((result.x * 0.5 + 0.5) * p_for_pixel_width); } real_t CameraMatrix::get_fov() const { const real_t * matrix = (const real_t*)this->matrix; Plane right_plane=Plane(matrix[ 3] - matrix[ 0], matrix[ 7] - matrix[ 4], matrix[11] - matrix[ 8], - matrix[15] + matrix[12]); right_plane.normalize(); return Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x)))*2.0; } void CameraMatrix::make_scale(const Vector3 &p_scale) { set_identity(); matrix[0][0]=p_scale.x; matrix[1][1]=p_scale.y; matrix[2][2]=p_scale.z; } void CameraMatrix::scale_translate_to_fit(const Rect3& p_aabb) { Vector3 min = p_aabb.pos; Vector3 max = p_aabb.pos+p_aabb.size; matrix[0][0]=2/(max.x-min.x); matrix[1][0]=0; matrix[2][0]=0; matrix[3][0]=-(max.x+min.x)/(max.x-min.x); matrix[0][1]=0; matrix[1][1]=2/(max.y-min.y); matrix[2][1]=0; matrix[3][1]=-(max.y+min.y)/(max.y-min.y); matrix[0][2]=0; matrix[1][2]=0; matrix[2][2]=2/(max.z-min.z); matrix[3][2]=-(max.z+min.z)/(max.z-min.z); matrix[0][3]=0; matrix[1][3]=0; matrix[2][3]=0; matrix[3][3]=1; } CameraMatrix::operator Transform() const { Transform tr; const real_t *m=&matrix[0][0]; tr.basis.elements[0][0]=m[0]; tr.basis.elements[1][0]=m[1]; tr.basis.elements[2][0]=m[2]; tr.basis.elements[0][1]=m[4]; tr.basis.elements[1][1]=m[5]; tr.basis.elements[2][1]=m[6]; tr.basis.elements[0][2]=m[8]; tr.basis.elements[1][2]=m[9]; tr.basis.elements[2][2]=m[10]; tr.origin.x=m[12]; tr.origin.y=m[13]; tr.origin.z=m[14]; return tr; } CameraMatrix::CameraMatrix(const Transform& p_transform) { const Transform &tr = p_transform; real_t *m=&matrix[0][0]; m[0]=tr.basis.elements[0][0]; m[1]=tr.basis.elements[1][0]; m[2]=tr.basis.elements[2][0]; m[3]=0.0; m[4]=tr.basis.elements[0][1]; m[5]=tr.basis.elements[1][1]; m[6]=tr.basis.elements[2][1]; m[7]=0.0; m[8]=tr.basis.elements[0][2]; m[9]=tr.basis.elements[1][2]; m[10]=tr.basis.elements[2][2]; m[11]=0.0; m[12]=tr.origin.x; m[13]=tr.origin.y; m[14]=tr.origin.z; m[15]=1.0; } CameraMatrix::~CameraMatrix() { }