// basis_etc.cpp // Copyright (C) 2019 Binomial LLC. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "basisu_etc.h" #define BASISU_DEBUG_ETC_ENCODER 0 #define BASISU_DEBUG_ETC_ENCODER_DEEPER 0 namespace basisu { const uint32_t BASISU_ETC1_CLUSTER_FIT_ORDER_TABLE_SIZE = 165; static const struct { uint8_t m_v[4]; } g_cluster_fit_order_tab[BASISU_ETC1_CLUSTER_FIT_ORDER_TABLE_SIZE] = { { { 0, 0, 0, 8 } },{ { 0, 5, 2, 1 } },{ { 0, 6, 1, 1 } },{ { 0, 7, 0, 1 } },{ { 0, 7, 1, 0 } }, { { 0, 0, 8, 0 } },{ { 0, 0, 3, 5 } },{ { 0, 1, 7, 0 } },{ { 0, 0, 4, 4 } },{ { 0, 0, 2, 6 } }, { { 0, 0, 7, 1 } },{ { 0, 0, 1, 7 } },{ { 0, 0, 5, 3 } },{ { 1, 6, 0, 1 } },{ { 0, 0, 6, 2 } }, { { 0, 2, 6, 0 } },{ { 2, 4, 2, 0 } },{ { 0, 3, 5, 0 } },{ { 3, 3, 1, 1 } },{ { 4, 2, 0, 2 } }, { { 1, 5, 2, 0 } },{ { 0, 5, 3, 0 } },{ { 0, 6, 2, 0 } },{ { 2, 4, 1, 1 } },{ { 5, 1, 0, 2 } }, { { 6, 1, 1, 0 } },{ { 3, 3, 0, 2 } },{ { 6, 0, 0, 2 } },{ { 0, 8, 0, 0 } },{ { 6, 1, 0, 1 } }, { { 0, 1, 6, 1 } },{ { 1, 6, 1, 0 } },{ { 4, 1, 3, 0 } },{ { 0, 2, 5, 1 } },{ { 5, 0, 3, 0 } }, { { 5, 3, 0, 0 } },{ { 0, 1, 5, 2 } },{ { 0, 3, 4, 1 } },{ { 2, 5, 1, 0 } },{ { 1, 7, 0, 0 } }, { { 0, 1, 4, 3 } },{ { 6, 0, 2, 0 } },{ { 0, 4, 4, 0 } },{ { 2, 6, 0, 0 } },{ { 0, 2, 4, 2 } }, { { 0, 5, 1, 2 } },{ { 0, 6, 0, 2 } },{ { 3, 5, 0, 0 } },{ { 0, 4, 3, 1 } },{ { 3, 4, 1, 0 } }, { { 4, 3, 1, 0 } },{ { 1, 5, 0, 2 } },{ { 0, 3, 3, 2 } },{ { 1, 4, 1, 2 } },{ { 0, 4, 2, 2 } }, { { 2, 3, 3, 0 } },{ { 4, 4, 0, 0 } },{ { 1, 2, 4, 1 } },{ { 0, 5, 0, 3 } },{ { 0, 1, 3, 4 } }, { { 1, 5, 1, 1 } },{ { 1, 4, 2, 1 } },{ { 1, 3, 2, 2 } },{ { 5, 2, 1, 0 } },{ { 1, 3, 3, 1 } }, { { 0, 1, 2, 5 } },{ { 1, 1, 5, 1 } },{ { 0, 3, 2, 3 } },{ { 2, 5, 0, 1 } },{ { 3, 2, 2, 1 } }, { { 2, 3, 0, 3 } },{ { 1, 4, 3, 0 } },{ { 2, 2, 1, 3 } },{ { 6, 2, 0, 0 } },{ { 1, 0, 6, 1 } }, { { 3, 3, 2, 0 } },{ { 7, 1, 0, 0 } },{ { 3, 1, 4, 0 } },{ { 0, 2, 3, 3 } },{ { 0, 4, 1, 3 } }, { { 0, 4, 0, 4 } },{ { 0, 1, 0, 7 } },{ { 2, 0, 5, 1 } },{ { 2, 0, 4, 2 } },{ { 3, 0, 2, 3 } }, { { 2, 2, 4, 0 } },{ { 2, 2, 3, 1 } },{ { 4, 0, 3, 1 } },{ { 3, 2, 3, 0 } },{ { 2, 3, 2, 1 } }, { { 1, 3, 4, 0 } },{ { 7, 0, 1, 0 } },{ { 3, 0, 4, 1 } },{ { 1, 0, 5, 2 } },{ { 8, 0, 0, 0 } }, { { 3, 0, 1, 4 } },{ { 4, 1, 1, 2 } },{ { 4, 0, 2, 2 } },{ { 1, 2, 5, 0 } },{ { 4, 2, 1, 1 } }, { { 3, 4, 0, 1 } },{ { 2, 0, 3, 3 } },{ { 5, 0, 1, 2 } },{ { 5, 0, 0, 3 } },{ { 2, 4, 0, 2 } }, { { 2, 1, 4, 1 } },{ { 4, 0, 1, 3 } },{ { 2, 1, 5, 0 } },{ { 4, 2, 2, 0 } },{ { 4, 0, 4, 0 } }, { { 1, 0, 4, 3 } },{ { 1, 4, 0, 3 } },{ { 3, 0, 3, 2 } },{ { 4, 3, 0, 1 } },{ { 0, 1, 1, 6 } }, { { 1, 3, 1, 3 } },{ { 0, 2, 2, 4 } },{ { 2, 0, 2, 4 } },{ { 5, 1, 1, 1 } },{ { 3, 0, 5, 0 } }, { { 2, 3, 1, 2 } },{ { 3, 0, 0, 5 } },{ { 0, 3, 1, 4 } },{ { 5, 0, 2, 1 } },{ { 2, 1, 3, 2 } }, { { 2, 0, 6, 0 } },{ { 3, 1, 3, 1 } },{ { 5, 1, 2, 0 } },{ { 1, 0, 3, 4 } },{ { 1, 1, 6, 0 } }, { { 4, 0, 0, 4 } },{ { 2, 0, 1, 5 } },{ { 0, 3, 0, 5 } },{ { 1, 3, 0, 4 } },{ { 4, 1, 2, 1 } }, { { 1, 2, 3, 2 } },{ { 3, 1, 0, 4 } },{ { 5, 2, 0, 1 } },{ { 1, 2, 2, 3 } },{ { 3, 2, 1, 2 } }, { { 2, 2, 2, 2 } },{ { 6, 0, 1, 1 } },{ { 1, 2, 1, 4 } },{ { 1, 1, 4, 2 } },{ { 3, 2, 0, 3 } }, { { 1, 2, 0, 5 } },{ { 1, 0, 7, 0 } },{ { 3, 1, 2, 2 } },{ { 1, 0, 2, 5 } },{ { 2, 0, 0, 6 } }, { { 2, 1, 1, 4 } },{ { 2, 2, 0, 4 } },{ { 1, 1, 3, 3 } },{ { 7, 0, 0, 1 } },{ { 1, 0, 0, 7 } }, { { 2, 1, 2, 3 } },{ { 4, 1, 0, 3 } },{ { 3, 1, 1, 3 } },{ { 1, 1, 2, 4 } },{ { 2, 1, 0, 5 } }, { { 1, 0, 1, 6 } },{ { 0, 2, 1, 5 } },{ { 0, 2, 0, 6 } },{ { 1, 1, 1, 5 } },{ { 1, 1, 0, 6 } } }; const int g_etc1_inten_tables[cETC1IntenModifierValues][cETC1SelectorValues] = { { -8, -2, 2, 8 }, { -17, -5, 5, 17 }, { -29, -9, 9, 29 }, { -42, -13, 13, 42 }, { -60, -18, 18, 60 }, { -80, -24, 24, 80 }, { -106, -33, 33, 106 }, { -183, -47, 47, 183 } }; const uint8_t g_etc1_to_selector_index[cETC1SelectorValues] = { 2, 3, 1, 0 }; const uint8_t g_selector_index_to_etc1[cETC1SelectorValues] = { 3, 2, 0, 1 }; // [flip][subblock][pixel_index] const etc_coord2 g_etc1_pixel_coords[2][2][8] = { { { { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 } }, { { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 } } }, { { { 0, 0 }, { 1, 0 }, { 2, 0 }, { 3, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 3, 1 } }, { { 0, 2 }, { 1, 2 }, { 2, 2 }, { 3, 2 }, { 0, 3 }, { 1, 3 }, { 2, 3 }, { 3, 3 } }, } }; // [flip][subblock][pixel_index] const uint32_t g_etc1_pixel_indices[2][2][8] = { { { 0 + 4 * 0, 0 + 4 * 1, 0 + 4 * 2, 0 + 4 * 3, 1 + 4 * 0, 1 + 4 * 1, 1 + 4 * 2, 1 + 4 * 3 }, { 2 + 4 * 0, 2 + 4 * 1, 2 + 4 * 2, 2 + 4 * 3, 3 + 4 * 0, 3 + 4 * 1, 3 + 4 * 2, 3 + 4 * 3 } }, { { 0 + 4 * 0, 1 + 4 * 0, 2 + 4 * 0, 3 + 4 * 0, 0 + 4 * 1, 1 + 4 * 1, 2 + 4 * 1, 3 + 4 * 1 }, { 0 + 4 * 2, 1 + 4 * 2, 2 + 4 * 2, 3 + 4 * 2, 0 + 4 * 3, 1 + 4 * 3, 2 + 4 * 3, 3 + 4 * 3 }, } }; uint16_t etc_block::pack_color5(const color_rgba& color, bool scaled, uint32_t bias) { return pack_color5(color.r, color.g, color.b, scaled, bias); } uint16_t etc_block::pack_color5(uint32_t r, uint32_t g, uint32_t b, bool scaled, uint32_t bias) { if (scaled) { r = (r * 31U + bias) / 255U; g = (g * 31U + bias) / 255U; b = (b * 31U + bias) / 255U; } r = minimum(r, 31U); g = minimum(g, 31U); b = minimum(b, 31U); return static_cast(b | (g << 5U) | (r << 10U)); } color_rgba etc_block::unpack_color5(uint16_t packed_color5, bool scaled, uint32_t alpha) { uint32_t b = packed_color5 & 31U; uint32_t g = (packed_color5 >> 5U) & 31U; uint32_t r = (packed_color5 >> 10U) & 31U; if (scaled) { b = (b << 3U) | (b >> 2U); g = (g << 3U) | (g >> 2U); r = (r << 3U) | (r >> 2U); } return color_rgba(cNoClamp, r, g, b, minimum(alpha, 255U)); } void etc_block::unpack_color5(color_rgba& result, uint16_t packed_color5, bool scaled) { result = unpack_color5(packed_color5, scaled, 255); } void etc_block::unpack_color5(uint32_t& r, uint32_t& g, uint32_t& b, uint16_t packed_color5, bool scaled) { color_rgba c(unpack_color5(packed_color5, scaled, 0)); r = c.r; g = c.g; b = c.b; } bool etc_block::unpack_color5(color_rgba& result, uint16_t packed_color5, uint16_t packed_delta3, bool scaled, uint32_t alpha) { color_rgba_i16 dc(unpack_delta3(packed_delta3)); int b = (packed_color5 & 31U) + dc.b; int g = ((packed_color5 >> 5U) & 31U) + dc.g; int r = ((packed_color5 >> 10U) & 31U) + dc.r; bool success = true; if (static_cast(r | g | b) > 31U) { success = false; r = clamp(r, 0, 31); g = clamp(g, 0, 31); b = clamp(b, 0, 31); } if (scaled) { b = (b << 3U) | (b >> 2U); g = (g << 3U) | (g >> 2U); r = (r << 3U) | (r >> 2U); } result.set_noclamp_rgba(r, g, b, minimum(alpha, 255U)); return success; } bool etc_block::unpack_color5(uint32_t& r, uint32_t& g, uint32_t& b, uint16_t packed_color5, uint16_t packed_delta3, bool scaled, uint32_t alpha) { color_rgba result; const bool success = unpack_color5(result, packed_color5, packed_delta3, scaled, alpha); r = result.r; g = result.g; b = result.b; return success; } uint16_t etc_block::pack_delta3(const color_rgba_i16& color) { return pack_delta3(color.r, color.g, color.b); } uint16_t etc_block::pack_delta3(int r, int g, int b) { assert((r >= cETC1ColorDeltaMin) && (r <= cETC1ColorDeltaMax)); assert((g >= cETC1ColorDeltaMin) && (g <= cETC1ColorDeltaMax)); assert((b >= cETC1ColorDeltaMin) && (b <= cETC1ColorDeltaMax)); if (r < 0) r += 8; if (g < 0) g += 8; if (b < 0) b += 8; return static_cast(b | (g << 3) | (r << 6)); } color_rgba_i16 etc_block::unpack_delta3(uint16_t packed_delta3) { int r = (packed_delta3 >> 6) & 7; int g = (packed_delta3 >> 3) & 7; int b = packed_delta3 & 7; if (r >= 4) r -= 8; if (g >= 4) g -= 8; if (b >= 4) b -= 8; return color_rgba_i16(r, g, b, 255); } void etc_block::unpack_delta3(int& r, int& g, int& b, uint16_t packed_delta3) { r = (packed_delta3 >> 6) & 7; g = (packed_delta3 >> 3) & 7; b = packed_delta3 & 7; if (r >= 4) r -= 8; if (g >= 4) g -= 8; if (b >= 4) b -= 8; } uint16_t etc_block::pack_color4(const color_rgba& color, bool scaled, uint32_t bias) { return pack_color4(color.r, color.g, color.b, scaled, bias); } uint16_t etc_block::pack_color4(uint32_t r, uint32_t g, uint32_t b, bool scaled, uint32_t bias) { if (scaled) { r = (r * 15U + bias) / 255U; g = (g * 15U + bias) / 255U; b = (b * 15U + bias) / 255U; } r = minimum(r, 15U); g = minimum(g, 15U); b = minimum(b, 15U); return static_cast(b | (g << 4U) | (r << 8U)); } color_rgba etc_block::unpack_color4(uint16_t packed_color4, bool scaled, uint32_t alpha) { uint32_t b = packed_color4 & 15U; uint32_t g = (packed_color4 >> 4U) & 15U; uint32_t r = (packed_color4 >> 8U) & 15U; if (scaled) { b = (b << 4U) | b; g = (g << 4U) | g; r = (r << 4U) | r; } return color_rgba(cNoClamp, r, g, b, minimum(alpha, 255U)); } void etc_block::unpack_color4(uint32_t& r, uint32_t& g, uint32_t& b, uint16_t packed_color4, bool scaled) { color_rgba c(unpack_color4(packed_color4, scaled, 0)); r = c.r; g = c.g; b = c.b; } void etc_block::get_diff_subblock_colors(color_rgba* pDst, uint16_t packed_color5, uint32_t table_idx) { assert(table_idx < cETC1IntenModifierValues); const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0]; uint32_t r, g, b; unpack_color5(r, g, b, packed_color5, true); const int ir = static_cast(r), ig = static_cast(g), ib = static_cast(b); const int y0 = pInten_modifer_table[0]; pDst[0].set(ir + y0, ig + y0, ib + y0, 255); const int y1 = pInten_modifer_table[1]; pDst[1].set(ir + y1, ig + y1, ib + y1, 255); const int y2 = pInten_modifer_table[2]; pDst[2].set(ir + y2, ig + y2, ib + y2, 255); const int y3 = pInten_modifer_table[3]; pDst[3].set(ir + y3, ig + y3, ib + y3, 255); } bool etc_block::get_diff_subblock_colors(color_rgba* pDst, uint16_t packed_color5, uint16_t packed_delta3, uint32_t table_idx) { assert(table_idx < cETC1IntenModifierValues); const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0]; uint32_t r, g, b; bool success = unpack_color5(r, g, b, packed_color5, packed_delta3, true); const int ir = static_cast(r), ig = static_cast(g), ib = static_cast(b); const int y0 = pInten_modifer_table[0]; pDst[0].set(ir + y0, ig + y0, ib + y0, 255); const int y1 = pInten_modifer_table[1]; pDst[1].set(ir + y1, ig + y1, ib + y1, 255); const int y2 = pInten_modifer_table[2]; pDst[2].set(ir + y2, ig + y2, ib + y2, 255); const int y3 = pInten_modifer_table[3]; pDst[3].set(ir + y3, ig + y3, ib + y3, 255); return success; } void etc_block::get_abs_subblock_colors(color_rgba* pDst, uint16_t packed_color4, uint32_t table_idx) { assert(table_idx < cETC1IntenModifierValues); const int *pInten_modifer_table = &g_etc1_inten_tables[table_idx][0]; uint32_t r, g, b; unpack_color4(r, g, b, packed_color4, true); const int ir = static_cast(r), ig = static_cast(g), ib = static_cast(b); const int y0 = pInten_modifer_table[0]; pDst[0].set(ir + y0, ig + y0, ib + y0, 255); const int y1 = pInten_modifer_table[1]; pDst[1].set(ir + y1, ig + y1, ib + y1, 255); const int y2 = pInten_modifer_table[2]; pDst[2].set(ir + y2, ig + y2, ib + y2, 255); const int y3 = pInten_modifer_table[3]; pDst[3].set(ir + y3, ig + y3, ib + y3, 255); } bool unpack_etc1(const etc_block& block, color_rgba *pDst, bool preserve_alpha) { const bool diff_flag = block.get_diff_bit(); const bool flip_flag = block.get_flip_bit(); const uint32_t table_index0 = block.get_inten_table(0); const uint32_t table_index1 = block.get_inten_table(1); color_rgba subblock_colors0[4]; color_rgba subblock_colors1[4]; if (diff_flag) { const uint16_t base_color5 = block.get_base5_color(); const uint16_t delta_color3 = block.get_delta3_color(); etc_block::get_diff_subblock_colors(subblock_colors0, base_color5, table_index0); if (!etc_block::get_diff_subblock_colors(subblock_colors1, base_color5, delta_color3, table_index1)) return false; } else { const uint16_t base_color4_0 = block.get_base4_color(0); etc_block::get_abs_subblock_colors(subblock_colors0, base_color4_0, table_index0); const uint16_t base_color4_1 = block.get_base4_color(1); etc_block::get_abs_subblock_colors(subblock_colors1, base_color4_1, table_index1); } if (preserve_alpha) { if (flip_flag) { for (uint32_t y = 0; y < 2; y++) { pDst[0].set_rgb(subblock_colors0[block.get_selector(0, y)]); pDst[1].set_rgb(subblock_colors0[block.get_selector(1, y)]); pDst[2].set_rgb(subblock_colors0[block.get_selector(2, y)]); pDst[3].set_rgb(subblock_colors0[block.get_selector(3, y)]); pDst += 4; } for (uint32_t y = 2; y < 4; y++) { pDst[0].set_rgb(subblock_colors1[block.get_selector(0, y)]); pDst[1].set_rgb(subblock_colors1[block.get_selector(1, y)]); pDst[2].set_rgb(subblock_colors1[block.get_selector(2, y)]); pDst[3].set_rgb(subblock_colors1[block.get_selector(3, y)]); pDst += 4; } } else { for (uint32_t y = 0; y < 4; y++) { pDst[0].set_rgb(subblock_colors0[block.get_selector(0, y)]); pDst[1].set_rgb(subblock_colors0[block.get_selector(1, y)]); pDst[2].set_rgb(subblock_colors1[block.get_selector(2, y)]); pDst[3].set_rgb(subblock_colors1[block.get_selector(3, y)]); pDst += 4; } } } else { if (flip_flag) { // 0000 // 0000 // 1111 // 1111 for (uint32_t y = 0; y < 2; y++) { pDst[0] = subblock_colors0[block.get_selector(0, y)]; pDst[1] = subblock_colors0[block.get_selector(1, y)]; pDst[2] = subblock_colors0[block.get_selector(2, y)]; pDst[3] = subblock_colors0[block.get_selector(3, y)]; pDst += 4; } for (uint32_t y = 2; y < 4; y++) { pDst[0] = subblock_colors1[block.get_selector(0, y)]; pDst[1] = subblock_colors1[block.get_selector(1, y)]; pDst[2] = subblock_colors1[block.get_selector(2, y)]; pDst[3] = subblock_colors1[block.get_selector(3, y)]; pDst += 4; } } else { // 0011 // 0011 // 0011 // 0011 for (uint32_t y = 0; y < 4; y++) { pDst[0] = subblock_colors0[block.get_selector(0, y)]; pDst[1] = subblock_colors0[block.get_selector(1, y)]; pDst[2] = subblock_colors1[block.get_selector(2, y)]; pDst[3] = subblock_colors1[block.get_selector(3, y)]; pDst += 4; } } } return true; } inline int extend_6_to_8(uint32_t n) { return (n << 2) | (n >> 4); } inline int extend_7_to_8(uint32_t n) { return (n << 1) | (n >> 6); } inline int extend_4_to_8(uint32_t n) { return (n << 4) | n; } uint64_t etc_block::evaluate_etc1_error(const color_rgba* pBlock_pixels, bool perceptual, int subblock_index) const { color_rgba unpacked_block[16]; unpack_etc1(*this, unpacked_block); uint64_t total_error = 0; if (subblock_index < 0) { for (uint32_t i = 0; i < 16; i++) total_error += color_distance(perceptual, pBlock_pixels[i], unpacked_block[i], false); } else { const bool flip_bit = get_flip_bit(); for (uint32_t i = 0; i < 8; i++) { const uint32_t idx = g_etc1_pixel_indices[flip_bit][subblock_index][i]; total_error += color_distance(perceptual, pBlock_pixels[idx], unpacked_block[idx], false); } } return total_error; } void etc_block::get_subblock_pixels(color_rgba* pPixels, int subblock_index) const { if (subblock_index < 0) unpack_etc1(*this, pPixels); else { color_rgba unpacked_block[16]; unpack_etc1(*this, unpacked_block); const bool flip_bit = get_flip_bit(); for (uint32_t i = 0; i < 8; i++) { const uint32_t idx = g_etc1_pixel_indices[flip_bit][subblock_index][i]; pPixels[i] = unpacked_block[idx]; } } } bool etc1_optimizer::compute() { assert(m_pResult->m_pSelectors); if ((m_pParams->m_pForce_selectors) || (m_pParams->m_pEval_solution_override)) { assert(m_pParams->m_quality >= cETCQualitySlow); } const uint32_t n = m_pParams->m_num_src_pixels; if (m_pParams->m_cluster_fit) { if (m_pParams->m_quality == cETCQualityFast) compute_internal_cluster_fit(4); else if (m_pParams->m_quality == cETCQualityMedium) compute_internal_cluster_fit(32); else if (m_pParams->m_quality == cETCQualitySlow) compute_internal_cluster_fit(64); else compute_internal_cluster_fit(BASISU_ETC1_CLUSTER_FIT_ORDER_TABLE_SIZE); } else compute_internal_neighborhood(m_br, m_bg, m_bb); if (!m_best_solution.m_valid) { m_pResult->m_error = UINT32_MAX; return false; } const uint8_t* pSelectors = &m_best_solution.m_selectors[0]; #ifdef BASISU_BUILD_DEBUG if (m_pParams->m_pEval_solution_override == nullptr) { color_rgba block_colors[4]; m_best_solution.m_coords.get_block_colors(block_colors); const color_rgba* pSrc_pixels = m_pParams->m_pSrc_pixels; uint64_t actual_error = 0; for (uint32_t i = 0; i < n; i++) { if ((m_pParams->m_perceptual) && (m_pParams->m_quality >= cETCQualitySlow)) actual_error += color_distance(true, pSrc_pixels[i], block_colors[pSelectors[i]], false); else actual_error += color_distance(pSrc_pixels[i], block_colors[pSelectors[i]], false); } assert(actual_error == m_best_solution.m_error); } #endif m_pResult->m_error = m_best_solution.m_error; m_pResult->m_block_color_unscaled = m_best_solution.m_coords.m_unscaled_color; m_pResult->m_block_color4 = m_best_solution.m_coords.m_color4; m_pResult->m_block_inten_table = m_best_solution.m_coords.m_inten_table; memcpy(m_pResult->m_pSelectors, pSelectors, n); m_pResult->m_n = n; return true; } void etc1_optimizer::refine_solution(uint32_t max_refinement_trials) { // Now we have the input block, the avg. color of the input pixels, a set of trial selector indices, and the block color+intensity index. // Now, for each component, attempt to refine the current solution by solving a simple linear equation. For example, for 4 colors: // The goal is: // pixel0 - (block_color+inten_table[selector0]) + pixel1 - (block_color+inten_table[selector1]) + pixel2 - (block_color+inten_table[selector2]) + pixel3 - (block_color+inten_table[selector3]) = 0 // Rearranging this: // (pixel0 + pixel1 + pixel2 + pixel3) - (block_color+inten_table[selector0]) - (block_color+inten_table[selector1]) - (block_color+inten_table[selector2]) - (block_color+inten_table[selector3]) = 0 // (pixel0 + pixel1 + pixel2 + pixel3) - block_color - inten_table[selector0] - block_color-inten_table[selector1] - block_color-inten_table[selector2] - block_color-inten_table[selector3] = 0 // (pixel0 + pixel1 + pixel2 + pixel3) - 4*block_color - inten_table[selector0] - inten_table[selector1] - inten_table[selector2] - inten_table[selector3] = 0 // (pixel0 + pixel1 + pixel2 + pixel3) - 4*block_color - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3]) = 0 // (pixel0 + pixel1 + pixel2 + pixel3)/4 - block_color - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3])/4 = 0 // block_color = (pixel0 + pixel1 + pixel2 + pixel3)/4 - (inten_table[selector0] + inten_table[selector1] + inten_table[selector2] + inten_table[selector3])/4 // So what this means: // optimal_block_color = avg_input - avg_inten_delta // So the optimal block color can be computed by taking the average block color and subtracting the current average of the intensity delta. // Unfortunately, optimal_block_color must then be quantized to 555 or 444 so it's not always possible to improve matters using this formula. // Also, the above formula is for unclamped intensity deltas. The actual implementation takes into account clamping. const uint32_t n = m_pParams->m_num_src_pixels; for (uint32_t refinement_trial = 0; refinement_trial < max_refinement_trials; refinement_trial++) { const uint8_t* pSelectors = &m_best_solution.m_selectors[0]; const int* pInten_table = g_etc1_inten_tables[m_best_solution.m_coords.m_inten_table]; int delta_sum_r = 0, delta_sum_g = 0, delta_sum_b = 0; const color_rgba base_color(m_best_solution.m_coords.get_scaled_color()); for (uint32_t r = 0; r < n; r++) { const uint32_t s = *pSelectors++; const int yd_temp = pInten_table[s]; // Compute actual delta being applied to each pixel, taking into account clamping. delta_sum_r += clamp(base_color.r + yd_temp, 0, 255) - base_color.r; delta_sum_g += clamp(base_color.g + yd_temp, 0, 255) - base_color.g; delta_sum_b += clamp(base_color.b + yd_temp, 0, 255) - base_color.b; } if ((!delta_sum_r) && (!delta_sum_g) && (!delta_sum_b)) break; const float avg_delta_r_f = static_cast(delta_sum_r) / n; const float avg_delta_g_f = static_cast(delta_sum_g) / n; const float avg_delta_b_f = static_cast(delta_sum_b) / n; const int br1 = clamp(static_cast((m_avg_color[0] - avg_delta_r_f) * m_limit / 255.0f + .5f), 0, m_limit); const int bg1 = clamp(static_cast((m_avg_color[1] - avg_delta_g_f) * m_limit / 255.0f + .5f), 0, m_limit); const int bb1 = clamp(static_cast((m_avg_color[2] - avg_delta_b_f) * m_limit / 255.0f + .5f), 0, m_limit); #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Refinement trial %u, avg_delta %f %f %f\n", refinement_trial, avg_delta_r_f, avg_delta_g_f, avg_delta_b_f); #endif if (!evaluate_solution(etc1_solution_coordinates(br1, bg1, bb1, 0, m_pParams->m_use_color4), m_trial_solution, &m_best_solution)) break; } // refinement_trial } void etc1_optimizer::compute_internal_neighborhood(int scan_r, int scan_g, int scan_b) { if (m_best_solution.m_error == 0) return; const uint32_t n = m_pParams->m_num_src_pixels; const int scan_delta_size = m_pParams->m_scan_delta_size; // Scan through a subset of the 3D lattice centered around the avg block color trying each 3D (555 or 444) lattice point as a potential block color. // Each time a better solution is found try to refine the current solution's block color based of the current selectors and intensity table index. for (int zdi = 0; zdi < scan_delta_size; zdi++) { const int zd = m_pParams->m_pScan_deltas[zdi]; const int mbb = scan_b + zd; if (mbb < 0) continue; else if (mbb > m_limit) break; for (int ydi = 0; ydi < scan_delta_size; ydi++) { const int yd = m_pParams->m_pScan_deltas[ydi]; const int mbg = scan_g + yd; if (mbg < 0) continue; else if (mbg > m_limit) break; for (int xdi = 0; xdi < scan_delta_size; xdi++) { const int xd = m_pParams->m_pScan_deltas[xdi]; const int mbr = scan_r + xd; if (mbr < 0) continue; else if (mbr > m_limit) break; etc1_solution_coordinates coords(mbr, mbg, mbb, 0, m_pParams->m_use_color4); if (!evaluate_solution(coords, m_trial_solution, &m_best_solution)) continue; if (m_pParams->m_refinement) { refine_solution((m_pParams->m_quality == cETCQualityFast) ? 2 : (((xd | yd | zd) == 0) ? 4 : 2)); } } // xdi } // ydi } // zdi } void etc1_optimizer::compute_internal_cluster_fit(uint32_t total_perms_to_try) { if ((!m_best_solution.m_valid) || ((m_br != m_best_solution.m_coords.m_unscaled_color.r) || (m_bg != m_best_solution.m_coords.m_unscaled_color.g) || (m_bb != m_best_solution.m_coords.m_unscaled_color.b))) { evaluate_solution(etc1_solution_coordinates(m_br, m_bg, m_bb, 0, m_pParams->m_use_color4), m_trial_solution, &m_best_solution); } if ((m_best_solution.m_error == 0) || (!m_best_solution.m_valid)) return; for (uint32_t i = 0; i < total_perms_to_try; i++) { int delta_sum_r = 0, delta_sum_g = 0, delta_sum_b = 0; const int *pInten_table = g_etc1_inten_tables[m_best_solution.m_coords.m_inten_table]; const color_rgba base_color(m_best_solution.m_coords.get_scaled_color()); const uint8_t *pNum_selectors = g_cluster_fit_order_tab[i].m_v; for (uint32_t q = 0; q < 4; q++) { const int yd_temp = pInten_table[q]; delta_sum_r += pNum_selectors[q] * (clamp(base_color.r + yd_temp, 0, 255) - base_color.r); delta_sum_g += pNum_selectors[q] * (clamp(base_color.g + yd_temp, 0, 255) - base_color.g); delta_sum_b += pNum_selectors[q] * (clamp(base_color.b + yd_temp, 0, 255) - base_color.b); } if ((!delta_sum_r) && (!delta_sum_g) && (!delta_sum_b)) continue; const float avg_delta_r_f = static_cast(delta_sum_r) / 8; const float avg_delta_g_f = static_cast(delta_sum_g) / 8; const float avg_delta_b_f = static_cast(delta_sum_b) / 8; const int br1 = clamp(static_cast((m_avg_color[0] - avg_delta_r_f) * m_limit / 255.0f + .5f), 0, m_limit); const int bg1 = clamp(static_cast((m_avg_color[1] - avg_delta_g_f) * m_limit / 255.0f + .5f), 0, m_limit); const int bb1 = clamp(static_cast((m_avg_color[2] - avg_delta_b_f) * m_limit / 255.0f + .5f), 0, m_limit); #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Second refinement trial %u, avg_delta %f %f %f\n", i, avg_delta_r_f, avg_delta_g_f, avg_delta_b_f); #endif evaluate_solution(etc1_solution_coordinates(br1, bg1, bb1, 0, m_pParams->m_use_color4), m_trial_solution, &m_best_solution); if (m_best_solution.m_error == 0) break; } } void etc1_optimizer::init(const params& params, results& result) { m_pParams = ¶ms; m_pResult = &result; const uint32_t n = m_pParams->m_num_src_pixels; m_selectors.resize(n); m_best_selectors.resize(n); m_temp_selectors.resize(n); m_trial_solution.m_selectors.resize(n); m_best_solution.m_selectors.resize(n); m_limit = m_pParams->m_use_color4 ? 15 : 31; vec3F avg_color(0.0f); m_luma.resize(n); m_sorted_luma_indices.resize(n); m_sorted_luma.resize(n); for (uint32_t i = 0; i < n; i++) { const color_rgba& c = m_pParams->m_pSrc_pixels[i]; const vec3F fc(c.r, c.g, c.b); avg_color += fc; m_luma[i] = static_cast(c.r + c.g + c.b); m_sorted_luma_indices[i] = i; } avg_color /= static_cast(n); m_avg_color = avg_color; m_br = clamp(static_cast(m_avg_color[0] * m_limit / 255.0f + .5f), 0, m_limit); m_bg = clamp(static_cast(m_avg_color[1] * m_limit / 255.0f + .5f), 0, m_limit); m_bb = clamp(static_cast(m_avg_color[2] * m_limit / 255.0f + .5f), 0, m_limit); #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Avg block color: %u %u %u\n", m_br, m_bg, m_bb); #endif if (m_pParams->m_quality <= cETCQualityMedium) { indirect_sort(n, &m_sorted_luma_indices[0], &m_luma[0]); m_pSorted_luma = &m_sorted_luma[0]; m_pSorted_luma_indices = &m_sorted_luma_indices[0]; for (uint32_t i = 0; i < n; i++) m_pSorted_luma[i] = m_luma[m_pSorted_luma_indices[i]]; } m_best_solution.m_coords.clear(); m_best_solution.m_valid = false; m_best_solution.m_error = UINT64_MAX; m_solutions_tried.clear(); } bool etc1_optimizer::evaluate_solution_slow(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution) { uint32_t k = coords.m_unscaled_color.r | (coords.m_unscaled_color.g << 8) | (coords.m_unscaled_color.b << 16); if (!m_solutions_tried.insert(k).second) return false; #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Eval solution: %u %u %u\n", coords.m_unscaled_color.r, coords.m_unscaled_color.g, coords.m_unscaled_color.b); #endif trial_solution.m_valid = false; if (m_pParams->m_constrain_against_base_color5) { const int dr = (int)coords.m_unscaled_color.r - (int)m_pParams->m_base_color5.r; const int dg = (int)coords.m_unscaled_color.g - (int)m_pParams->m_base_color5.g; const int db = (int)coords.m_unscaled_color.b - (int)m_pParams->m_base_color5.b; if ((minimum(dr, dg, db) < cETC1ColorDeltaMin) || (maximum(dr, dg, db) > cETC1ColorDeltaMax)) { #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Eval failed due to constraint from %u %u %u\n", m_pParams->m_base_color5.r, m_pParams->m_base_color5.g, m_pParams->m_base_color5.b); #endif return false; } } const color_rgba base_color(coords.get_scaled_color()); const uint32_t n = m_pParams->m_num_src_pixels; assert(trial_solution.m_selectors.size() == n); trial_solution.m_error = UINT64_MAX; const uint8_t *pSelectors_to_use = m_pParams->m_pForce_selectors; for (uint32_t inten_table = 0; inten_table < cETC1IntenModifierValues; inten_table++) { const int* pInten_table = g_etc1_inten_tables[inten_table]; color_rgba block_colors[4]; for (uint32_t s = 0; s < 4; s++) { const int yd = pInten_table[s]; block_colors[s].set(base_color.r + yd, base_color.g + yd, base_color.b + yd, 255); } uint64_t total_error = 0; const color_rgba* pSrc_pixels = m_pParams->m_pSrc_pixels; for (uint32_t c = 0; c < n; c++) { const color_rgba& src_pixel = *pSrc_pixels++; uint32_t best_selector_index = 0; uint32_t best_error = 0; if (pSelectors_to_use) { best_selector_index = pSelectors_to_use[c]; best_error = color_distance(m_pParams->m_perceptual, src_pixel, block_colors[best_selector_index], false); } else { best_error = color_distance(m_pParams->m_perceptual, src_pixel, block_colors[0], false); uint32_t trial_error = color_distance(m_pParams->m_perceptual, src_pixel, block_colors[1], false); if (trial_error < best_error) { best_error = trial_error; best_selector_index = 1; } trial_error = color_distance(m_pParams->m_perceptual, src_pixel, block_colors[2], false); if (trial_error < best_error) { best_error = trial_error; best_selector_index = 2; } trial_error = color_distance(m_pParams->m_perceptual, src_pixel, block_colors[3], false); if (trial_error < best_error) { best_error = trial_error; best_selector_index = 3; } } m_temp_selectors[c] = static_cast(best_selector_index); total_error += best_error; if ((m_pParams->m_pEval_solution_override == nullptr) && (total_error >= trial_solution.m_error)) break; } if (m_pParams->m_pEval_solution_override) { if (!(*m_pParams->m_pEval_solution_override)(total_error, *m_pParams, block_colors, &m_temp_selectors[0], coords)) return false; } if (total_error < trial_solution.m_error) { trial_solution.m_error = total_error; trial_solution.m_coords.m_inten_table = inten_table; trial_solution.m_selectors.swap(m_temp_selectors); trial_solution.m_valid = true; } } trial_solution.m_coords.m_unscaled_color = coords.m_unscaled_color; trial_solution.m_coords.m_color4 = m_pParams->m_use_color4; #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Eval done: %u error: %I64u best error so far: %I64u\n", (trial_solution.m_error < pBest_solution->m_error), trial_solution.m_error, pBest_solution->m_error); #endif bool success = false; if (pBest_solution) { if (trial_solution.m_error < pBest_solution->m_error) { *pBest_solution = trial_solution; success = true; } } return success; } bool etc1_optimizer::evaluate_solution_fast(const etc1_solution_coordinates& coords, potential_solution& trial_solution, potential_solution* pBest_solution) { uint32_t k = coords.m_unscaled_color.r | (coords.m_unscaled_color.g << 8) | (coords.m_unscaled_color.b << 16); if (!m_solutions_tried.insert(k).second) return false; #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Eval solution fast: %u %u %u\n", coords.m_unscaled_color.r, coords.m_unscaled_color.g, coords.m_unscaled_color.b); #endif if (m_pParams->m_constrain_against_base_color5) { const int dr = (int)coords.m_unscaled_color.r - (int)m_pParams->m_base_color5.r; const int dg = (int)coords.m_unscaled_color.g - (int)m_pParams->m_base_color5.g; const int db = (int)coords.m_unscaled_color.b - (int)m_pParams->m_base_color5.b; if ((minimum(dr, dg, db) < cETC1ColorDeltaMin) || (maximum(dr, dg, db) > cETC1ColorDeltaMax)) { trial_solution.m_valid = false; #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Eval failed due to constraint from %u %u %u\n", m_pParams->m_base_color5.r, m_pParams->m_base_color5.g, m_pParams->m_base_color5.b); #endif return false; } } const color_rgba base_color(coords.get_scaled_color()); const uint32_t n = m_pParams->m_num_src_pixels; assert(trial_solution.m_selectors.size() == n); trial_solution.m_error = UINT64_MAX; for (int inten_table = cETC1IntenModifierValues - 1; inten_table >= 0; --inten_table) { const int* pInten_table = g_etc1_inten_tables[inten_table]; uint32_t block_inten[4]; color_rgba block_colors[4]; for (uint32_t s = 0; s < 4; s++) { const int yd = pInten_table[s]; color_rgba block_color(base_color.r + yd, base_color.g + yd, base_color.b + yd, 255); block_colors[s] = block_color; block_inten[s] = block_color.r + block_color.g + block_color.b; } // evaluate_solution_fast() enforces/assumesd a total ordering of the input colors along the intensity (1,1,1) axis to more quickly classify the inputs to selectors. // The inputs colors have been presorted along the projection onto this axis, and ETC1 block colors are always ordered along the intensity axis, so this classification is fast. // 0 1 2 3 // 01 12 23 const uint32_t block_inten_midpoints[3] = { block_inten[0] + block_inten[1], block_inten[1] + block_inten[2], block_inten[2] + block_inten[3] }; uint64_t total_error = 0; const color_rgba* pSrc_pixels = m_pParams->m_pSrc_pixels; if ((m_pSorted_luma[n - 1] * 2) < block_inten_midpoints[0]) { if (block_inten[0] > m_pSorted_luma[n - 1]) { const uint32_t min_error = iabs((int)block_inten[0] - (int)m_pSorted_luma[n - 1]); if (min_error >= trial_solution.m_error) continue; } memset(&m_temp_selectors[0], 0, n); for (uint32_t c = 0; c < n; c++) total_error += color_distance(block_colors[0], pSrc_pixels[c], false); } else if ((m_pSorted_luma[0] * 2) >= block_inten_midpoints[2]) { if (m_pSorted_luma[0] > block_inten[3]) { const uint32_t min_error = iabs((int)m_pSorted_luma[0] - (int)block_inten[3]); if (min_error >= trial_solution.m_error) continue; } memset(&m_temp_selectors[0], 3, n); for (uint32_t c = 0; c < n; c++) total_error += color_distance(block_colors[3], pSrc_pixels[c], false); } else { uint32_t cur_selector = 0, c; for (c = 0; c < n; c++) { const uint32_t y = m_pSorted_luma[c]; while ((y * 2) >= block_inten_midpoints[cur_selector]) if (++cur_selector > 2) goto done; const uint32_t sorted_pixel_index = m_pSorted_luma_indices[c]; m_temp_selectors[sorted_pixel_index] = static_cast(cur_selector); total_error += color_distance(block_colors[cur_selector], pSrc_pixels[sorted_pixel_index], false); } done: while (c < n) { const uint32_t sorted_pixel_index = m_pSorted_luma_indices[c]; m_temp_selectors[sorted_pixel_index] = 3; total_error += color_distance(block_colors[3], pSrc_pixels[sorted_pixel_index], false); ++c; } } if (total_error < trial_solution.m_error) { trial_solution.m_error = total_error; trial_solution.m_coords.m_inten_table = inten_table; trial_solution.m_selectors.swap(m_temp_selectors); trial_solution.m_valid = true; if (!total_error) break; } } trial_solution.m_coords.m_unscaled_color = coords.m_unscaled_color; trial_solution.m_coords.m_color4 = m_pParams->m_use_color4; #if BASISU_DEBUG_ETC_ENCODER_DEEPER printf("Eval done: %u error: %I64u best error so far: %I64u\n", (trial_solution.m_error < pBest_solution->m_error), trial_solution.m_error, pBest_solution->m_error); #endif bool success = false; if (pBest_solution) { if (trial_solution.m_error < pBest_solution->m_error) { *pBest_solution = trial_solution; success = true; } } return success; } } // namespace basisu