/*************************************************************************/ /* hinge_joint_sw.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ /* Adapted to Godot from the Bullet library. See corresponding header file for licensing info. */ #include "hinge_joint_sw.h" static void plane_space(const Vector3& n, Vector3& p, Vector3& q) { if (Math::abs(n.z) > 0.707106781186547524400844362) { // choose p in y-z plane real_t a = n[1]*n[1] + n[2]*n[2]; real_t k = 1.0/Math::sqrt(a); p=Vector3(0,-n[2]*k,n[1]*k); // set q = n x p q=Vector3(a*k,-n[0]*p[2],n[0]*p[1]); } else { // choose p in x-y plane real_t a = n.x*n.x + n.y*n.y; real_t k = 1.0/Math::sqrt(a); p=Vector3(-n.y*k,n.x*k,0); // set q = n x p q=Vector3(-n.z*p.y,n.z*p.x,a*k); } } HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Transform& frameA, const Transform& frameB) : JointSW(_arr,2) { A=rbA; B=rbB; m_rbAFrame=frameA; m_rbBFrame=frameB; // flip axis m_rbBFrame.basis[0][2] *= real_t(-1.); m_rbBFrame.basis[1][2] *= real_t(-1.); m_rbBFrame.basis[2][2] *= real_t(-1.); //start with free m_lowerLimit = Math_PI; m_upperLimit = -Math_PI; m_useLimit = false; m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_limitSoftness = 0.9f; m_solveLimit = false; tau=0.3; m_angularOnly=false; m_enableAngularMotor=false; A->add_constraint(this,0); B->add_constraint(this,1); } HingeJointSW::HingeJointSW(BodySW* rbA,BodySW* rbB, const Vector3& pivotInA,const Vector3& pivotInB, const Vector3& axisInA,const Vector3& axisInB) : JointSW(_arr,2) { A=rbA; B=rbB; m_rbAFrame.origin = pivotInA; // since no frame is given, assume this to be zero angle and just pick rb transform axis Vector3 rbAxisA1 = rbA->get_transform().basis.get_axis(0); Vector3 rbAxisA2; real_t projection = axisInA.dot(rbAxisA1); if (projection >= 1.0f - CMP_EPSILON) { rbAxisA1 = -rbA->get_transform().basis.get_axis(2); rbAxisA2 = rbA->get_transform().basis.get_axis(1); } else if (projection <= -1.0f + CMP_EPSILON) { rbAxisA1 = rbA->get_transform().basis.get_axis(2); rbAxisA2 = rbA->get_transform().basis.get_axis(1); } else { rbAxisA2 = axisInA.cross(rbAxisA1); rbAxisA1 = rbAxisA2.cross(axisInA); } m_rbAFrame.basis=Matrix3( rbAxisA1.x,rbAxisA2.x,axisInA.x, rbAxisA1.y,rbAxisA2.y,axisInA.y, rbAxisA1.z,rbAxisA2.z,axisInA.z ); Quat rotationArc = Quat(axisInA,axisInB); Vector3 rbAxisB1 = rotationArc.xform(rbAxisA1); Vector3 rbAxisB2 = axisInB.cross(rbAxisB1); m_rbBFrame.origin = pivotInB; m_rbBFrame.basis=Matrix3( rbAxisB1.x,rbAxisB2.x,-axisInB.x, rbAxisB1.y,rbAxisB2.y,-axisInB.y, rbAxisB1.z,rbAxisB2.z,-axisInB.z ); //start with free m_lowerLimit = Math_PI; m_upperLimit = -Math_PI; m_useLimit = false; m_biasFactor = 0.3f; m_relaxationFactor = 1.0f; m_limitSoftness = 0.9f; m_solveLimit = false; tau=0.3; m_angularOnly=false; m_enableAngularMotor=false; A->add_constraint(this,0); B->add_constraint(this,1); } bool HingeJointSW::setup(float p_step) { m_appliedImpulse = real_t(0.); if (!m_angularOnly) { Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin); Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin); Vector3 relPos = pivotBInW - pivotAInW; Vector3 normal[3]; if (relPos.length_squared() > CMP_EPSILON) { normal[0] = relPos.normalized(); } else { normal[0]=Vector3(real_t(1.0),0,0); } plane_space(normal[0], normal[1], normal[2]); for (int i=0;i<3;i++) { memnew_placement(&m_jac[i], JacobianEntrySW( A->get_transform().basis.transposed(), B->get_transform().basis.transposed(), pivotAInW - A->get_transform().origin, pivotBInW - B->get_transform().origin, normal[i], A->get_inv_inertia(), A->get_inv_mass(), B->get_inv_inertia(), B->get_inv_mass()) ); } } //calculate two perpendicular jointAxis, orthogonal to hingeAxis //these two jointAxis require equal angular velocities for both bodies //this is unused for now, it's a todo Vector3 jointAxis0local; Vector3 jointAxis1local; plane_space(m_rbAFrame.basis.get_axis(2),jointAxis0local,jointAxis1local); A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); Vector3 jointAxis0 = A->get_transform().basis.xform( jointAxis0local ); Vector3 jointAxis1 = A->get_transform().basis.xform( jointAxis1local ); Vector3 hingeAxisWorld = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); memnew_placement(&m_jacAng[0], JacobianEntrySW(jointAxis0, A->get_transform().basis.transposed(), B->get_transform().basis.transposed(), A->get_inv_inertia(), B->get_inv_inertia())); memnew_placement(&m_jacAng[1], JacobianEntrySW(jointAxis1, A->get_transform().basis.transposed(), B->get_transform().basis.transposed(), A->get_inv_inertia(), B->get_inv_inertia())); memnew_placement(&m_jacAng[2], JacobianEntrySW(hingeAxisWorld, A->get_transform().basis.transposed(), B->get_transform().basis.transposed(), A->get_inv_inertia(), B->get_inv_inertia())); // Compute limit information real_t hingeAngle = get_hinge_angle(); // print_line("angle: "+rtos(hingeAngle)); //set bias, sign, clear accumulator m_correction = real_t(0.); m_limitSign = real_t(0.); m_solveLimit = false; m_accLimitImpulse = real_t(0.); /*if (m_useLimit) { print_line("low: "+rtos(m_lowerLimit)); print_line("hi: "+rtos(m_upperLimit)); }*/ // if (m_lowerLimit < m_upperLimit) if (m_useLimit && m_lowerLimit <= m_upperLimit) { // if (hingeAngle <= m_lowerLimit*m_limitSoftness) if (hingeAngle <= m_lowerLimit) { m_correction = (m_lowerLimit - hingeAngle); m_limitSign = 1.0f; m_solveLimit = true; } // else if (hingeAngle >= m_upperLimit*m_limitSoftness) else if (hingeAngle >= m_upperLimit) { m_correction = m_upperLimit - hingeAngle; m_limitSign = -1.0f; m_solveLimit = true; } } //Compute K = J*W*J' for hinge axis Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); m_kHinge = 1.0f / (A->compute_angular_impulse_denominator(axisA) + B->compute_angular_impulse_denominator(axisA)); return true; } void HingeJointSW::solve(float p_step) { Vector3 pivotAInW = A->get_transform().xform(m_rbAFrame.origin); Vector3 pivotBInW = B->get_transform().xform(m_rbBFrame.origin); //real_t tau = real_t(0.3); //linear part if (!m_angularOnly) { Vector3 rel_pos1 = pivotAInW - A->get_transform().origin; Vector3 rel_pos2 = pivotBInW - B->get_transform().origin; Vector3 vel1 = A->get_velocity_in_local_point(rel_pos1); Vector3 vel2 = B->get_velocity_in_local_point(rel_pos2); Vector3 vel = vel1 - vel2; for (int i=0;i<3;i++) { const Vector3& normal = m_jac[i].m_linearJointAxis; real_t jacDiagABInv = real_t(1.) / m_jac[i].getDiagonal(); real_t rel_vel; rel_vel = normal.dot(vel); //positional error (zeroth order error) real_t depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal real_t impulse = depth*tau/p_step * jacDiagABInv - rel_vel * jacDiagABInv; m_appliedImpulse += impulse; Vector3 impulse_vector = normal * impulse; A->apply_impulse(pivotAInW - A->get_transform().origin,impulse_vector); B->apply_impulse(pivotBInW - B->get_transform().origin,-impulse_vector); } } { ///solve angular part // get axes in world space Vector3 axisA = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(2) ); Vector3 axisB = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(2) ); const Vector3& angVelA = A->get_angular_velocity(); const Vector3& angVelB = B->get_angular_velocity(); Vector3 angVelAroundHingeAxisA = axisA * axisA.dot(angVelA); Vector3 angVelAroundHingeAxisB = axisB * axisB.dot(angVelB); Vector3 angAorthog = angVelA - angVelAroundHingeAxisA; Vector3 angBorthog = angVelB - angVelAroundHingeAxisB; Vector3 velrelOrthog = angAorthog-angBorthog; { //solve orthogonal angular velocity correction real_t relaxation = real_t(1.); real_t len = velrelOrthog.length(); if (len > real_t(0.00001)) { Vector3 normal = velrelOrthog.normalized(); real_t denom = A->compute_angular_impulse_denominator(normal) + B->compute_angular_impulse_denominator(normal); // scale for mass and relaxation velrelOrthog *= (real_t(1.)/denom) * m_relaxationFactor; } //solve angular positional correction Vector3 angularError = -axisA.cross(axisB) *(real_t(1.)/p_step); real_t len2 = angularError.length(); if (len2>real_t(0.00001)) { Vector3 normal2 = angularError.normalized(); real_t denom2 = A->compute_angular_impulse_denominator(normal2) + B->compute_angular_impulse_denominator(normal2); angularError *= (real_t(1.)/denom2) * relaxation; } A->apply_torque_impulse(-velrelOrthog+angularError); B->apply_torque_impulse(velrelOrthog-angularError); // solve limit if (m_solveLimit) { real_t amplitude = ( (angVelB - angVelA).dot( axisA )*m_relaxationFactor + m_correction* (real_t(1.)/p_step)*m_biasFactor ) * m_limitSign; real_t impulseMag = amplitude * m_kHinge; // Clamp the accumulated impulse real_t temp = m_accLimitImpulse; m_accLimitImpulse = MAX(m_accLimitImpulse + impulseMag, real_t(0) ); impulseMag = m_accLimitImpulse - temp; Vector3 impulse = axisA * impulseMag * m_limitSign; A->apply_torque_impulse(impulse); B->apply_torque_impulse(-impulse); } } //apply motor if (m_enableAngularMotor) { //todo: add limits too Vector3 angularLimit(0,0,0); Vector3 velrel = angVelAroundHingeAxisA - angVelAroundHingeAxisB; real_t projRelVel = velrel.dot(axisA); real_t desiredMotorVel = m_motorTargetVelocity; real_t motor_relvel = desiredMotorVel - projRelVel; real_t unclippedMotorImpulse = m_kHinge * motor_relvel;; //todo: should clip against accumulated impulse real_t clippedMotorImpulse = unclippedMotorImpulse > m_maxMotorImpulse ? m_maxMotorImpulse : unclippedMotorImpulse; clippedMotorImpulse = clippedMotorImpulse < -m_maxMotorImpulse ? -m_maxMotorImpulse : clippedMotorImpulse; Vector3 motorImp = clippedMotorImpulse * axisA; A->apply_torque_impulse(motorImp+angularLimit); B->apply_torque_impulse(-motorImp-angularLimit); } } } /* void HingeJointSW::updateRHS(real_t timeStep) { (void)timeStep; } */ static _FORCE_INLINE_ real_t atan2fast(real_t y, real_t x) { real_t coeff_1 = Math_PI / 4.0f; real_t coeff_2 = 3.0f * coeff_1; real_t abs_y = Math::abs(y); real_t angle; if (x >= 0.0f) { real_t r = (x - abs_y) / (x + abs_y); angle = coeff_1 - coeff_1 * r; } else { real_t r = (x + abs_y) / (abs_y - x); angle = coeff_2 - coeff_1 * r; } return (y < 0.0f) ? -angle : angle; } real_t HingeJointSW::get_hinge_angle() { const Vector3 refAxis0 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(0) ); const Vector3 refAxis1 = A->get_transform().basis.xform( m_rbAFrame.basis.get_axis(1) ); const Vector3 swingAxis = B->get_transform().basis.xform( m_rbBFrame.basis.get_axis(1) ); return atan2fast( swingAxis.dot(refAxis0), swingAxis.dot(refAxis1) ); } void HingeJointSW::set_param(PhysicsServer::HingeJointParam p_param, float p_value) { switch (p_param) { case PhysicsServer::HINGE_JOINT_BIAS: tau=p_value; break; case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: m_upperLimit=p_value; break; case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: m_lowerLimit=p_value; break; case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: m_biasFactor=p_value; break; case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: m_limitSoftness=p_value; break; case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: m_relaxationFactor=p_value; break; case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: m_motorTargetVelocity=p_value; break; case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: m_maxMotorImpulse=p_value; break; } } float HingeJointSW::get_param(PhysicsServer::HingeJointParam p_param) const{ switch (p_param) { case PhysicsServer::HINGE_JOINT_BIAS: return tau; case PhysicsServer::HINGE_JOINT_LIMIT_UPPER: return m_upperLimit; case PhysicsServer::HINGE_JOINT_LIMIT_LOWER: return m_lowerLimit; case PhysicsServer::HINGE_JOINT_LIMIT_BIAS: return m_biasFactor; case PhysicsServer::HINGE_JOINT_LIMIT_SOFTNESS: return m_limitSoftness; case PhysicsServer::HINGE_JOINT_LIMIT_RELAXATION: return m_relaxationFactor; case PhysicsServer::HINGE_JOINT_MOTOR_TARGET_VELOCITY: return m_motorTargetVelocity; case PhysicsServer::HINGE_JOINT_MOTOR_MAX_IMPULSE: return m_maxMotorImpulse; } return 0; } void HingeJointSW::set_flag(PhysicsServer::HingeJointFlag p_flag, bool p_value){ switch (p_flag) { case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: m_useLimit=p_value; break; case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR: m_enableAngularMotor=p_value; break; } } bool HingeJointSW::get_flag(PhysicsServer::HingeJointFlag p_flag) const{ switch (p_flag) { case PhysicsServer::HINGE_JOINT_FLAG_USE_LIMIT: return m_useLimit; case PhysicsServer::HINGE_JOINT_FLAG_ENABLE_MOTOR:return m_enableAngularMotor; } return false; }