/* clang-format off */ [vertex] #ifdef USE_GLES_OVER_GL #define mediump #define highp #else precision highp float; precision highp int; #endif #include "stdlib.glsl" #define SHADER_IS_SRGB true #define M_PI 3.14159265359 // // attributes // attribute highp vec4 vertex_attrib; // attrib:0 /* clang-format on */ attribute vec3 normal_attrib; // attrib:1 #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) attribute vec4 tangent_attrib; // attrib:2 #endif #ifdef ENABLE_COLOR_INTERP attribute vec4 color_attrib; // attrib:3 #endif #ifdef ENABLE_UV_INTERP attribute vec2 uv_attrib; // attrib:4 #endif #ifdef ENABLE_UV2_INTERP attribute vec2 uv2_attrib; // attrib:5 #endif #ifdef USE_SKELETON #ifdef USE_SKELETON_SOFTWARE attribute highp vec4 bone_transform_row_0; // attrib:8 attribute highp vec4 bone_transform_row_1; // attrib:9 attribute highp vec4 bone_transform_row_2; // attrib:10 #else attribute vec4 bone_ids; // attrib:6 attribute highp vec4 bone_weights; // attrib:7 uniform highp sampler2D bone_transforms; // texunit:-1 uniform ivec2 skeleton_texture_size; #endif #endif #ifdef USE_INSTANCING attribute highp vec4 instance_xform_row_0; // attrib:8 attribute highp vec4 instance_xform_row_1; // attrib:9 attribute highp vec4 instance_xform_row_2; // attrib:10 attribute highp vec4 instance_color; // attrib:11 attribute highp vec4 instance_custom_data; // attrib:12 #endif // // uniforms // uniform mat4 camera_matrix; uniform mat4 camera_inverse_matrix; uniform mat4 projection_matrix; uniform mat4 projection_inverse_matrix; uniform mat4 world_transform; uniform highp float time; uniform float normal_mult; #ifdef RENDER_DEPTH uniform float light_bias; uniform float light_normal_bias; #endif // // varyings // varying highp vec3 vertex_interp; varying vec3 normal_interp; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) varying vec3 tangent_interp; varying vec3 binormal_interp; #endif #ifdef ENABLE_COLOR_INTERP varying vec4 color_interp; #endif #ifdef ENABLE_UV_INTERP varying vec2 uv_interp; #endif #ifdef ENABLE_UV2_INTERP varying vec2 uv2_interp; #endif /* clang-format off */ VERTEX_SHADER_GLOBALS /* clang-format on */ #ifdef RENDER_DEPTH_DUAL_PARABOLOID varying highp float dp_clip; uniform highp float shadow_dual_paraboloid_render_zfar; uniform highp float shadow_dual_paraboloid_render_side; #endif #if defined(USE_SHADOW) && defined(USE_LIGHTING) #ifdef LIGHT_MODE_DIRECTIONAL uniform highp sampler2D light_directional_shadow; // texunit:-3 uniform highp vec4 light_split_offsets; #endif uniform highp mat4 light_shadow_matrix; varying highp vec4 shadow_coord; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) uniform highp mat4 light_shadow_matrix2; varying highp vec4 shadow_coord2; #endif #if defined(LIGHT_USE_PSSM4) uniform highp mat4 light_shadow_matrix3; uniform highp mat4 light_shadow_matrix4; varying highp vec4 shadow_coord3; varying highp vec4 shadow_coord4; #endif #endif #if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) varying highp vec3 diffuse_interp; varying highp vec3 specular_interp; // general for all lights uniform vec4 light_color; uniform float light_specular; // directional uniform vec3 light_direction; // omni uniform vec3 light_position; uniform float light_range; uniform vec4 light_attenuation; // spot uniform float light_spot_attenuation; uniform float light_spot_range; uniform float light_spot_angle; void light_compute( vec3 N, vec3 L, vec3 V, vec3 light_color, vec3 attenuation, float roughness) { //this makes lights behave closer to linear, but then addition of lights looks bad //better left disabled //#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); /* #define SRGB_APPROX(m_var) {\ float S1 = sqrt(m_var);\ float S2 = sqrt(S1);\ float S3 = sqrt(S2);\ m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ } */ #define SRGB_APPROX(m_var) float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) { // see http://mimosa-pudica.net/improved-oren-nayar.html float LdotV = dot(L, V); float s = LdotV - NdotL * NdotV; float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); float sigma2 = roughness * roughness; // TODO: this needs checking vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); float B = 0.45 * sigma2 / (sigma2 + 0.09); diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); } #else // lambert by default for everything else diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif SRGB_APPROX(diffuse_brdf_NL) diffuse_interp += light_color * diffuse_brdf_NL * attenuation; if (roughness > 0.0) { // D float specular_brdf_NL = 0.0; #if !defined(SPECULAR_DISABLED) //normalized blinn always unless disabled vec3 H = normalize(V + L); float cNdotH = max(dot(N, H), 0.0); float cVdotH = max(dot(V, H), 0.0); float cLdotH = max(dot(L, H), 0.0); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 8.0) / (8.0 * 3.141592654); specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); #endif SRGB_APPROX(specular_brdf_NL) specular_interp += specular_brdf_NL * light_color * attenuation; } } #endif void main() { highp vec4 vertex = vertex_attrib; mat4 world_matrix = world_transform; #ifdef USE_INSTANCING { highp mat4 m = mat4( instance_xform_row_0, instance_xform_row_1, instance_xform_row_2, vec4(0.0, 0.0, 0.0, 1.0)); world_matrix = world_matrix * transpose(m); } #endif vec3 normal = normal_attrib * normal_mult; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) vec3 tangent = tangent_attrib.xyz; tangent *= normal_mult; float binormalf = tangent_attrib.a; vec3 binormal = normalize(cross(normal, tangent) * binormalf); #endif #ifdef ENABLE_COLOR_INTERP color_interp = color_attrib; #ifdef USE_INSTANCING color_interp *= instance_color; #endif #endif #ifdef ENABLE_UV_INTERP uv_interp = uv_attrib; #endif #ifdef ENABLE_UV2_INTERP uv2_interp = uv2_attrib; #endif #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = world_matrix * vertex; normal = normalize((world_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((world_matrix * vec4(tangent, 0.0)), xyz); binormal = normalize((world_matrix * vec4(binormal, 0.0)).xyz); #endif #endif #ifdef USE_SKELETON highp mat4 bone_transform = mat4(0.0); #ifdef USE_SKELETON_SOFTWARE // passing the transform as attributes bone_transform[0] = vec4(bone_transform_row_0.x, bone_transform_row_1.x, bone_transform_row_2.x, 0.0); bone_transform[1] = vec4(bone_transform_row_0.y, bone_transform_row_1.y, bone_transform_row_2.y, 0.0); bone_transform[2] = vec4(bone_transform_row_0.z, bone_transform_row_1.z, bone_transform_row_2.z, 0.0); bone_transform[3] = vec4(bone_transform_row_0.w, bone_transform_row_1.w, bone_transform_row_2.w, 1.0); #else // look up transform from the "pose texture" { for (int i = 0; i < 4; i++) { ivec2 tex_ofs = ivec2(int(bone_ids[i]) * 3, 0); highp mat4 b = mat4( texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(0, 0)), texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(1, 0)), texel2DFetch(bone_transforms, skeleton_texture_size, tex_ofs + ivec2(2, 0)), vec4(0.0, 0.0, 0.0, 1.0)); bone_transform += transpose(b) * bone_weights[i]; } } #endif world_matrix = bone_transform * world_matrix; #endif #ifdef USE_INSTANCING vec4 instance_custom = instance_custom_data; #else vec4 instance_custom = vec4(0.0); #endif mat4 modelview = camera_matrix * world_matrix; float roughness = 1.0; #define world_transform world_matrix { /* clang-format off */ VERTEX_SHADER_CODE /* clang-format on */ } vec4 outvec = vertex; // use local coordinates #if !defined(SKIP_TRANSFORM_USED) && !defined(VERTEX_WORLD_COORDS_USED) vertex = modelview * vertex; normal = normalize((modelview * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((modelview * vec4(tangent, 0.0)).xyz); binormal = normalize((modelview * vec4(binormal, 0.0)).xyz); #endif #endif #if !defined(SKIP_TRANSFORM_USED) && defined(VERTEX_WORLD_COORDS_USED) vertex = camera_matrix * vertex; normal = normalize((camera_matrix * vec4(normal, 0.0)).xyz); #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent = normalize((camera_matrix * vec4(tangent, 0.0)).xyz); binormal = normalize((camera_matrix * vec4(binormal, 0.0)).xyz); #endif #endif vertex_interp = vertex.xyz; normal_interp = normal; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) tangent_interp = tangent; binormal_interp = binormal; #endif #ifdef RENDER_DEPTH #ifdef RENDER_DEPTH_DUAL_PARABOLOID vertex_interp.z *= shadow_dual_paraboloid_render_side; normal_interp.z *= shadow_dual_paraboloid_render_side; dp_clip = vertex_interp.z; //this attempts to avoid noise caused by objects sent to the other parabolloid side due to bias //for dual paraboloid shadow mapping, this is the fastest but least correct way, as it curves straight edges highp vec3 vtx = vertex_interp + normalize(vertex_interp) * light_bias; highp float distance = length(vtx); vtx = normalize(vtx); vtx.xy /= 1.0 - vtx.z; vtx.z = (distance / shadow_dual_paraboloid_render_zfar); vtx.z = vtx.z * 2.0 - 1.0; vertex_interp = vtx; #else float z_ofs = light_bias; z_ofs += (1.0 - abs(normal_interp.z)) * light_normal_bias; vertex_interp.z -= z_ofs; #endif //dual parabolloid #endif //depth //vertex lighting #if defined(USE_VERTEX_LIGHTING) && defined(USE_LIGHTING) //vertex shaded version of lighting (more limited) vec3 L; vec3 light_att; #ifdef LIGHT_MODE_OMNI vec3 light_vec = light_position - vertex_interp; float light_length = length(light_vec); float normalized_distance = light_length / light_range; float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); vec3 attenuation = vec3(omni_attenuation); light_att = vec3(omni_attenuation); L = normalize(light_vec); #endif #ifdef LIGHT_MODE_SPOT vec3 light_rel_vec = light_position - vertex_interp; float light_length = length(light_rel_vec); float normalized_distance = light_length / light_range; float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); vec3 spot_dir = light_direction; float spot_cutoff = light_spot_angle; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); light_att = vec3(spot_attenuation); L = normalize(light_rel_vec); #endif #ifdef LIGHT_MODE_DIRECTIONAL vec3 light_vec = -light_direction; light_att = vec3(1.0); //no base attenuation L = normalize(light_vec); #endif diffuse_interp = vec3(0.0); specular_interp = vec3(0.0); light_compute(normal_interp, L, -normalize(vertex_interp), light_color.rgb, light_att, roughness); #endif //shadows (for both vertex and fragment) #if defined(USE_SHADOW) && defined(USE_LIGHTING) vec4 vi4 = vec4(vertex_interp, 1.0); shadow_coord = light_shadow_matrix * vi4; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) shadow_coord2 = light_shadow_matrix2 * vi4; #endif #if defined(LIGHT_USE_PSSM4) shadow_coord3 = light_shadow_matrix3 * vi4; shadow_coord3 = light_shadow_matrix3 * vi4; #endif #endif //use shadow and use lighting gl_Position = projection_matrix * vec4(vertex_interp, 1.0); } /* clang-format off */ [fragment] #extension GL_ARB_shader_texture_lod : enable #ifndef GL_ARB_shader_texture_lod #define texture2DLod(img, coord, lod) texture2D(img, coord) #define textureCubeLod(img, coord, lod) textureCube(img, coord) #endif #ifdef USE_GLES_OVER_GL #define mediump #define highp #else precision mediump float; precision highp int; #endif #include "stdlib.glsl" #define M_PI 3.14159265359 #define SHADER_IS_SRGB true // // uniforms // uniform mat4 camera_matrix; /* clang-format on */ uniform mat4 camera_inverse_matrix; uniform mat4 projection_matrix; uniform mat4 projection_inverse_matrix; uniform mat4 world_transform; uniform highp float time; #ifdef SCREEN_UV_USED uniform vec2 screen_pixel_size; #endif // I think supporting this in GLES2 is difficult // uniform highp sampler2D depth_buffer; #if defined(SCREEN_TEXTURE_USED) uniform highp sampler2D screen_texture; //texunit:-4 #endif #ifdef USE_RADIANCE_MAP #define RADIANCE_MAX_LOD 6.0 uniform samplerCube radiance_map; // texunit:-2 uniform mat4 radiance_inverse_xform; #endif uniform float bg_energy; uniform float ambient_sky_contribution; uniform vec4 ambient_color; uniform float ambient_energy; #ifdef USE_LIGHTING #ifdef USE_VERTEX_LIGHTING //get from vertex varying highp vec3 diffuse_interp; varying highp vec3 specular_interp; #else //done in fragment // general for all lights uniform vec4 light_color; uniform float light_specular; // directional uniform vec3 light_direction; // omni uniform vec3 light_position; uniform vec4 light_attenuation; // spot uniform float light_spot_attenuation; uniform float light_spot_range; uniform float light_spot_angle; #endif //this is needed outside above if because dual paraboloid wants it uniform float light_range; #ifdef USE_SHADOW uniform highp vec2 shadow_pixel_size; #if defined(LIGHT_MODE_OMNI) || defined(LIGHT_MODE_SPOT) uniform highp sampler2D light_shadow_atlas; //texunit:-3 #endif #ifdef LIGHT_MODE_DIRECTIONAL uniform highp sampler2D light_directional_shadow; // texunit:-3 uniform highp vec4 light_split_offsets; #endif varying highp vec4 shadow_coord; #if defined(LIGHT_USE_PSSM2) || defined(LIGHT_USE_PSSM4) varying highp vec4 shadow_coord2; #endif #if defined(LIGHT_USE_PSSM4) varying highp vec4 shadow_coord3; varying highp vec4 shadow_coord4; #endif uniform vec4 light_clamp; #endif // light shadow // directional shadow #endif // // varyings // varying highp vec3 vertex_interp; varying vec3 normal_interp; #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) varying vec3 tangent_interp; varying vec3 binormal_interp; #endif #ifdef ENABLE_COLOR_INTERP varying vec4 color_interp; #endif #ifdef ENABLE_UV_INTERP varying vec2 uv_interp; #endif #ifdef ENABLE_UV2_INTERP varying vec2 uv2_interp; #endif varying vec3 view_interp; vec3 metallic_to_specular_color(float metallic, float specular, vec3 albedo) { float dielectric = (0.034 * 2.0) * specular; // energy conservation return mix(vec3(dielectric), albedo, metallic); // TODO: reference? } /* clang-format off */ FRAGMENT_SHADER_GLOBALS /* clang-format on */ #ifdef RENDER_DEPTH_DUAL_PARABOLOID varying highp float dp_clip; #endif #ifdef USE_LIGHTING // This returns the G_GGX function divided by 2 cos_theta_m, where in practice cos_theta_m is either N.L or N.V. // We're dividing this factor off because the overall term we'll end up looks like // (see, for example, the first unnumbered equation in B. Burley, "Physically Based Shading at Disney", SIGGRAPH 2012): // // F(L.V) D(N.H) G(N.L) G(N.V) / (4 N.L N.V) // // We're basically regouping this as // // F(L.V) D(N.H) [G(N.L)/(2 N.L)] [G(N.V) / (2 N.V)] // // and thus, this function implements the [G(N.m)/(2 N.m)] part with m = L or V. // // The contents of the D and G (G1) functions (GGX) are taken from // E. Heitz, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs", J. Comp. Graph. Tech. 3 (2) (2014). // Eqns 71-72 and 85-86 (see also Eqns 43 and 80). float G_GGX_2cos(float cos_theta_m, float alpha) { // Schlick's approximation // C. Schlick, "An Inexpensive BRDF Model for Physically-based Rendering", Computer Graphics Forum. 13 (3): 233 (1994) // Eq. (19), although see Heitz (2014) the about the problems with his derivation. // It nevertheless approximates GGX well with k = alpha/2. float k = 0.5 * alpha; return 0.5 / (cos_theta_m * (1.0 - k) + k); // float cos2 = cos_theta_m * cos_theta_m; // float sin2 = (1.0 - cos2); // return 1.0 / (cos_theta_m + sqrt(cos2 + alpha * alpha * sin2)); } float D_GGX(float cos_theta_m, float alpha) { float alpha2 = alpha * alpha; float d = 1.0 + (alpha2 - 1.0) * cos_theta_m * cos_theta_m; return alpha2 / (M_PI * d * d); } float G_GGX_anisotropic_2cos(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float s_x = alpha_x * cos_phi; float s_y = alpha_y * sin_phi; return 1.0 / max(cos_theta_m + sqrt(cos2 + (s_x * s_x + s_y * s_y) * sin2), 0.001); } float D_GGX_anisotropic(float cos_theta_m, float alpha_x, float alpha_y, float cos_phi, float sin_phi) { float cos2 = cos_theta_m * cos_theta_m; float sin2 = (1.0 - cos2); float r_x = cos_phi / alpha_x; float r_y = sin_phi / alpha_y; float d = cos2 + sin2 * (r_x * r_x + r_y * r_y); return 1.0 / max(M_PI * alpha_x * alpha_y * d * d, 0.001); } float SchlickFresnel(float u) { float m = 1.0 - u; float m2 = m * m; return m2 * m2 * m; // pow(m,5) } float GTR1(float NdotH, float a) { if (a >= 1.0) return 1.0 / M_PI; float a2 = a * a; float t = 1.0 + (a2 - 1.0) * NdotH * NdotH; return (a2 - 1.0) / (M_PI * log(a2) * t); } void light_compute( vec3 N, vec3 L, vec3 V, vec3 B, vec3 T, vec3 light_color, vec3 attenuation, vec3 diffuse_color, vec3 transmission, float specular_blob_intensity, float roughness, float metallic, float rim, float rim_tint, float clearcoat, float clearcoat_gloss, float anisotropy, inout vec3 diffuse_light, inout vec3 specular_light) { //this makes lights behave closer to linear, but then addition of lights looks bad //better left disabled //#define SRGB_APPROX(m_var) m_var = pow(m_var,0.4545454545); /* #define SRGB_APPROX(m_var) {\ float S1 = sqrt(m_var);\ float S2 = sqrt(S1);\ float S3 = sqrt(S2);\ m_var = 0.662002687 * S1 + 0.684122060 * S2 - 0.323583601 * S3 - 0.0225411470 * m_var;\ } */ #define SRGB_APPROX(m_var) #if defined(USE_LIGHT_SHADER_CODE) // light is written by the light shader vec3 normal = N; vec3 albedo = diffuse_color; vec3 light = L; vec3 view = V; /* clang-format off */ LIGHT_SHADER_CODE /* clang-format on */ #else float NdotL = dot(N, L); float cNdotL = max(NdotL, 0.0); // clamped NdotL float NdotV = dot(N, V); float cNdotV = max(NdotV, 0.0); if (metallic < 1.0) { #if defined(DIFFUSE_OREN_NAYAR) vec3 diffuse_brdf_NL; #else float diffuse_brdf_NL; // BRDF times N.L for calculating diffuse radiance #endif #if defined(DIFFUSE_LAMBERT_WRAP) // energy conserving lambert wrap shader diffuse_brdf_NL = max(0.0, (NdotL + roughness) / ((1.0 + roughness) * (1.0 + roughness))); #elif defined(DIFFUSE_OREN_NAYAR) { // see http://mimosa-pudica.net/improved-oren-nayar.html float LdotV = dot(L, V); float s = LdotV - NdotL * NdotV; float t = mix(1.0, max(NdotL, NdotV), step(0.0, s)); float sigma2 = roughness * roughness; // TODO: this needs checking vec3 A = 1.0 + sigma2 * (-0.5 / (sigma2 + 0.33) + 0.17 * diffuse_color / (sigma2 + 0.13)); float B = 0.45 * sigma2 / (sigma2 + 0.09); diffuse_brdf_NL = cNdotL * (A + vec3(B) * s / t) * (1.0 / M_PI); } #elif defined(DIFFUSE_TOON) diffuse_brdf_NL = smoothstep(-roughness, max(roughness, 0.01), NdotL); #elif defined(DIFFUSE_BURLEY) { vec3 H = normalize(V + L); float cLdotH = max(0.0, dot(L, H)); float FD90 = 0.5 + 2.0 * cLdotH * cLdotH * roughness; float FdV = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotV); float FdL = 1.0 + (FD90 - 1.0) * SchlickFresnel(cNdotL); diffuse_brdf_NL = (1.0 / M_PI) * FdV * FdL * cNdotL; /* float energyBias = mix(roughness, 0.0, 0.5); float energyFactor = mix(roughness, 1.0, 1.0 / 1.51); float fd90 = energyBias + 2.0 * VoH * VoH * roughness; float f0 = 1.0; float lightScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotL, 5.0); float viewScatter = f0 + (fd90 - f0) * pow(1.0 - cNdotV, 5.0); diffuse_brdf_NL = lightScatter * viewScatter * energyFactor; */ } #else // lambert diffuse_brdf_NL = cNdotL * (1.0 / M_PI); #endif SRGB_APPROX(diffuse_brdf_NL) diffuse_light += light_color * diffuse_color * diffuse_brdf_NL * attenuation; #if defined(TRANSMISSION_USED) diffuse_light += light_color * diffuse_color * (vec3(1.0 / M_PI) - diffuse_brdf_NL) * transmission * attenuation; #endif #if defined(LIGHT_USE_RIM) float rim_light = pow(max(0.0, 1.0 - cNdotV), max(0.0, (1.0 - roughness) * 16.0)); diffuse_light += rim_light * rim * mix(vec3(1.0), diffuse_color, rim_tint) * light_color; #endif } if (roughness > 0.0) { // D float specular_brdf_NL; #if defined(SPECULAR_BLINN) //normalized blinn vec3 H = normalize(V + L); float cNdotH = max(dot(N, H), 0.0); float cVdotH = max(dot(V, H), 0.0); float cLdotH = max(dot(L, H), 0.0); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float blinn = pow(cNdotH, shininess); blinn *= (shininess + 8.0) / (8.0 * 3.141592654); specular_brdf_NL = (blinn) / max(4.0 * cNdotV * cNdotL, 0.75); #elif defined(SPECULAR_PHONG) vec3 R = normalize(-reflect(L, N)); float cRdotV = max(0.0, dot(R, V)); float shininess = exp2(15.0 * (1.0 - roughness) + 1.0) * 0.25; float phong = pow(cRdotV, shininess); phong *= (shininess + 8.0) / (8.0 * 3.141592654); specular_brdf_NL = (phong) / max(4.0 * cNdotV * cNdotL, 0.75); #elif defined(SPECULAR_TOON) vec3 R = normalize(-reflect(L, N)); float RdotV = dot(R, V); float mid = 1.0 - roughness; mid *= mid; specular_brdf_NL = smoothstep(mid - roughness * 0.5, mid + roughness * 0.5, RdotV) * mid; #elif defined(SPECULAR_DISABLED) // none.. specular_brdf_NL = 0.0; #elif defined(SPECULAR_SCHLICK_GGX) // shlick+ggx as default vec3 H = normalize(V + L); float cNdotH = max(dot(N, H), 0.0); float cLdotH = max(dot(L, H), 0.0); #if defined(LIGHT_USE_ANISOTROPY) float aspect = sqrt(1.0 - anisotropy * 0.9); float rx = roughness / aspect; float ry = roughness * aspect; float ax = rx * rx; float ay = ry * ry; float XdotH = dot(T, H); float YdotH = dot(B, H); float D = D_GGX_anisotropic(cNdotH, ax, ay, XdotH, YdotH); float G = G_GGX_anisotropic_2cos(cNdotL, ax, ay, XdotH, YdotH) * G_GGX_anisotropic_2cos(cNdotV, ax, ay, XdotH, YdotH); #else float alpha = roughness * roughness; float D = D_GGX(cNdotH, alpha); float G = G_GGX_2cos(cNdotL, alpha) * G_GGX_2cos(cNdotV, alpha); #endif // F //float F0 = 1.0; //float cLdotH5 = SchlickFresnel(cLdotH); //float F = mix(cLdotH5, 1.0, F0); specular_brdf_NL = cNdotL * D /* F */ * G; #endif SRGB_APPROX(specular_brdf_NL) specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; #if defined(LIGHT_USE_CLEARCOAT) if (clearcoat_gloss > 0.0) { #if !defined(SPECULAR_SCHLICK_GGX) && !defined(SPECULAR_BLINN) vec3 H = normalize(V + L); #endif #if !defined(SPECULAR_SCHLICK_GGX) float cNdotH = max(dot(N, H), 0.0); float cLdotH = max(dot(L, H), 0.0); float cLdotH5 = SchlickFresnel(cLdotH); #endif float Dr = GTR1(cNdotH, mix(.1, .001, clearcoat_gloss)); float Fr = mix(.04, 1.0, cLdotH5); float Gr = G_GGX_2cos(cNdotL, .25) * G_GGX_2cos(cNdotV, .25); float specular_brdf_NL = 0.25 * clearcoat * Gr * Fr * Dr * cNdotL; specular_light += specular_brdf_NL * light_color * specular_blob_intensity * attenuation; } #endif } #endif //defined(USE_LIGHT_SHADER_CODE) } #endif // shadows #ifdef USE_SHADOW #define SAMPLE_SHADOW_TEXEL(p_shadow, p_pos, p_depth) step(p_depth, texture2D(p_shadow, p_pos).r) float sample_shadow( highp sampler2D shadow, highp vec2 pos, highp float depth) { #ifdef SHADOW_MODE_PCF_13 float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, -shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, -shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x * 2.0, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x * 2.0, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y * 2.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y * 2.0), depth); return avg * (1.0 / 13.0); #endif #ifdef SHADOW_MODE_PCF_5 float avg = SAMPLE_SHADOW_TEXEL(shadow, pos, depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(-shadow_pixel_size.x, 0.0), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, shadow_pixel_size.y), depth); avg += SAMPLE_SHADOW_TEXEL(shadow, pos + vec2(0.0, -shadow_pixel_size.y), depth); return avg * (1.0 / 5.0); #endif #if !defined(SHADOW_MODE_PCF_5) || !defined(SHADOW_MODE_PCF_13) return SAMPLE_SHADOW_TEXEL(shadow, pos, depth); #endif } #endif void main() { #ifdef RENDER_DEPTH_DUAL_PARABOLOID if (dp_clip > 0.0) discard; #endif highp vec3 vertex = vertex_interp; vec3 albedo = vec3(1.0); vec3 transmission = vec3(0.0); float metallic = 0.0; float specular = 0.5; vec3 emission = vec3(0.0); float roughness = 1.0; float rim = 0.0; float rim_tint = 0.0; float clearcoat = 0.0; float clearcoat_gloss = 0.0; float anisotropy = 0.0; vec2 anisotropy_flow = vec2(1.0, 0.0); float alpha = 1.0; float side = 1.0; #if defined(ENABLE_AO) float ao = 1.0; float ao_light_affect = 0.0; #endif #if defined(ENABLE_TANGENT_INTERP) || defined(ENABLE_NORMALMAP) vec3 binormal = normalize(binormal_interp) * side; vec3 tangent = normalize(tangent_interp) * side; #else vec3 binormal = vec3(0.0); vec3 tangent = vec3(0.0); #endif vec3 normal = normalize(normal_interp) * side; #if defined(ENABLE_NORMALMAP) vec3 normalmap = vec3(0.5); #endif float normaldepth = 1.0; #ifdef ALPHA_SCISSOR_USED float alpha_scissor = 0.5; #endif #ifdef SCREEN_UV_USED vec2 screen_uv = gl_FragCoord.xy * screen_pixel_size; #endif { /* clang-format off */ FRAGMENT_SHADER_CODE /* clang-format on */ } #if defined(ENABLE_NORMALMAP) normalmap.xy = normalmap.xy * 2.0 - 1.0; normalmap.z = sqrt(max(0.0, 1.0 - dot(normalmap.xy, normalmap.xy))); // normal = normalize(mix(normal_interp, tangent * normalmap.x + binormal * normalmap.y + normal * normalmap.z, normaldepth)) * side; normal = normalmap; #endif normal = normalize(normal); vec3 N = normal; vec3 specular_light = vec3(0.0, 0.0, 0.0); vec3 diffuse_light = vec3(0.0, 0.0, 0.0); vec3 ambient_light = vec3(0.0, 0.0, 0.0); vec3 eye_position = -normalize(vertex_interp); #ifdef ALPHA_SCISSOR_USED if (alpha < alpha_scissor) { discard; } #endif #ifdef BASE_PASS //none #ifdef USE_RADIANCE_MAP vec3 ref_vec = reflect(-eye_position, N); ref_vec = normalize((radiance_inverse_xform * vec4(ref_vec, 0.0)).xyz); ref_vec.z *= -1.0; specular_light = textureCubeLod(radiance_map, ref_vec, roughness * RADIANCE_MAX_LOD).xyz * bg_energy; { vec3 ambient_dir = normalize((radiance_inverse_xform * vec4(normal, 0.0)).xyz); vec3 env_ambient = textureCubeLod(radiance_map, ambient_dir, RADIANCE_MAX_LOD).xyz * bg_energy; ambient_light = mix(ambient_color.rgb, env_ambient, ambient_sky_contribution); } #else ambient_light = ambient_color.rgb; #endif ambient_light *= ambient_energy; #endif //BASE PASS // // Lighting // #ifdef USE_LIGHTING #ifndef USE_VERTEX_LIGHTING vec3 L; #endif vec3 light_att = vec3(1.0); #ifdef LIGHT_MODE_OMNI #ifndef USE_VERTEX_LIGHTING vec3 light_vec = light_position - vertex; float light_length = length(light_vec); float normalized_distance = light_length / light_range; float omni_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); light_att = vec3(omni_attenuation); L = normalize(light_vec); #endif #ifdef USE_SHADOW { highp vec3 splane = shadow_coord.xyz; float shadow_len = length(splane); splane = normalize(splane); vec4 clamp_rect = light_clamp; if (splane.z >= 0.0) { splane.z += 1.0; clamp_rect.y += clamp_rect.w; } else { splane.z = 1.0 - splane.z; } splane.xy /= splane.z; splane.xy = splane.xy * 0.5 + 0.5; splane.z = shadow_len / light_range; splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw; float shadow = sample_shadow(light_shadow_atlas, splane.xy, splane.z); light_att *= shadow; } #endif #endif //type omni #ifdef LIGHT_MODE_DIRECTIONAL #ifndef USE_VERTEX_LIGHTING vec3 light_vec = -light_direction; L = normalize(light_vec); #endif float depth_z = -vertex.z; #ifdef USE_SHADOW { #ifdef LIGHT_USE_PSSM4 if (depth_z < light_split_offsets.w) { #elif defined(LIGHT_USE_PSSM2) if (depth_z < light_split_offsets.y) { #else if (depth_z < light_split_offsets.x) { #endif //pssm2 vec3 pssm_coord; float pssm_fade = 0.0; #ifdef LIGHT_USE_PSSM_BLEND float pssm_blend; vec3 pssm_coord2; bool use_blend = true; #endif #ifdef LIGHT_USE_PSSM4 if (depth_z < light_split_offsets.y) { if (depth_z < light_split_offsets.x) { highp vec4 splane = shadow_coord; pssm_coord = splane.xyz / splane.w; #ifdef LIGHT_USE_PSSM_BLEND splane = shadow_coord2; pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { highp vec4 splane = shadow_coord2; pssm_coord = splane.xyz / splane.w; #ifdef LIGHT_USE_PSSM_BLEND splane = shadow_coord3; pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #endif } } else { if (depth_z < light_split_offsets.z) { highp vec4 splane = shadow_coord3; pssm_coord = splane.xyz / splane.w; #if defined(LIGHT_USE_PSSM_BLEND) splane = shadow_coord4; pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(light_split_offsets.y, light_split_offsets.z, depth_z); #endif } else { highp vec4 splane = shadow_coord4; pssm_coord = splane.xyz / splane.w; pssm_fade = smoothstep(light_split_offsets.z, light_split_offsets.w, depth_z); #if defined(LIGHT_USE_PSSM_BLEND) use_blend = false; #endif } } #endif // LIGHT_USE_PSSM4 #ifdef LIGHT_USE_PSSM2 if (depth_z < light_split_offsets.x) { highp vec4 splane = shadow_coord; pssm_coord = splane.xyz / splane.w; #ifdef LIGHT_USE_PSSM_BLEND splane = shadow_coord2; pssm_coord2 = splane.xyz / splane.w; pssm_blend = smoothstep(0.0, light_split_offsets.x, depth_z); #endif } else { highp vec4 splane = shadow_coord2; pssm_coord = splane.xyz / splane.w; pssm_fade = smoothstep(light_split_offsets.x, light_split_offsets.y, depth_z); #ifdef LIGHT_USE_PSSM_BLEND use_blend = false; #endif } #endif // LIGHT_USE_PSSM2 #if !defined(LIGHT_USE_PSSM4) && !defined(LIGHT_USE_PSSM2) { highp vec4 splane = shadow_coord; pssm_coord = splane.xyz / splane.w; } #endif float shadow = sample_shadow(light_directional_shadow, pssm_coord.xy, pssm_coord.z); #ifdef LIGHT_USE_PSSM_BLEND if (use_blend) { shadow = mix(shadow, sample_shadow(light_directional_shadow, pssm_coord2.xy, pssm_coord2.z), pssm_blend); } #endif light_att *= shadow; } } #endif //use shadow #endif #ifdef LIGHT_MODE_SPOT light_att = vec3(1.0); #ifndef USE_VERTEX_LIGHTING vec3 light_rel_vec = light_position - vertex; float light_length = length(light_rel_vec); float normalized_distance = light_length / light_range; float spot_attenuation = pow(1.0 - normalized_distance, light_attenuation.w); vec3 spot_dir = light_direction; float spot_cutoff = light_spot_angle; float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_cutoff); float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_cutoff)); spot_attenuation *= 1.0 - pow(spot_rim, light_spot_attenuation); light_att = vec3(spot_attenuation); L = normalize(light_rel_vec); #endif #ifdef USE_SHADOW { highp vec4 splane = shadow_coord; splane.xyz /= splane.w; float shadow = sample_shadow(light_shadow_atlas, splane.xy, splane.z); light_att *= shadow; } #endif #endif #ifdef USE_VERTEX_LIGHTING //vertex lighting specular_light += specular_interp * specular * light_att; diffuse_light += diffuse_interp * albedo * light_att; #else //fragment lighting light_compute( normal, L, eye_position, binormal, tangent, light_color.xyz, light_att, albedo, transmission, specular * light_specular, roughness, metallic, rim, rim_tint, clearcoat, clearcoat_gloss, anisotropy, diffuse_light, specular_light); #endif //vertex lighting #endif //USE_LIGHTING //compute and merge #ifndef RENDER_DEPTH #ifdef SHADELESS gl_FragColor = vec4(albedo, alpha); #else ambient_light *= albedo; #if defined(ENABLE_AO) ambient_light *= ao; ao_light_affect = mix(1.0, ao, ao_light_affect); specular_light *= ao_light_affect; diffuse_light *= ao_light_affect; #endif diffuse_light *= 1.0 - metallic; ambient_light *= 1.0 - metallic; // environment BRDF approximation // TODO shadeless { const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022); const vec4 c1 = vec4(1.0, 0.0425, 1.04, -0.04); vec4 r = roughness * c0 + c1; float ndotv = clamp(dot(normal, eye_position), 0.0, 1.0); float a004 = min(r.x * r.x, exp2(-9.28 * ndotv)) * r.x + r.y; vec2 AB = vec2(-1.04, 1.04) * a004 + r.zw; vec3 specular_color = metallic_to_specular_color(metallic, specular, albedo); specular_light *= AB.x * specular_color + AB.y; } gl_FragColor = vec4(ambient_light + diffuse_light + specular_light, alpha); // gl_FragColor = vec4(normal, 1.0); #endif //unshaded #endif // not RENDER_DEPTH }