// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include #include // This work is based on: // Fabian Giesen. Decoding Morton codes. 2009 namespace meshopt { // "Insert" two 0 bits after each of the 10 low bits of x inline unsigned int part1By2(unsigned int x) { x &= 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210 x = (x ^ (x << 16)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210 x = (x ^ (x << 8)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210 x = (x ^ (x << 4)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10 x = (x ^ (x << 2)) & 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0 return x; } static void computeOrder(unsigned int* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride) { size_t vertex_stride_float = vertex_positions_stride / sizeof(float); float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; for (size_t i = 0; i < vertex_count; ++i) { const float* v = vertex_positions_data + i * vertex_stride_float; for (int j = 0; j < 3; ++j) { float vj = v[j]; minv[j] = minv[j] > vj ? vj : minv[j]; maxv[j] = maxv[j] < vj ? vj : maxv[j]; } } float extent = 0.f; extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); float scale = extent == 0 ? 0.f : 1.f / extent; // generate Morton order based on the position inside a unit cube for (size_t i = 0; i < vertex_count; ++i) { const float* v = vertex_positions_data + i * vertex_stride_float; int x = int((v[0] - minv[0]) * scale * 1023.f + 0.5f); int y = int((v[1] - minv[1]) * scale * 1023.f + 0.5f); int z = int((v[2] - minv[2]) * scale * 1023.f + 0.5f); result[i] = part1By2(x) | (part1By2(y) << 1) | (part1By2(z) << 2); } } static void computeHistogram(unsigned int (&hist)[1024][3], const unsigned int* data, size_t count) { memset(hist, 0, sizeof(hist)); // compute 3 10-bit histograms in parallel for (size_t i = 0; i < count; ++i) { unsigned int id = data[i]; hist[(id >> 0) & 1023][0]++; hist[(id >> 10) & 1023][1]++; hist[(id >> 20) & 1023][2]++; } unsigned int sumx = 0, sumy = 0, sumz = 0; // replace histogram data with prefix histogram sums in-place for (int i = 0; i < 1024; ++i) { unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2]; hist[i][0] = sumx; hist[i][1] = sumy; hist[i][2] = sumz; sumx += hx; sumy += hy; sumz += hz; } assert(sumx == count && sumy == count && sumz == count); } static void radixPass(unsigned int* destination, const unsigned int* source, const unsigned int* keys, size_t count, unsigned int (&hist)[1024][3], int pass) { int bitoff = pass * 10; for (size_t i = 0; i < count; ++i) { unsigned int id = (keys[source[i]] >> bitoff) & 1023; destination[hist[id][pass]++] = source[i]; } } } // namespace meshopt void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); meshopt_Allocator allocator; unsigned int* keys = allocator.allocate(vertex_count); computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride); unsigned int hist[1024][3]; computeHistogram(hist, keys, vertex_count); unsigned int* scratch = allocator.allocate(vertex_count); for (size_t i = 0; i < vertex_count; ++i) destination[i] = unsigned(i); // 3-pass radix sort computes the resulting order into scratch radixPass(scratch, destination, keys, vertex_count, hist, 0); radixPass(destination, scratch, keys, vertex_count, hist, 1); radixPass(scratch, destination, keys, vertex_count, hist, 2); // since our remap table is mapping old=>new, we need to reverse it for (size_t i = 0; i < vertex_count; ++i) destination[scratch[i]] = unsigned(i); } void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride > 0 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); (void)vertex_count; size_t face_count = index_count / 3; size_t vertex_stride_float = vertex_positions_stride / sizeof(float); meshopt_Allocator allocator; float* centroids = allocator.allocate(face_count * 3); for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); const float* va = vertex_positions + a * vertex_stride_float; const float* vb = vertex_positions + b * vertex_stride_float; const float* vc = vertex_positions + c * vertex_stride_float; centroids[i * 3 + 0] = (va[0] + vb[0] + vc[0]) / 3.f; centroids[i * 3 + 1] = (va[1] + vb[1] + vc[1]) / 3.f; centroids[i * 3 + 2] = (va[2] + vb[2] + vc[2]) / 3.f; } unsigned int* remap = allocator.allocate(face_count); meshopt_spatialSortRemap(remap, centroids, face_count, sizeof(float) * 3); // support in-order remap if (destination == indices) { unsigned int* indices_copy = allocator.allocate(index_count); memcpy(indices_copy, indices, index_count * sizeof(unsigned int)); indices = indices_copy; } for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; unsigned int r = remap[i]; destination[r * 3 + 0] = a; destination[r * 3 + 1] = b; destination[r * 3 + 2] = c; } }