/*************************************************************************/ /* render_forward_mobile.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "render_forward_mobile.h" #include "core/config/project_settings.h" #include "servers/rendering/rendering_device.h" #include "servers/rendering/rendering_server_default.h" using namespace RendererSceneRenderImplementation; RenderForwardMobile::ForwardID RenderForwardMobile::_allocate_forward_id(ForwardIDType p_type) { int32_t index = -1; for (uint32_t i = 0; i < forward_id_allocators[p_type].allocations.size(); i++) { if (forward_id_allocators[p_type].allocations[i] == false) { index = i; break; } } if (index == -1) { index = forward_id_allocators[p_type].allocations.size(); forward_id_allocators[p_type].allocations.push_back(true); forward_id_allocators[p_type].map.push_back(0xFF); } else { forward_id_allocators[p_type].allocations[index] = true; } return index; } void RenderForwardMobile::_free_forward_id(ForwardIDType p_type, ForwardID p_id) { ERR_FAIL_INDEX(p_id, (ForwardID)forward_id_allocators[p_type].allocations.size()); forward_id_allocators[p_type].allocations[p_id] = false; } void RenderForwardMobile::_map_forward_id(ForwardIDType p_type, ForwardID p_id, uint32_t p_index) { forward_id_allocators[p_type].map[p_id] = p_index; } /* Render buffer */ void RenderForwardMobile::RenderBufferDataForwardMobile::clear() { if (color_msaa.is_valid()) { RD::get_singleton()->free(color_msaa); color_msaa = RID(); } if (depth_msaa.is_valid()) { RD::get_singleton()->free(depth_msaa); depth_msaa = RID(); } color = RID(); depth = RID(); for (int i = 0; i < FB_CONFIG_MAX; i++) { color_fbs[i] = RID(); } } void RenderForwardMobile::RenderBufferDataForwardMobile::configure(RID p_color_buffer, RID p_depth_buffer, RID p_target_buffer, int p_width, int p_height, RS::ViewportMSAA p_msaa, uint32_t p_view_count) { clear(); msaa = p_msaa; Size2i target_size = RD::get_singleton()->texture_size(p_target_buffer); width = p_width; height = p_height; bool is_scaled = (target_size.width != p_width) || (target_size.height != p_height); view_count = p_view_count; color = p_color_buffer; depth = p_depth_buffer; // We are creating 4 configurations here for our framebuffers. if (p_msaa == RS::VIEWPORT_MSAA_DISABLED) { Vector fb; fb.push_back(p_color_buffer); // 0 - color buffer fb.push_back(depth); // 1 - depth buffer // Now define our subpasses Vector passes; RD::FramebufferPass pass; // re-using the same attachments pass.color_attachments.push_back(0); pass.depth_attachment = 1; // - opaque pass passes.push_back(pass); color_fbs[FB_CONFIG_ONE_PASS] = RD::get_singleton()->framebuffer_create_multipass(fb, passes, RenderingDevice::INVALID_ID, view_count); // - add sky pass passes.push_back(pass); color_fbs[FB_CONFIG_TWO_SUBPASSES] = RD::get_singleton()->framebuffer_create_multipass(fb, passes, RenderingDevice::INVALID_ID, view_count); // - add alpha pass passes.push_back(pass); color_fbs[FB_CONFIG_THREE_SUBPASSES] = RD::get_singleton()->framebuffer_create_multipass(fb, passes, RenderingDevice::INVALID_ID, view_count); if (!is_scaled) { // - add blit to 2D pass fb.push_back(p_target_buffer); // 2 - target buffer RD::FramebufferPass blit_pass; blit_pass.color_attachments.push_back(2); blit_pass.input_attachments.push_back(0); passes.push_back(blit_pass); color_fbs[FB_CONFIG_FOUR_SUBPASSES] = RD::get_singleton()->framebuffer_create_multipass(fb, passes, RenderingDevice::INVALID_ID, view_count); } else { // can't do our blit pass if resolutions don't match color_fbs[FB_CONFIG_FOUR_SUBPASSES] = RID(); } } else { RD::DataFormat color_format = RenderForwardMobile::singleton->_render_buffers_get_color_format(); RD::TextureFormat tf; if (view_count > 1) { tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY; } else { tf.texture_type = RD::TEXTURE_TYPE_2D; } tf.format = color_format; tf.width = p_width; tf.height = p_height; tf.array_layers = view_count; // create a layer for every view tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; RD::TextureSamples ts[RS::VIEWPORT_MSAA_MAX] = { RD::TEXTURE_SAMPLES_1, RD::TEXTURE_SAMPLES_2, RD::TEXTURE_SAMPLES_4, RD::TEXTURE_SAMPLES_8, }; texture_samples = ts[p_msaa]; tf.samples = texture_samples; color_msaa = RD::get_singleton()->texture_create(tf, RD::TextureView()); tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D24_UNORM_S8_UINT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D24_UNORM_S8_UINT : RD::DATA_FORMAT_D32_SFLOAT_S8_UINT; tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT; depth_msaa = RD::get_singleton()->texture_create(tf, RD::TextureView()); { Vector fb; fb.push_back(color_msaa); // 0 - msaa color buffer fb.push_back(depth_msaa); // 1 - msaa depth buffer // Now define our subpasses Vector passes; RD::FramebufferPass pass; // re-using the same attachments pass.color_attachments.push_back(0); pass.depth_attachment = 1; // - opaque pass passes.push_back(pass); // - add sky pass fb.push_back(color); // 2 - color buffer passes.push_back(pass); // without resolve for our 3 + 4 subpass config { // but with resolve for our 2 subpass config Vector two_passes; two_passes.push_back(pass); // opaque subpass without resolve pass.resolve_attachments.push_back(2); two_passes.push_back(pass); // sky subpass with resolve color_fbs[FB_CONFIG_TWO_SUBPASSES] = RD::get_singleton()->framebuffer_create_multipass(fb, two_passes, RenderingDevice::INVALID_ID, view_count); } // - add alpha pass (with resolve, we just added that above) passes.push_back(pass); color_fbs[FB_CONFIG_THREE_SUBPASSES] = RD::get_singleton()->framebuffer_create_multipass(fb, passes, RenderingDevice::INVALID_ID, view_count); { // we also need our one pass with resolve Vector one_pass_with_resolve; one_pass_with_resolve.push_back(pass); // note our pass configuration already has resolve.. color_fbs[FB_CONFIG_ONE_PASS] = RD::get_singleton()->framebuffer_create_multipass(fb, one_pass_with_resolve, RenderingDevice::INVALID_ID, view_count); } if (!is_scaled) { // - add blit to 2D pass fb.push_back(p_target_buffer); // 3 - target buffer RD::FramebufferPass blit_pass; blit_pass.color_attachments.push_back(3); blit_pass.input_attachments.push_back(2); passes.push_back(blit_pass); color_fbs[FB_CONFIG_FOUR_SUBPASSES] = RD::get_singleton()->framebuffer_create_multipass(fb, passes, RenderingDevice::INVALID_ID, view_count); } else { // can't do our blit pass if resolutions don't match color_fbs[FB_CONFIG_FOUR_SUBPASSES] = RID(); } } } } RID RenderForwardMobile::reflection_probe_create_framebuffer(RID p_color, RID p_depth) { // Our attachments Vector fb; fb.push_back(p_color); // 0 fb.push_back(p_depth); // 1 // Now define our subpasses Vector passes; RD::FramebufferPass pass; // re-using the same attachments pass.color_attachments.push_back(0); pass.depth_attachment = 1; // - opaque pass passes.push_back(pass); // - sky pass passes.push_back(pass); // - alpha pass passes.push_back(pass); return RD::get_singleton()->framebuffer_create_multipass(fb, passes); } RenderForwardMobile::RenderBufferDataForwardMobile::~RenderBufferDataForwardMobile() { clear(); } RendererSceneRenderRD::RenderBufferData *RenderForwardMobile::_create_render_buffer_data() { return memnew(RenderBufferDataForwardMobile); } bool RenderForwardMobile::free(RID p_rid) { if (RendererSceneRenderRD::free(p_rid)) { return true; } return false; } /* Render functions */ float RenderForwardMobile::_render_buffers_get_luminance_multiplier() { // On mobile renderer we need to multiply source colors by 2 due to using a UNORM buffer // and multiplying by the output color during 3D rendering by 0.5 return 2.0; } RD::DataFormat RenderForwardMobile::_render_buffers_get_color_format() { // Using 32bit buffers enables AFBC on mobile devices which should have a definite performance improvement (MALI G710 and newer support this on 64bit RTs) return RD::DATA_FORMAT_A2B10G10R10_UNORM_PACK32; } bool RenderForwardMobile::_render_buffers_can_be_storage() { // Using 32bit buffers enables AFBC on mobile devices which should have a definite performance improvement (MALI G710 and newer support this on 64bit RTs) // Doesn't support storage return false; } RID RenderForwardMobile::_setup_render_pass_uniform_set(RenderListType p_render_list, const RenderDataRD *p_render_data, RID p_radiance_texture, bool p_use_directional_shadow_atlas, int p_index) { //there should always be enough uniform buffers for render passes, otherwise bugs ERR_FAIL_INDEX_V(p_index, (int)scene_state.uniform_buffers.size(), RID()); RenderBufferDataForwardMobile *rb = nullptr; if (p_render_data && p_render_data->render_buffers.is_valid()) { rb = (RenderBufferDataForwardMobile *)render_buffers_get_data(p_render_data->render_buffers); } // default render buffer and scene state uniform set // loaded into set 1 Vector uniforms; { RD::Uniform u; u.binding = 0; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(scene_state.uniform_buffers[p_index]); uniforms.push_back(u); } { RID radiance_texture; if (p_radiance_texture.is_valid()) { radiance_texture = p_radiance_texture; } else { radiance_texture = storage->texture_rd_get_default(is_using_radiance_cubemap_array() ? RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK : RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_BLACK); } RD::Uniform u; u.binding = 2; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.ids.push_back(radiance_texture); uniforms.push_back(u); } { RID ref_texture = (p_render_data && p_render_data->reflection_atlas.is_valid()) ? reflection_atlas_get_texture(p_render_data->reflection_atlas) : RID(); RD::Uniform u; u.binding = 3; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; if (ref_texture.is_valid()) { u.ids.push_back(ref_texture); } else { u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_CUBEMAP_ARRAY_BLACK)); } uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; RID texture; if (p_render_data && p_render_data->shadow_atlas.is_valid()) { texture = shadow_atlas_get_texture(p_render_data->shadow_atlas); } if (!texture.is_valid()) { texture = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE); } u.ids.push_back(texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; if (p_use_directional_shadow_atlas && directional_shadow_get_texture().is_valid()) { u.ids.push_back(directional_shadow_get_texture()); } else { u.ids.push_back(storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE)); } uniforms.push_back(u); } /* we have limited ability to keep textures like this so we're moving this to a set we change before drawing geometry and just pushing the needed texture in */ { RD::Uniform u; u.binding = 6; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.ids.resize(scene_state.max_lightmaps); RID default_tex = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_2D_ARRAY_WHITE); for (uint32_t i = 0; i < scene_state.max_lightmaps; i++) { if (p_render_data && i < p_render_data->lightmaps->size()) { RID base = lightmap_instance_get_lightmap((*p_render_data->lightmaps)[i]); RID texture = storage->lightmap_get_texture(base); RID rd_texture = storage->texture_get_rd_texture(texture); u.ids.write[i] = rd_texture; } else { u.ids.write[i] = default_tex; } } uniforms.push_back(u); } /* { RD::Uniform u; u.binding = 7; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; u.ids.resize(MAX_VOXEL_GI_INSTANCESS); RID default_tex = storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE); for (int i = 0; i < MAX_VOXEL_GI_INSTANCESS; i++) { if (i < (int)p_voxel_gi_instances.size()) { RID tex = gi.voxel_gi_instance_get_texture(p_voxel_gi_instances[i]); if (!tex.is_valid()) { tex = default_tex; } u.ids.write[i] = tex; } else { u.ids.write[i] = default_tex; } } uniforms.push_back(u); } { RD::Uniform u; u.binding = 8; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; RID cb = p_cluster_buffer.is_valid() ? p_cluster_buffer : default_vec4_xform_buffer; u.ids.push_back(cb); uniforms.push_back(u); } */ { RD::Uniform u; u.binding = 9; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; RID dbt = rb ? render_buffers_get_back_depth_texture(p_render_data->render_buffers) : RID(); RID texture = (dbt.is_valid()) ? dbt : storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_WHITE); u.ids.push_back(texture); uniforms.push_back(u); } { RD::Uniform u; u.binding = 10; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; RID bbt = rb ? render_buffers_get_back_buffer_texture(p_render_data->render_buffers) : RID(); RID texture = bbt.is_valid() ? bbt : storage->texture_rd_get_default(RendererStorageRD::DEFAULT_RD_TEXTURE_BLACK); u.ids.push_back(texture); uniforms.push_back(u); } if (p_index >= (int)render_pass_uniform_sets.size()) { render_pass_uniform_sets.resize(p_index + 1); } if (render_pass_uniform_sets[p_index].is_valid() && RD::get_singleton()->uniform_set_is_valid(render_pass_uniform_sets[p_index])) { RD::get_singleton()->free(render_pass_uniform_sets[p_index]); } render_pass_uniform_sets[p_index] = RD::get_singleton()->uniform_set_create(uniforms, scene_shader.default_shader_rd, RENDER_PASS_UNIFORM_SET); return render_pass_uniform_sets[p_index]; } void RenderForwardMobile::_setup_lightmaps(const PagedArray &p_lightmaps, const Transform3D &p_cam_transform) { // This probably needs to change... scene_state.lightmaps_used = 0; for (int i = 0; i < (int)p_lightmaps.size(); i++) { if (i >= (int)scene_state.max_lightmaps) { break; } RID lightmap = lightmap_instance_get_lightmap(p_lightmaps[i]); Basis to_lm = lightmap_instance_get_transform(p_lightmaps[i]).basis.inverse() * p_cam_transform.basis; to_lm = to_lm.inverse().transposed(); //will transform normals RendererStorageRD::store_transform_3x3(to_lm, scene_state.lightmaps[i].normal_xform); scene_state.lightmap_ids[i] = p_lightmaps[i]; scene_state.lightmap_has_sh[i] = storage->lightmap_uses_spherical_harmonics(lightmap); scene_state.lightmaps_used++; } if (scene_state.lightmaps_used > 0) { RD::get_singleton()->buffer_update(scene_state.lightmap_buffer, 0, sizeof(LightmapData) * scene_state.lightmaps_used, scene_state.lightmaps, RD::BARRIER_MASK_RASTER); } } void RenderForwardMobile::_render_scene(RenderDataRD *p_render_data, const Color &p_default_bg_color) { RenderBufferDataForwardMobile *render_buffer = nullptr; if (p_render_data->render_buffers.is_valid()) { render_buffer = (RenderBufferDataForwardMobile *)render_buffers_get_data(p_render_data->render_buffers); } RendererSceneEnvironmentRD *env = get_environment(p_render_data->environment); RENDER_TIMESTAMP("Setup 3D Scene"); Vector2 vp_he = p_render_data->cam_projection.get_viewport_half_extents(); scene_state.ubo.viewport_size[0] = vp_he.x; scene_state.ubo.viewport_size[1] = vp_he.y; scene_state.ubo.directional_light_count = 0; // We can only use our full subpass approach if we're: // - not reading from SCREEN_TEXTURE/DEPTH_TEXTURE // - not using ssr/sss (currently not supported) // - not using glow or other post effects (can't do 4th subpass) // - rendering to a half sized render buffer (can't do 4th subpass) // We'll need to restrict how far we're going with subpasses based on this. Size2i screen_size; RID framebuffer; bool reverse_cull = false; bool using_subpass_transparent = true; bool using_subpass_post_process = true; bool using_ssr = false; // I don't think we support this in our mobile renderer so probably should phase it out bool using_sss = false; // I don't think we support this in our mobile renderer so probably should phase it out // fill our render lists early so we can find out if we use various features _fill_render_list(RENDER_LIST_OPAQUE, p_render_data, PASS_MODE_COLOR); render_list[RENDER_LIST_OPAQUE].sort_by_key(); render_list[RENDER_LIST_ALPHA].sort_by_reverse_depth_and_priority(); _fill_element_info(RENDER_LIST_OPAQUE); _fill_element_info(RENDER_LIST_ALPHA); if (p_render_data->render_info) { p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME] = p_render_data->instances->size(); p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] = p_render_data->instances->size(); } if (render_buffer) { // setup rendering to render buffer screen_size.x = render_buffer->width; screen_size.y = render_buffer->height; if (render_buffer->color_fbs[FB_CONFIG_FOUR_SUBPASSES].is_null()) { // can't do blit subpass using_subpass_post_process = false; } else if (env && (env->glow_enabled || env->auto_exposure || camera_effects_uses_dof(p_render_data->camera_effects))) { // can't do blit subpass using_subpass_post_process = false; } if (using_ssr || using_sss || scene_state.used_screen_texture || scene_state.used_depth_texture) { // can't use our last two subpasses using_subpass_transparent = false; using_subpass_post_process = false; } if (using_subpass_post_process) { // all as subpasses framebuffer = render_buffer->color_fbs[FB_CONFIG_FOUR_SUBPASSES]; } else if (using_subpass_transparent) { // our tonemap pass is separate framebuffer = render_buffer->color_fbs[FB_CONFIG_THREE_SUBPASSES]; } else { // only opaque and sky as subpasses framebuffer = render_buffer->color_fbs[FB_CONFIG_TWO_SUBPASSES]; } } else if (p_render_data->reflection_probe.is_valid()) { uint32_t resolution = reflection_probe_instance_get_resolution(p_render_data->reflection_probe); screen_size.x = resolution; screen_size.y = resolution; framebuffer = reflection_probe_instance_get_framebuffer(p_render_data->reflection_probe, p_render_data->reflection_probe_pass); if (storage->reflection_probe_is_interior(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) { p_render_data->environment = RID(); //no environment on interiors env = nullptr; } reverse_cull = true; using_subpass_transparent = true; // we ignore our screen/depth texture here using_subpass_post_process = false; // not applicable at all for reflection probes. } else { ERR_FAIL(); //bug? } RD::get_singleton()->draw_command_begin_label("Render Setup"); _setup_lightmaps(*p_render_data->lightmaps, p_render_data->cam_transform); _setup_environment(p_render_data, p_render_data->reflection_probe.is_valid(), screen_size, !p_render_data->reflection_probe.is_valid(), p_default_bg_color, false); _update_render_base_uniform_set(); //may have changed due to the above (light buffer enlarged, as an example) RD::get_singleton()->draw_command_end_label(); // Render Setup // setup environment RID radiance_texture; bool draw_sky = false; bool draw_sky_fog_only = false; Color clear_color = p_default_bg_color; bool keep_color = false; if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW) { clear_color = Color(0, 0, 0, 1); //in overdraw mode, BG should always be black } else if (is_environment(p_render_data->environment)) { RS::EnvironmentBG bg_mode = environment_get_background(p_render_data->environment); float bg_energy = environment_get_bg_energy(p_render_data->environment); switch (bg_mode) { case RS::ENV_BG_CLEAR_COLOR: { clear_color = p_default_bg_color; clear_color.r *= bg_energy; clear_color.g *= bg_energy; clear_color.b *= bg_energy; /* if (render_buffers_has_volumetric_fog(p_render_data->render_buffers) || environment_is_fog_enabled(p_render_data->environment)) { draw_sky_fog_only = true; storage->material_set_param(sky.sky_scene_state.fog_material, "clear_color", Variant(clear_color.to_linear())); } */ } break; case RS::ENV_BG_COLOR: { clear_color = environment_get_bg_color(p_render_data->environment); clear_color.r *= bg_energy; clear_color.g *= bg_energy; clear_color.b *= bg_energy; /* if (render_buffers_has_volumetric_fog(p_render_data->render_buffers) || environment_is_fog_enabled(p_render_data->environment)) { draw_sky_fog_only = true; storage->material_set_param(sky.sky_scene_state.fog_material, "clear_color", Variant(clear_color.to_linear())); } */ } break; case RS::ENV_BG_SKY: { draw_sky = true; } break; case RS::ENV_BG_CANVAS: { keep_color = true; } break; case RS::ENV_BG_KEEP: { keep_color = true; } break; case RS::ENV_BG_CAMERA_FEED: { } break; default: { } } // setup sky if used for ambient, reflections, or background if (draw_sky || draw_sky_fog_only || environment_get_reflection_source(p_render_data->environment) == RS::ENV_REFLECTION_SOURCE_SKY || environment_get_ambient_source(p_render_data->environment) == RS::ENV_AMBIENT_SOURCE_SKY) { RENDER_TIMESTAMP("Setup Sky"); RD::get_singleton()->draw_command_begin_label("Setup Sky"); CameraMatrix projection = p_render_data->cam_projection; if (p_render_data->reflection_probe.is_valid()) { CameraMatrix correction; correction.set_depth_correction(true); projection = correction * p_render_data->cam_projection; } sky.setup(env, p_render_data->render_buffers, projection, p_render_data->cam_transform, screen_size, this); RID sky_rid = env->sky; if (sky_rid.is_valid()) { sky.update(env, projection, p_render_data->cam_transform, time, _render_buffers_get_luminance_multiplier()); radiance_texture = sky.sky_get_radiance_texture_rd(sky_rid); } else { // do not try to draw sky if invalid draw_sky = false; } RD::get_singleton()->draw_command_end_label(); // Setup Sky } } else { clear_color = p_default_bg_color; } // update sky buffers (if required) if (draw_sky || draw_sky_fog_only) { // !BAS! @TODO See if we can limit doing some things double and maybe even move this into _pre_opaque_render // and change Forward Clustered in the same way as we have here (but without using subpasses) RENDER_TIMESTAMP("Setup Sky resolution buffers"); RD::get_singleton()->draw_command_begin_label("Setup Sky resolution buffers"); if (p_render_data->reflection_probe.is_valid()) { CameraMatrix correction; correction.set_depth_correction(true); CameraMatrix projection = correction * p_render_data->cam_projection; sky.update_res_buffers(env, 1, &projection, p_render_data->cam_transform, time); } else { sky.update_res_buffers(env, p_render_data->view_count, p_render_data->view_projection, p_render_data->cam_transform, time); } RD::get_singleton()->draw_command_end_label(); // Setup Sky resolution buffers } _pre_opaque_render(p_render_data, false, false, RID(), RID()); uint32_t spec_constant_base_flags = 0; { //figure out spec constants if (p_render_data->directional_light_count > 0) { if (p_render_data->directional_light_soft_shadows) { spec_constant_base_flags |= 1 << SPEC_CONSTANT_USING_DIRECTIONAL_SOFT_SHADOWS; } } else { spec_constant_base_flags |= 1 << SPEC_CONSTANT_DISABLE_DIRECTIONAL_LIGHTS; } if (!is_environment(p_render_data->environment) || environment_is_fog_enabled(p_render_data->environment)) { spec_constant_base_flags |= 1 << SPEC_CONSTANT_DISABLE_FOG; } } { if (render_buffer) { RD::get_singleton()->draw_command_begin_label("Render 3D Pass"); } else { RD::get_singleton()->draw_command_begin_label("Render Reflection Probe Pass"); } // opaque pass RD::get_singleton()->draw_command_begin_label("Render Opaque Subpass"); scene_state.ubo.directional_light_count = p_render_data->directional_light_count; _setup_environment(p_render_data, p_render_data->reflection_probe.is_valid(), screen_size, !p_render_data->reflection_probe.is_valid(), p_default_bg_color, p_render_data->render_buffers.is_valid()); if (using_subpass_transparent && using_subpass_post_process) { RENDER_TIMESTAMP("Render Opaque + Transparent + Tonemap"); } else if (using_subpass_transparent) { RENDER_TIMESTAMP("Render Opaque + Transparent"); } else { RENDER_TIMESTAMP("Render Opaque"); } RID rp_uniform_set = _setup_render_pass_uniform_set(RENDER_LIST_OPAQUE, p_render_data, radiance_texture, true); bool can_continue_color = !using_subpass_transparent && !scene_state.used_screen_texture && !using_ssr && !using_sss; bool can_continue_depth = !using_subpass_transparent && !scene_state.used_depth_texture && !using_ssr && !using_sss; { // regular forward for now Vector c; c.push_back(clear_color.to_linear()); // our render buffer if (render_buffer) { if (render_buffer->msaa != RS::VIEWPORT_MSAA_DISABLED) { c.push_back(clear_color.to_linear()); // our resolve buffer } if (using_subpass_post_process) { c.push_back(Color()); // our 2D buffer we're copying into } } RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer); RenderListParameters render_list_params(render_list[RENDER_LIST_OPAQUE].elements.ptr(), render_list[RENDER_LIST_OPAQUE].element_info.ptr(), render_list[RENDER_LIST_OPAQUE].elements.size(), reverse_cull, PASS_MODE_COLOR, rp_uniform_set, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, Vector2(), p_render_data->lod_camera_plane, p_render_data->lod_distance_multiplier, p_render_data->screen_lod_threshold, p_render_data->view_count); render_list_params.framebuffer_format = fb_format; if ((uint32_t)render_list_params.element_count > render_list_thread_threshold && false) { // secondary command buffers need more testing at this time //multi threaded thread_draw_lists.resize(RendererThreadPool::singleton->thread_work_pool.get_thread_count()); RD::get_singleton()->draw_list_begin_split(framebuffer, thread_draw_lists.size(), thread_draw_lists.ptr(), keep_color ? RD::INITIAL_ACTION_KEEP : RD::INITIAL_ACTION_CLEAR, can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, c, 1.0, 0); RendererThreadPool::singleton->thread_work_pool.do_work(thread_draw_lists.size(), this, &RenderForwardMobile::_render_list_thread_function, &render_list_params); } else { //single threaded RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, keep_color ? RD::INITIAL_ACTION_KEEP : RD::INITIAL_ACTION_CLEAR, can_continue_color ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, can_continue_depth ? RD::FINAL_ACTION_CONTINUE : RD::FINAL_ACTION_READ, c, 1.0, 0); _render_list(draw_list, fb_format, &render_list_params, 0, render_list_params.element_count); } } RD::get_singleton()->draw_command_end_label(); //Render Opaque Subpass if (draw_sky || draw_sky_fog_only) { RD::get_singleton()->draw_command_begin_label("Draw Sky Subpass"); RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass(); if (p_render_data->reflection_probe.is_valid()) { CameraMatrix correction; correction.set_depth_correction(true); CameraMatrix projection = correction * p_render_data->cam_projection; sky.draw(draw_list, env, framebuffer, 1, &projection, p_render_data->cam_transform, time, _render_buffers_get_luminance_multiplier()); } else { sky.draw(draw_list, env, framebuffer, p_render_data->view_count, p_render_data->view_projection, p_render_data->cam_transform, time, _render_buffers_get_luminance_multiplier()); } RD::get_singleton()->draw_command_end_label(); // Draw Sky Subpass // note, if MSAA is used in 2-subpass approach we should get an automatic resolve here } else { // switch to subpass but we do nothing here so basically we skip (though this should trigger resolve with 2-subpass MSAA). RD::get_singleton()->draw_list_switch_to_next_pass(); } if (!using_subpass_transparent) { // We're done with our subpasses so end our container pass RD::get_singleton()->draw_list_end(RD::BARRIER_MASK_ALL); RD::get_singleton()->draw_command_end_label(); // Render 3D Pass / Render Reflection Probe Pass } if (scene_state.used_screen_texture) { // Copy screen texture to backbuffer so we can read from it _render_buffers_copy_screen_texture(p_render_data); } if (scene_state.used_depth_texture) { // Copy depth texture to backbuffer so we can read from it _render_buffers_copy_depth_texture(p_render_data); } // transparent pass RD::get_singleton()->draw_command_begin_label("Render Transparent Subpass"); rp_uniform_set = _setup_render_pass_uniform_set(RENDER_LIST_ALPHA, p_render_data, radiance_texture, true); if (using_subpass_transparent) { RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer); RenderListParameters render_list_params(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].element_info.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, PASS_MODE_COLOR, rp_uniform_set, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, Vector2(), p_render_data->lod_camera_plane, p_render_data->lod_distance_multiplier, p_render_data->screen_lod_threshold, p_render_data->view_count); render_list_params.framebuffer_format = fb_format; if ((uint32_t)render_list_params.element_count > render_list_thread_threshold && false) { // secondary command buffers need more testing at this time //multi threaded thread_draw_lists.resize(RendererThreadPool::singleton->thread_work_pool.get_thread_count()); RD::get_singleton()->draw_list_switch_to_next_pass_split(thread_draw_lists.size(), thread_draw_lists.ptr()); render_list_params.subpass = RD::get_singleton()->draw_list_get_current_pass(); RendererThreadPool::singleton->thread_work_pool.do_work(thread_draw_lists.size(), this, &RenderForwardMobile::_render_list_thread_function, &render_list_params); } else { //single threaded RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass(); render_list_params.subpass = RD::get_singleton()->draw_list_get_current_pass(); _render_list(draw_list, fb_format, &render_list_params, 0, render_list_params.element_count); } RD::get_singleton()->draw_command_end_label(); // Render Transparent Subpass // note if we are using MSAA we should get an automatic resolve through our subpass configuration. // blit to tonemap if (render_buffer && using_subpass_post_process) { _post_process_subpass(render_buffer->color, framebuffer, p_render_data); } RD::get_singleton()->draw_command_end_label(); // Render 3D Pass / Render Reflection Probe Pass RD::get_singleton()->draw_list_end(RD::BARRIER_MASK_ALL); } else { RENDER_TIMESTAMP("Render Transparent"); framebuffer = render_buffer->color_fbs[FB_CONFIG_ONE_PASS]; // this may be needed if we re-introduced steps that change info, not sure which do so in the previous implementation // _setup_environment(p_render_data, p_render_data->reflection_probe.is_valid(), screen_size, !p_render_data->reflection_probe.is_valid(), p_default_bg_color, false); RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(framebuffer); RenderListParameters render_list_params(render_list[RENDER_LIST_ALPHA].elements.ptr(), render_list[RENDER_LIST_ALPHA].element_info.ptr(), render_list[RENDER_LIST_ALPHA].elements.size(), reverse_cull, PASS_MODE_COLOR, rp_uniform_set, spec_constant_base_flags, get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_WIREFRAME, Vector2(), p_render_data->lod_camera_plane, p_render_data->lod_distance_multiplier, p_render_data->screen_lod_threshold, p_render_data->view_count); render_list_params.framebuffer_format = fb_format; if ((uint32_t)render_list_params.element_count > render_list_thread_threshold && false) { // secondary command buffers need more testing at this time //multi threaded thread_draw_lists.resize(RendererThreadPool::singleton->thread_work_pool.get_thread_count()); RD::get_singleton()->draw_list_begin_split(framebuffer, thread_draw_lists.size(), thread_draw_lists.ptr(), can_continue_color ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, can_continue_depth ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ); RendererThreadPool::singleton->thread_work_pool.do_work(thread_draw_lists.size(), this, &RenderForwardMobile::_render_list_thread_function, &render_list_params); RD::get_singleton()->draw_list_end(RD::BARRIER_MASK_ALL); } else { //single threaded RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(framebuffer, can_continue_color ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ, can_continue_depth ? RD::INITIAL_ACTION_CONTINUE : RD::INITIAL_ACTION_KEEP, RD::FINAL_ACTION_READ); _render_list(draw_list, fb_format, &render_list_params, 0, render_list_params.element_count); RD::get_singleton()->draw_list_end(RD::BARRIER_MASK_ALL); } RD::get_singleton()->draw_command_end_label(); // Render Transparent Subpass } } if (render_buffer && !using_subpass_post_process) { RD::get_singleton()->draw_command_begin_label("Post process pass"); // If we need extra effects we do this in its own pass RENDER_TIMESTAMP("Tonemap"); _render_buffers_post_process_and_tonemap(p_render_data); RD::get_singleton()->draw_command_end_label(); // Post process pass } if (render_buffer) { _disable_clear_request(p_render_data); } } /* these are being called from RendererSceneRenderRD::_pre_opaque_render */ void RenderForwardMobile::_render_shadow_begin() { scene_state.shadow_passes.clear(); RD::get_singleton()->draw_command_begin_label("Shadow Setup"); _update_render_base_uniform_set(); render_list[RENDER_LIST_SECONDARY].clear(); } void RenderForwardMobile::_render_shadow_append(RID p_framebuffer, const PagedArray &p_instances, const CameraMatrix &p_projection, const Transform3D &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool p_use_dp_flip, bool p_use_pancake, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_lod_threshold, const Rect2i &p_rect, bool p_flip_y, bool p_clear_region, bool p_begin, bool p_end, RendererScene::RenderInfo *p_render_info) { uint32_t shadow_pass_index = scene_state.shadow_passes.size(); SceneState::ShadowPass shadow_pass; if (p_render_info) { p_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_DRAW_CALLS_IN_FRAME] = p_instances.size(); p_render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_OBJECTS_IN_FRAME] = p_instances.size(); } RenderDataRD render_data; render_data.cam_projection = p_projection; render_data.cam_transform = p_transform; render_data.view_projection[0] = p_projection; render_data.z_near = 0.0; render_data.z_far = p_zfar; render_data.instances = &p_instances; render_data.render_info = p_render_info; render_data.lod_camera_plane = p_camera_plane; render_data.lod_distance_multiplier = p_lod_distance_multiplier; scene_state.ubo.dual_paraboloid_side = p_use_dp_flip ? -1 : 1; _setup_environment(&render_data, true, Vector2(1, 1), !p_flip_y, Color(), false, p_use_pancake, shadow_pass_index); if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) { render_data.screen_lod_threshold = 0.0; } else { render_data.screen_lod_threshold = p_screen_lod_threshold; } PassMode pass_mode = p_use_dp ? PASS_MODE_SHADOW_DP : PASS_MODE_SHADOW; uint32_t render_list_from = render_list[RENDER_LIST_SECONDARY].elements.size(); _fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode, true); uint32_t render_list_size = render_list[RENDER_LIST_SECONDARY].elements.size() - render_list_from; render_list[RENDER_LIST_SECONDARY].sort_by_key_range(render_list_from, render_list_size); _fill_element_info(RENDER_LIST_SECONDARY, render_list_from, render_list_size); { //regular forward for now bool flip_cull = p_use_dp_flip; if (p_flip_y) { flip_cull = !flip_cull; } shadow_pass.element_from = render_list_from; shadow_pass.element_count = render_list_size; shadow_pass.flip_cull = flip_cull; shadow_pass.pass_mode = pass_mode; shadow_pass.rp_uniform_set = RID(); //will be filled later when instance buffer is complete shadow_pass.camera_plane = p_camera_plane; shadow_pass.screen_lod_threshold = render_data.screen_lod_threshold; shadow_pass.lod_distance_multiplier = render_data.lod_distance_multiplier; shadow_pass.framebuffer = p_framebuffer; shadow_pass.initial_depth_action = p_begin ? (p_clear_region ? RD::INITIAL_ACTION_CLEAR_REGION : RD::INITIAL_ACTION_CLEAR) : (p_clear_region ? RD::INITIAL_ACTION_CLEAR_REGION_CONTINUE : RD::INITIAL_ACTION_CONTINUE); shadow_pass.final_depth_action = p_end ? RD::FINAL_ACTION_READ : RD::FINAL_ACTION_CONTINUE; shadow_pass.rect = p_rect; scene_state.shadow_passes.push_back(shadow_pass); } } void RenderForwardMobile::_render_shadow_process() { //render shadows one after the other, so this can be done un-barriered and the driver can optimize (as well as allow us to run compute at the same time) for (uint32_t i = 0; i < scene_state.shadow_passes.size(); i++) { //render passes need to be configured after instance buffer is done, since they need the latest version SceneState::ShadowPass &shadow_pass = scene_state.shadow_passes[i]; shadow_pass.rp_uniform_set = _setup_render_pass_uniform_set(RENDER_LIST_SECONDARY, nullptr, RID(), false, i); } RD::get_singleton()->draw_command_end_label(); } void RenderForwardMobile::_render_shadow_end(uint32_t p_barrier) { RD::get_singleton()->draw_command_begin_label("Shadow Render"); for (uint32_t i = 0; i < scene_state.shadow_passes.size(); i++) { SceneState::ShadowPass &shadow_pass = scene_state.shadow_passes[i]; RenderListParameters render_list_parameters(render_list[RENDER_LIST_SECONDARY].elements.ptr() + shadow_pass.element_from, render_list[RENDER_LIST_SECONDARY].element_info.ptr() + shadow_pass.element_from, shadow_pass.element_count, shadow_pass.flip_cull, shadow_pass.pass_mode, shadow_pass.rp_uniform_set, 0, false, Vector2(), shadow_pass.camera_plane, shadow_pass.lod_distance_multiplier, shadow_pass.screen_lod_threshold, 1, shadow_pass.element_from, RD::BARRIER_MASK_NO_BARRIER); _render_list_with_threads(&render_list_parameters, shadow_pass.framebuffer, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, shadow_pass.initial_depth_action, shadow_pass.final_depth_action, Vector(), 1.0, 0, shadow_pass.rect); } if (p_barrier != RD::BARRIER_MASK_NO_BARRIER) { RD::get_singleton()->barrier(RD::BARRIER_MASK_RASTER, p_barrier); } RD::get_singleton()->draw_command_end_label(); } /* */ void RenderForwardMobile::_render_material(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) { RENDER_TIMESTAMP("Setup Rendering Material"); RD::get_singleton()->draw_command_begin_label("Render Material"); _update_render_base_uniform_set(); scene_state.ubo.dual_paraboloid_side = 0; scene_state.ubo.material_uv2_mode = false; RenderDataRD render_data; render_data.cam_projection = p_cam_projection; render_data.cam_transform = p_cam_transform; render_data.view_projection[0] = p_cam_projection; render_data.instances = &p_instances; _setup_environment(&render_data, true, Vector2(1, 1), false, Color()); PassMode pass_mode = PASS_MODE_DEPTH_MATERIAL; _fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode); render_list[RENDER_LIST_SECONDARY].sort_by_key(); _fill_element_info(RENDER_LIST_SECONDARY); RID rp_uniform_set = _setup_render_pass_uniform_set(RENDER_LIST_SECONDARY, nullptr, RID()); RENDER_TIMESTAMP("Render Material"); { RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].element_info.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), true, pass_mode, rp_uniform_set, 0); //regular forward for now Vector clear; clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, clear, 1.0, 0, p_region); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(p_framebuffer), &render_list_params, 0, render_list_params.element_count); RD::get_singleton()->draw_list_end(); } RD::get_singleton()->draw_command_end_label(); } void RenderForwardMobile::_render_uv2(const PagedArray &p_instances, RID p_framebuffer, const Rect2i &p_region) { RENDER_TIMESTAMP("Setup Rendering UV2"); RD::get_singleton()->draw_command_begin_label("Render UV2"); _update_render_base_uniform_set(); scene_state.ubo.dual_paraboloid_side = 0; scene_state.ubo.material_uv2_mode = true; RenderDataRD render_data; render_data.instances = &p_instances; _setup_environment(&render_data, true, Vector2(1, 1), false, Color()); PassMode pass_mode = PASS_MODE_DEPTH_MATERIAL; _fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode); render_list[RENDER_LIST_SECONDARY].sort_by_key(); _fill_element_info(RENDER_LIST_SECONDARY); RID rp_uniform_set = _setup_render_pass_uniform_set(RENDER_LIST_SECONDARY, nullptr, RID()); RENDER_TIMESTAMP("Render Material"); { RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].element_info.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), true, pass_mode, rp_uniform_set, true, 0); //regular forward for now Vector clear; clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); clear.push_back(Color(0, 0, 0, 0)); RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, clear, 1.0, 0, p_region); const int uv_offset_count = 9; static const Vector2 uv_offsets[uv_offset_count] = { Vector2(-1, 1), Vector2(1, 1), Vector2(1, -1), Vector2(-1, -1), Vector2(-1, 0), Vector2(1, 0), Vector2(0, -1), Vector2(0, 1), Vector2(0, 0), }; for (int i = 0; i < uv_offset_count; i++) { Vector2 ofs = uv_offsets[i]; ofs.x /= p_region.size.width; ofs.y /= p_region.size.height; render_list_params.uv_offset = ofs; _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(p_framebuffer), &render_list_params, 0, render_list_params.element_count); //first wireframe, for pseudo conservative } render_list_params.uv_offset = Vector2(); _render_list(draw_list, RD::get_singleton()->framebuffer_get_format(p_framebuffer), &render_list_params, 0, render_list_params.element_count); //second regular triangles RD::get_singleton()->draw_list_end(); } RD::get_singleton()->draw_command_end_label(); } void RenderForwardMobile::_render_sdfgi(RID p_render_buffers, const Vector3i &p_from, const Vector3i &p_size, const AABB &p_bounds, const PagedArray &p_instances, const RID &p_albedo_texture, const RID &p_emission_texture, const RID &p_emission_aniso_texture, const RID &p_geom_facing_texture) { // we don't do GI in low end.. } void RenderForwardMobile::_render_particle_collider_heightfield(RID p_fb, const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, const PagedArray &p_instances) { RENDER_TIMESTAMP("Setup Render Collider Heightfield"); RD::get_singleton()->draw_command_begin_label("Render Collider Heightfield"); _update_render_base_uniform_set(); scene_state.ubo.dual_paraboloid_side = 0; RenderDataRD render_data; render_data.cam_projection = p_cam_projection; render_data.cam_transform = p_cam_transform; render_data.view_projection[0] = p_cam_projection; render_data.z_near = 0.0; render_data.z_far = p_cam_projection.get_z_far(); render_data.instances = &p_instances; _setup_environment(&render_data, true, Vector2(1, 1), true, Color(), false, false); PassMode pass_mode = PASS_MODE_SHADOW; _fill_render_list(RENDER_LIST_SECONDARY, &render_data, pass_mode); render_list[RENDER_LIST_SECONDARY].sort_by_key(); _fill_element_info(RENDER_LIST_SECONDARY); RID rp_uniform_set = _setup_render_pass_uniform_set(RENDER_LIST_SECONDARY, nullptr, RID()); RENDER_TIMESTAMP("Render Collider Heightfield"); { //regular forward for now RenderListParameters render_list_params(render_list[RENDER_LIST_SECONDARY].elements.ptr(), render_list[RENDER_LIST_SECONDARY].element_info.ptr(), render_list[RENDER_LIST_SECONDARY].elements.size(), false, pass_mode, rp_uniform_set, 0); _render_list_with_threads(&render_list_params, p_fb, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_READ); } RD::get_singleton()->draw_command_end_label(); } void RenderForwardMobile::_base_uniforms_changed() { if (!render_base_uniform_set.is_null() && RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set)) { RD::get_singleton()->free(render_base_uniform_set); } render_base_uniform_set = RID(); } void RenderForwardMobile::_update_render_base_uniform_set() { if (render_base_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set) || (lightmap_texture_array_version != storage->lightmap_array_get_version())) { if (render_base_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(render_base_uniform_set)) { RD::get_singleton()->free(render_base_uniform_set); } // This is all loaded into set 0 lightmap_texture_array_version = storage->lightmap_array_get_version(); Vector uniforms; { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.binding = 1; u.ids.resize(12); RID *ids_ptr = u.ids.ptrw(); ids_ptr[0] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[1] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[2] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[3] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[4] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[5] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); ids_ptr[6] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[7] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[8] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[9] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[10] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); ids_ptr[11] = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_ENABLED); uniforms.push_back(u); } { RD::Uniform u; u.binding = 2; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; u.ids.push_back(scene_shader.shadow_sampler); uniforms.push_back(u); } { RD::Uniform u; u.binding = 3; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; RID sampler; switch (decals_get_filter()) { case RS::DECAL_FILTER_NEAREST: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::DECAL_FILTER_NEAREST_MIPMAPS: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::DECAL_FILTER_LINEAR: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::DECAL_FILTER_LINEAR_MIPMAPS: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::DECAL_FILTER_LINEAR_MIPMAPS_ANISOTROPIC: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; } u.ids.push_back(sampler); uniforms.push_back(u); } { RD::Uniform u; u.binding = 4; u.uniform_type = RD::UNIFORM_TYPE_SAMPLER; RID sampler; switch (light_projectors_get_filter()) { case RS::LIGHT_PROJECTOR_FILTER_NEAREST: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::LIGHT_PROJECTOR_FILTER_NEAREST_MIPMAPS: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_NEAREST_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::LIGHT_PROJECTOR_FILTER_LINEAR: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::LIGHT_PROJECTOR_FILTER_LINEAR_MIPMAPS: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; case RS::LIGHT_PROJECTOR_FILTER_LINEAR_MIPMAPS_ANISOTROPIC: { sampler = storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS_ANISOTROPIC, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED); } break; } u.ids.push_back(sampler); uniforms.push_back(u); } { RD::Uniform u; u.binding = 5; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(get_omni_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.binding = 6; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(get_spot_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.binding = 7; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(get_reflection_probe_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.binding = 8; u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER; u.ids.push_back(get_directional_light_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.binding = 9; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(scene_state.lightmap_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 10; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(scene_state.lightmap_capture_buffer); uniforms.push_back(u); } { RD::Uniform u; u.binding = 11; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; RID decal_atlas = storage->decal_atlas_get_texture(); u.ids.push_back(decal_atlas); uniforms.push_back(u); } { RD::Uniform u; u.binding = 12; u.uniform_type = RD::UNIFORM_TYPE_TEXTURE; RID decal_atlas = storage->decal_atlas_get_texture_srgb(); u.ids.push_back(decal_atlas); uniforms.push_back(u); } { RD::Uniform u; u.binding = 13; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.ids.push_back(get_decal_buffer()); uniforms.push_back(u); } { RD::Uniform u; u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER; u.binding = 14; u.ids.push_back(storage->global_variables_get_storage_buffer()); uniforms.push_back(u); } render_base_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, scene_shader.default_shader_rd, SCENE_UNIFORM_SET); } } RID RenderForwardMobile::_render_buffers_get_normal_texture(RID p_render_buffers) { // RenderBufferDataForwardMobile *rb = (RenderBufferDataForwardMobile *)render_buffers_get_data(p_render_buffers); // We don't have this. This is for debugging // return rb->normal_roughness_buffer; return RID(); } _FORCE_INLINE_ static uint32_t _indices_to_primitives(RS::PrimitiveType p_primitive, uint32_t p_indices) { static const uint32_t divisor[RS::PRIMITIVE_MAX] = { 1, 2, 1, 3, 1 }; static const uint32_t subtractor[RS::PRIMITIVE_MAX] = { 0, 0, 1, 0, 1 }; return (p_indices - subtractor[p_primitive]) / divisor[p_primitive]; } void RenderForwardMobile::_fill_render_list(RenderListType p_render_list, const RenderDataRD *p_render_data, PassMode p_pass_mode, bool p_append) { if (p_render_list == RENDER_LIST_OPAQUE) { scene_state.used_sss = false; scene_state.used_screen_texture = false; scene_state.used_normal_texture = false; scene_state.used_depth_texture = false; } uint32_t lightmap_captures_used = 0; Plane near_plane(-p_render_data->cam_transform.basis.get_axis(Vector3::AXIS_Z), p_render_data->cam_transform.origin); near_plane.d += p_render_data->cam_projection.get_z_near(); float z_max = p_render_data->cam_projection.get_z_far() - p_render_data->cam_projection.get_z_near(); RenderList *rl = &render_list[p_render_list]; // Parse any updates on our geometry, updates surface caches and such _update_dirty_geometry_instances(); if (!p_append) { rl->clear(); if (p_render_list == RENDER_LIST_OPAQUE) { render_list[RENDER_LIST_ALPHA].clear(); //opaque fills alpha too } } //fill list for (int i = 0; i < (int)p_render_data->instances->size(); i++) { GeometryInstanceForwardMobile *inst = static_cast((*p_render_data->instances)[i]); Vector3 support_min = inst->transformed_aabb.get_support(-near_plane.normal); inst->depth = near_plane.distance_to(support_min); uint32_t depth_layer = CLAMP(int(inst->depth * 16 / z_max), 0, 15); uint32_t flags = inst->base_flags; //fill flags if appropriate if (inst->non_uniform_scale) { flags |= INSTANCE_DATA_FLAGS_NON_UNIFORM_SCALE; } bool uses_lightmap = false; // bool uses_gi = false; if (p_render_list == RENDER_LIST_OPAQUE) { if (inst->lightmap_instance.is_valid()) { int32_t lightmap_cull_index = -1; for (uint32_t j = 0; j < scene_state.lightmaps_used; j++) { if (scene_state.lightmap_ids[j] == inst->lightmap_instance) { lightmap_cull_index = j; break; } } if (lightmap_cull_index >= 0) { inst->gi_offset_cache = inst->lightmap_slice_index << 16; inst->gi_offset_cache |= lightmap_cull_index; flags |= INSTANCE_DATA_FLAG_USE_LIGHTMAP; if (scene_state.lightmap_has_sh[lightmap_cull_index]) { flags |= INSTANCE_DATA_FLAG_USE_SH_LIGHTMAP; } uses_lightmap = true; } else { inst->gi_offset_cache = 0xFFFFFFFF; } } else if (inst->lightmap_sh) { if (lightmap_captures_used < scene_state.max_lightmap_captures) { const Color *src_capture = inst->lightmap_sh->sh; LightmapCaptureData &lcd = scene_state.lightmap_captures[lightmap_captures_used]; for (int j = 0; j < 9; j++) { lcd.sh[j * 4 + 0] = src_capture[j].r; lcd.sh[j * 4 + 1] = src_capture[j].g; lcd.sh[j * 4 + 2] = src_capture[j].b; lcd.sh[j * 4 + 3] = src_capture[j].a; } flags |= INSTANCE_DATA_FLAG_USE_LIGHTMAP_CAPTURE; inst->gi_offset_cache = lightmap_captures_used; lightmap_captures_used++; uses_lightmap = true; } } } inst->flags_cache = flags; GeometryInstanceSurfaceDataCache *surf = inst->surface_caches; while (surf) { surf->sort.uses_lightmap = 0; // LOD if (p_render_data->screen_lod_threshold > 0.0 && storage->mesh_surface_has_lod(surf->surface)) { //lod Vector3 lod_support_min = inst->transformed_aabb.get_support(-p_render_data->lod_camera_plane.normal); Vector3 lod_support_max = inst->transformed_aabb.get_support(p_render_data->lod_camera_plane.normal); float distance_min = p_render_data->lod_camera_plane.distance_to(lod_support_min); float distance_max = p_render_data->lod_camera_plane.distance_to(lod_support_max); float distance = 0.0; if (distance_min * distance_max < 0.0) { //crossing plane distance = 0.0; } else if (distance_min >= 0.0) { distance = distance_min; } else if (distance_max <= 0.0) { distance = -distance_max; } uint32_t indices; surf->lod_index = storage->mesh_surface_get_lod(surf->surface, inst->lod_model_scale * inst->lod_bias, distance * p_render_data->lod_distance_multiplier, p_render_data->screen_lod_threshold, &indices); if (p_render_data->render_info) { indices = _indices_to_primitives(surf->primitive, indices); if (p_render_list == RENDER_LIST_OPAQUE) { //opaque p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += indices; } } } else { surf->lod_index = 0; if (p_render_data->render_info) { uint32_t to_draw = storage->mesh_surface_get_vertices_drawn_count(surf->surface); to_draw = _indices_to_primitives(surf->primitive, to_draw); to_draw *= inst->instance_count; if (p_render_list == RENDER_LIST_OPAQUE) { //opaque p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_VISIBLE][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += storage->mesh_surface_get_vertices_drawn_count(surf->surface); } else if (p_render_list == RENDER_LIST_SECONDARY) { //shadow p_render_data->render_info->info[RS::VIEWPORT_RENDER_INFO_TYPE_SHADOW][RS::VIEWPORT_RENDER_INFO_PRIMITIVES_IN_FRAME] += storage->mesh_surface_get_vertices_drawn_count(surf->surface); } } } // ADD Element if (p_pass_mode == PASS_MODE_COLOR) { #ifdef DEBUG_ENABLED bool force_alpha = unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW); #else bool force_alpha = false; #endif if (!force_alpha && (surf->flags & (GeometryInstanceSurfaceDataCache::FLAG_PASS_DEPTH | GeometryInstanceSurfaceDataCache::FLAG_PASS_OPAQUE))) { rl->add_element(surf); } if (force_alpha || (surf->flags & GeometryInstanceSurfaceDataCache::FLAG_PASS_ALPHA)) { render_list[RENDER_LIST_ALPHA].add_element(surf); } if (uses_lightmap) { surf->sort.uses_lightmap = 1; // This needs to become our lightmap index but we'll do that in a separate PR. } if (surf->flags & GeometryInstanceSurfaceDataCache::FLAG_USES_SUBSURFACE_SCATTERING) { scene_state.used_sss = true; } if (surf->flags & GeometryInstanceSurfaceDataCache::FLAG_USES_SCREEN_TEXTURE) { scene_state.used_screen_texture = true; } if (surf->flags & GeometryInstanceSurfaceDataCache::FLAG_USES_NORMAL_TEXTURE) { scene_state.used_normal_texture = true; } if (surf->flags & GeometryInstanceSurfaceDataCache::FLAG_USES_DEPTH_TEXTURE) { scene_state.used_depth_texture = true; } } else if (p_pass_mode == PASS_MODE_SHADOW || p_pass_mode == PASS_MODE_SHADOW_DP) { if (surf->flags & GeometryInstanceSurfaceDataCache::FLAG_PASS_SHADOW) { rl->add_element(surf); } } else { if (surf->flags & (GeometryInstanceSurfaceDataCache::FLAG_PASS_DEPTH | GeometryInstanceSurfaceDataCache::FLAG_PASS_OPAQUE)) { rl->add_element(surf); } } surf->sort.depth_layer = depth_layer; surf = surf->next; } } } void RenderForwardMobile::_setup_environment(const RenderDataRD *p_render_data, bool p_no_fog, const Size2i &p_screen_size, bool p_flip_y, const Color &p_default_bg_color, bool p_opaque_render_buffers, bool p_pancake_shadows, int p_index) { //!BAS! need to go through this and find out what we don't need anymore // This populates our UBO with main scene data that is pushed into set 1 //CameraMatrix projection = p_render_data->cam_projection; //projection.flip_y(); // Vulkan and modern APIs use Y-Down CameraMatrix correction; correction.set_depth_correction(p_flip_y); CameraMatrix projection = correction * p_render_data->cam_projection; //store camera into ubo RendererStorageRD::store_camera(projection, scene_state.ubo.projection_matrix); RendererStorageRD::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix); RendererStorageRD::store_transform(p_render_data->cam_transform, scene_state.ubo.camera_matrix); RendererStorageRD::store_transform(p_render_data->cam_transform.affine_inverse(), scene_state.ubo.inv_camera_matrix); for (uint32_t v = 0; v < p_render_data->view_count; v++) { projection = correction * p_render_data->view_projection[v]; RendererStorageRD::store_camera(projection, scene_state.ubo.projection_matrix_view[v]); RendererStorageRD::store_camera(projection.inverse(), scene_state.ubo.inv_projection_matrix_view[v]); } scene_state.ubo.z_far = p_render_data->z_far; scene_state.ubo.z_near = p_render_data->z_near; scene_state.ubo.pancake_shadows = p_pancake_shadows; RendererStorageRD::store_soft_shadow_kernel(directional_penumbra_shadow_kernel_get(), scene_state.ubo.directional_penumbra_shadow_kernel); RendererStorageRD::store_soft_shadow_kernel(directional_soft_shadow_kernel_get(), scene_state.ubo.directional_soft_shadow_kernel); RendererStorageRD::store_soft_shadow_kernel(penumbra_shadow_kernel_get(), scene_state.ubo.penumbra_shadow_kernel); RendererStorageRD::store_soft_shadow_kernel(soft_shadow_kernel_get(), scene_state.ubo.soft_shadow_kernel); Size2 screen_pixel_size = Vector2(1.0, 1.0) / Size2(p_screen_size); scene_state.ubo.screen_pixel_size[0] = screen_pixel_size.x; scene_state.ubo.screen_pixel_size[1] = screen_pixel_size.y; if (p_render_data->shadow_atlas.is_valid()) { Vector2 sas = shadow_atlas_get_size(p_render_data->shadow_atlas); scene_state.ubo.shadow_atlas_pixel_size[0] = 1.0 / sas.x; scene_state.ubo.shadow_atlas_pixel_size[1] = 1.0 / sas.y; } { Vector2 dss = directional_shadow_get_size(); scene_state.ubo.directional_shadow_pixel_size[0] = 1.0 / dss.x; scene_state.ubo.directional_shadow_pixel_size[1] = 1.0 / dss.y; } //time global variables scene_state.ubo.time = time; /* scene_state.ubo.gi_upscale_for_msaa = false; scene_state.ubo.volumetric_fog_enabled = false; scene_state.ubo.fog_enabled = false; if (p_render_data->render_buffers.is_valid()) { RenderBufferDataForwardMobile *render_buffers = (RenderBufferDataForwardMobile *)render_buffers_get_data(p_render_data->render_buffers); if (render_buffers->msaa != RS::VIEWPORT_MSAA_DISABLED) { scene_state.ubo.gi_upscale_for_msaa = true; } if (render_buffers_has_volumetric_fog(p_render_data->render_buffers)) { scene_state.ubo.volumetric_fog_enabled = true; float fog_end = render_buffers_get_volumetric_fog_end(p_render_data->render_buffers); if (fog_end > 0.0) { scene_state.ubo.volumetric_fog_inv_length = 1.0 / fog_end; } else { scene_state.ubo.volumetric_fog_inv_length = 1.0; } float fog_detail_spread = render_buffers_get_volumetric_fog_detail_spread(p_render_data->render_buffers); //reverse lookup if (fog_detail_spread > 0.0) { scene_state.ubo.volumetric_fog_detail_spread = 1.0 / fog_detail_spread; } else { scene_state.ubo.volumetric_fog_detail_spread = 1.0; } } } */ if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) { scene_state.ubo.use_ambient_light = true; scene_state.ubo.ambient_light_color_energy[0] = 1; scene_state.ubo.ambient_light_color_energy[1] = 1; scene_state.ubo.ambient_light_color_energy[2] = 1; scene_state.ubo.ambient_light_color_energy[3] = 1.0; scene_state.ubo.use_ambient_cubemap = false; scene_state.ubo.use_reflection_cubemap = false; scene_state.ubo.ssao_enabled = false; } else if (is_environment(p_render_data->environment)) { RS::EnvironmentBG env_bg = environment_get_background(p_render_data->environment); RS::EnvironmentAmbientSource ambient_src = environment_get_ambient_source(p_render_data->environment); float bg_energy = environment_get_bg_energy(p_render_data->environment); scene_state.ubo.ambient_light_color_energy[3] = bg_energy; scene_state.ubo.ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_render_data->environment); //ambient if (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && (env_bg == RS::ENV_BG_CLEAR_COLOR || env_bg == RS::ENV_BG_COLOR)) { Color color = env_bg == RS::ENV_BG_CLEAR_COLOR ? p_default_bg_color : environment_get_bg_color(p_render_data->environment); color = color.to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * bg_energy; scene_state.ubo.ambient_light_color_energy[1] = color.g * bg_energy; scene_state.ubo.ambient_light_color_energy[2] = color.b * bg_energy; scene_state.ubo.use_ambient_light = true; scene_state.ubo.use_ambient_cubemap = false; } else { float energy = environment_get_ambient_light_energy(p_render_data->environment); Color color = environment_get_ambient_light_color(p_render_data->environment); color = color.to_linear(); scene_state.ubo.ambient_light_color_energy[0] = color.r * energy; scene_state.ubo.ambient_light_color_energy[1] = color.g * energy; scene_state.ubo.ambient_light_color_energy[2] = color.b * energy; Basis sky_transform = environment_get_sky_orientation(p_render_data->environment); sky_transform = sky_transform.inverse() * p_render_data->cam_transform.basis; RendererStorageRD::store_transform_3x3(sky_transform, scene_state.ubo.radiance_inverse_xform); scene_state.ubo.use_ambient_cubemap = (ambient_src == RS::ENV_AMBIENT_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ambient_src == RS::ENV_AMBIENT_SOURCE_SKY; scene_state.ubo.use_ambient_light = scene_state.ubo.use_ambient_cubemap || ambient_src == RS::ENV_AMBIENT_SOURCE_COLOR; } //specular RS::EnvironmentReflectionSource ref_src = environment_get_reflection_source(p_render_data->environment); if ((ref_src == RS::ENV_REFLECTION_SOURCE_BG && env_bg == RS::ENV_BG_SKY) || ref_src == RS::ENV_REFLECTION_SOURCE_SKY) { scene_state.ubo.use_reflection_cubemap = true; } else { scene_state.ubo.use_reflection_cubemap = false; } scene_state.ubo.ssao_enabled = p_opaque_render_buffers && environment_is_ssao_enabled(p_render_data->environment); scene_state.ubo.ssao_ao_affect = environment_get_ssao_ao_affect(p_render_data->environment); scene_state.ubo.ssao_light_affect = environment_get_ssao_light_affect(p_render_data->environment); scene_state.ubo.fog_enabled = environment_is_fog_enabled(p_render_data->environment); scene_state.ubo.fog_density = environment_get_fog_density(p_render_data->environment); scene_state.ubo.fog_height = environment_get_fog_height(p_render_data->environment); scene_state.ubo.fog_height_density = environment_get_fog_height_density(p_render_data->environment); scene_state.ubo.fog_aerial_perspective = environment_get_fog_aerial_perspective(p_render_data->environment); Color fog_color = environment_get_fog_light_color(p_render_data->environment).to_linear(); float fog_energy = environment_get_fog_light_energy(p_render_data->environment); scene_state.ubo.fog_light_color[0] = fog_color.r * fog_energy; scene_state.ubo.fog_light_color[1] = fog_color.g * fog_energy; scene_state.ubo.fog_light_color[2] = fog_color.b * fog_energy; scene_state.ubo.fog_sun_scatter = environment_get_fog_sun_scatter(p_render_data->environment); } else { if (p_render_data->reflection_probe.is_valid() && storage->reflection_probe_is_interior(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) { scene_state.ubo.use_ambient_light = false; } else { scene_state.ubo.use_ambient_light = true; Color clear_color = p_default_bg_color; clear_color = clear_color.to_linear(); scene_state.ubo.ambient_light_color_energy[0] = clear_color.r; scene_state.ubo.ambient_light_color_energy[1] = clear_color.g; scene_state.ubo.ambient_light_color_energy[2] = clear_color.b; scene_state.ubo.ambient_light_color_energy[3] = 1.0; } scene_state.ubo.use_ambient_cubemap = false; scene_state.ubo.use_reflection_cubemap = false; scene_state.ubo.ssao_enabled = false; } scene_state.ubo.roughness_limiter_enabled = p_opaque_render_buffers && screen_space_roughness_limiter_is_active(); scene_state.ubo.roughness_limiter_amount = screen_space_roughness_limiter_get_amount(); scene_state.ubo.roughness_limiter_limit = screen_space_roughness_limiter_get_limit(); if (p_index >= (int)scene_state.uniform_buffers.size()) { uint32_t from = scene_state.uniform_buffers.size(); scene_state.uniform_buffers.resize(p_index + 1); render_pass_uniform_sets.resize(p_index + 1); for (uint32_t i = from; i < scene_state.uniform_buffers.size(); i++) { scene_state.uniform_buffers[i] = RD::get_singleton()->uniform_buffer_create(sizeof(SceneState::UBO)); } } RD::get_singleton()->buffer_update(scene_state.uniform_buffers[p_index], 0, sizeof(SceneState::UBO), &scene_state.ubo, RD::BARRIER_MASK_RASTER); } void RenderForwardMobile::_fill_element_info(RenderListType p_render_list, uint32_t p_offset, int32_t p_max_elements) { RenderList *rl = &render_list[p_render_list]; uint32_t element_total = p_max_elements >= 0 ? uint32_t(p_max_elements) : rl->elements.size(); rl->element_info.resize(p_offset + element_total); for (uint32_t i = 0; i < element_total; i++) { GeometryInstanceSurfaceDataCache *surface = rl->elements[i + p_offset]; RenderElementInfo &element_info = rl->element_info[p_offset + i]; element_info.lod_index = surface->lod_index; element_info.uses_lightmap = surface->sort.uses_lightmap; } } /// RENDERING /// void RenderForwardMobile::_render_list(RenderingDevice::DrawListID p_draw_list, RenderingDevice::FramebufferFormatID p_framebuffer_Format, RenderListParameters *p_params, uint32_t p_from_element, uint32_t p_to_element) { //use template for faster performance (pass mode comparisons are inlined) switch (p_params->pass_mode) { case PASS_MODE_COLOR: { _render_list_template(p_draw_list, p_framebuffer_Format, p_params, p_from_element, p_to_element); } break; case PASS_MODE_COLOR_TRANSPARENT: { _render_list_template(p_draw_list, p_framebuffer_Format, p_params, p_from_element, p_to_element); } break; case PASS_MODE_SHADOW: { _render_list_template(p_draw_list, p_framebuffer_Format, p_params, p_from_element, p_to_element); } break; case PASS_MODE_SHADOW_DP: { _render_list_template(p_draw_list, p_framebuffer_Format, p_params, p_from_element, p_to_element); } break; case PASS_MODE_DEPTH_MATERIAL: { _render_list_template(p_draw_list, p_framebuffer_Format, p_params, p_from_element, p_to_element); } break; } } void RenderForwardMobile::_render_list_thread_function(uint32_t p_thread, RenderListParameters *p_params) { uint32_t render_total = p_params->element_count; uint32_t total_threads = RendererThreadPool::singleton->thread_work_pool.get_thread_count(); uint32_t render_from = p_thread * render_total / total_threads; uint32_t render_to = (p_thread + 1 == total_threads) ? render_total : ((p_thread + 1) * render_total / total_threads); _render_list(thread_draw_lists[p_thread], p_params->framebuffer_format, p_params, render_from, render_to); } void RenderForwardMobile::_render_list_with_threads(RenderListParameters *p_params, RID p_framebuffer, RD::InitialAction p_initial_color_action, RD::FinalAction p_final_color_action, RD::InitialAction p_initial_depth_action, RD::FinalAction p_final_depth_action, const Vector &p_clear_color_values, float p_clear_depth, uint32_t p_clear_stencil, const Rect2 &p_region, const Vector &p_storage_textures) { RD::FramebufferFormatID fb_format = RD::get_singleton()->framebuffer_get_format(p_framebuffer); p_params->framebuffer_format = fb_format; if ((uint32_t)p_params->element_count > render_list_thread_threshold && false) { // secondary command buffers need more testing at this time //multi threaded thread_draw_lists.resize(RendererThreadPool::singleton->thread_work_pool.get_thread_count()); RD::get_singleton()->draw_list_begin_split(p_framebuffer, thread_draw_lists.size(), thread_draw_lists.ptr(), p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, p_region, p_storage_textures); RendererThreadPool::singleton->thread_work_pool.do_work(thread_draw_lists.size(), this, &RenderForwardMobile::_render_list_thread_function, p_params); RD::get_singleton()->draw_list_end(p_params->barrier); } else { //single threaded RD::DrawListID draw_list = RD::get_singleton()->draw_list_begin(p_framebuffer, p_initial_color_action, p_final_color_action, p_initial_depth_action, p_final_depth_action, p_clear_color_values, p_clear_depth, p_clear_stencil, p_region, p_storage_textures); _render_list(draw_list, fb_format, p_params, 0, p_params->element_count); RD::get_singleton()->draw_list_end(p_params->barrier); } } void RenderForwardMobile::_fill_push_constant_instance_indices(GeometryInstanceForwardMobile::PushConstant *p_push_constant, uint32_t &spec_constants, const GeometryInstanceForwardMobile *p_instance) { // first zero out our indices p_push_constant->omni_lights[0] = 0xFFFF; p_push_constant->omni_lights[1] = 0xFFFF; p_push_constant->spot_lights[0] = 0xFFFF; p_push_constant->spot_lights[1] = 0xFFFF; p_push_constant->decals[0] = 0xFFFF; p_push_constant->decals[1] = 0xFFFF; p_push_constant->reflection_probes[0] = 0xFFFF; p_push_constant->reflection_probes[1] = 0xFFFF; if (p_instance->omni_light_count == 0) { spec_constants |= 1 << SPEC_CONSTANT_DISABLE_OMNI_LIGHTS; } if (p_instance->spot_light_count == 0) { spec_constants |= 1 << SPEC_CONSTANT_DISABLE_SPOT_LIGHTS; } if (p_instance->reflection_probe_count == 0) { spec_constants |= 1 << SPEC_CONSTANT_DISABLE_REFLECTION_PROBES; } if (p_instance->decals_count == 0) { spec_constants |= 1 << SPEC_CONSTANT_DISABLE_DECALS; } for (uint32_t i = 0; i < MAX_RDL_CULL; i++) { uint32_t ofs = i < 4 ? 0 : 1; uint32_t shift = (i & 0x3) << 3; uint32_t mask = ~(0xFF << shift); if (i < p_instance->omni_light_count) { p_push_constant->omni_lights[ofs] &= mask; p_push_constant->omni_lights[ofs] |= uint32_t(forward_id_allocators[FORWARD_ID_TYPE_OMNI_LIGHT].map[p_instance->omni_lights[i]]) << shift; } if (i < p_instance->spot_light_count) { p_push_constant->spot_lights[ofs] &= mask; p_push_constant->spot_lights[ofs] |= uint32_t(forward_id_allocators[FORWARD_ID_TYPE_SPOT_LIGHT].map[p_instance->spot_lights[i]]) << shift; } if (i < p_instance->decals_count) { p_push_constant->decals[ofs] &= mask; p_push_constant->decals[ofs] |= uint32_t(forward_id_allocators[FORWARD_ID_TYPE_DECAL].map[p_instance->decals[i]]) << shift; } if (i < p_instance->reflection_probe_count) { p_push_constant->reflection_probes[ofs] &= mask; p_push_constant->reflection_probes[ofs] |= uint32_t(forward_id_allocators[FORWARD_ID_TYPE_REFLECTION_PROBE].map[p_instance->reflection_probes[i]]) << shift; } } } template void RenderForwardMobile::_render_list_template(RenderingDevice::DrawListID p_draw_list, RenderingDevice::FramebufferFormatID p_framebuffer_Format, RenderListParameters *p_params, uint32_t p_from_element, uint32_t p_to_element) { RD::DrawListID draw_list = p_draw_list; RD::FramebufferFormatID framebuffer_format = p_framebuffer_Format; //global scope bindings RD::get_singleton()->draw_list_bind_uniform_set(draw_list, render_base_uniform_set, SCENE_UNIFORM_SET); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, p_params->render_pass_uniform_set, RENDER_PASS_UNIFORM_SET); RD::get_singleton()->draw_list_bind_uniform_set(draw_list, scene_shader.default_vec4_xform_uniform_set, TRANSFORMS_UNIFORM_SET); RID prev_material_uniform_set; RID prev_vertex_array_rd; RID prev_index_array_rd; RID prev_pipeline_rd; RID prev_xforms_uniform_set; bool shadow_pass = (p_params->pass_mode == PASS_MODE_SHADOW) || (p_params->pass_mode == PASS_MODE_SHADOW_DP); for (uint32_t i = p_from_element; i < p_to_element; i++) { const GeometryInstanceSurfaceDataCache *surf = p_params->elements[i]; const RenderElementInfo &element_info = p_params->element_info[i]; const GeometryInstanceForwardMobile *inst = surf->owner; uint32_t base_spec_constants = p_params->spec_constant_base_flags; // GeometryInstanceForwardMobile::PushConstant push_constant = inst->push_constant; GeometryInstanceForwardMobile::PushConstant push_constant; if (inst->store_transform_cache) { RendererStorageRD::store_transform(inst->transform, push_constant.transform); } else { RendererStorageRD::store_transform(Transform3D(), push_constant.transform); } push_constant.flags = inst->flags_cache; push_constant.gi_offset = inst->gi_offset_cache; push_constant.layer_mask = inst->layer_mask; push_constant.instance_uniforms_ofs = uint32_t(inst->shader_parameters_offset); if (p_params->pass_mode == PASS_MODE_DEPTH_MATERIAL) { // abuse lightmap_uv_scale[0] here, should not be needed here push_constant.lightmap_uv_scale[0] = p_params->uv_offset.x; push_constant.lightmap_uv_scale[1] = p_params->uv_offset.y; } else { push_constant.lightmap_uv_scale[0] = inst->lightmap_uv_scale.position.x; push_constant.lightmap_uv_scale[1] = inst->lightmap_uv_scale.position.y; push_constant.lightmap_uv_scale[2] = inst->lightmap_uv_scale.size.x; push_constant.lightmap_uv_scale[3] = inst->lightmap_uv_scale.size.y; }; RID material_uniform_set; SceneShaderForwardMobile::ShaderData *shader; void *mesh_surface; if (shadow_pass) { material_uniform_set = surf->material_uniform_set_shadow; shader = surf->shader_shadow; mesh_surface = surf->surface_shadow; } else { if (inst->use_projector) { base_spec_constants |= 1 << SPEC_CONSTANT_USING_PROJECTOR; } if (inst->use_soft_shadow) { base_spec_constants |= 1 << SPEC_CONSTANT_USING_SOFT_SHADOWS; } _fill_push_constant_instance_indices(&push_constant, base_spec_constants, inst); #ifdef DEBUG_ENABLED if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_LIGHTING)) { material_uniform_set = scene_shader.default_material_uniform_set; shader = scene_shader.default_material_shader_ptr; } else if (unlikely(get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_OVERDRAW)) { material_uniform_set = scene_shader.overdraw_material_uniform_set; shader = scene_shader.overdraw_material_shader_ptr; } else { #endif material_uniform_set = surf->material_uniform_set; shader = surf->shader; #ifdef DEBUG_ENABLED } #endif mesh_surface = surf->surface; } if (!mesh_surface) { continue; } //find cull variant SceneShaderForwardMobile::ShaderData::CullVariant cull_variant; if (p_params->pass_mode == PASS_MODE_DEPTH_MATERIAL || ((p_params->pass_mode == PASS_MODE_SHADOW || p_params->pass_mode == PASS_MODE_SHADOW_DP) && surf->flags & GeometryInstanceSurfaceDataCache::FLAG_USES_DOUBLE_SIDED_SHADOWS)) { cull_variant = SceneShaderForwardMobile::ShaderData::CULL_VARIANT_DOUBLE_SIDED; } else { bool mirror = surf->owner->mirror; if (p_params->reverse_cull) { mirror = !mirror; } cull_variant = mirror ? SceneShaderForwardMobile::ShaderData::CULL_VARIANT_REVERSED : SceneShaderForwardMobile::ShaderData::CULL_VARIANT_NORMAL; } RS::PrimitiveType primitive = surf->primitive; RID xforms_uniform_set = surf->owner->transforms_uniform_set; SceneShaderForwardMobile::ShaderVersion shader_version = SceneShaderForwardMobile::SHADER_VERSION_MAX; // Assigned to silence wrong -Wmaybe-initialized. switch (p_params->pass_mode) { case PASS_MODE_COLOR: case PASS_MODE_COLOR_TRANSPARENT: { if (element_info.uses_lightmap) { shader_version = p_params->view_count > 1 ? SceneShaderForwardMobile::SHADER_VERSION_LIGHTMAP_COLOR_PASS_MULTIVIEW : SceneShaderForwardMobile::SHADER_VERSION_LIGHTMAP_COLOR_PASS; } else { shader_version = p_params->view_count > 1 ? SceneShaderForwardMobile::SHADER_VERSION_COLOR_PASS_MULTIVIEW : SceneShaderForwardMobile::SHADER_VERSION_COLOR_PASS; } } break; case PASS_MODE_SHADOW: { shader_version = p_params->view_count > 1 ? SceneShaderForwardMobile::SHADER_VERSION_SHADOW_PASS_MULTIVIEW : SceneShaderForwardMobile::SHADER_VERSION_SHADOW_PASS; } break; case PASS_MODE_SHADOW_DP: { ERR_FAIL_COND_MSG(p_params->view_count > 1, "Multiview not supported for shadow DP pass"); shader_version = SceneShaderForwardMobile::SHADER_VERSION_SHADOW_PASS_DP; } break; case PASS_MODE_DEPTH_MATERIAL: { ERR_FAIL_COND_MSG(p_params->view_count > 1, "Multiview not supported for material pass"); shader_version = SceneShaderForwardMobile::SHADER_VERSION_DEPTH_PASS_WITH_MATERIAL; } break; } PipelineCacheRD *pipeline = nullptr; pipeline = &shader->pipelines[cull_variant][primitive][shader_version]; RD::VertexFormatID vertex_format = -1; RID vertex_array_rd; RID index_array_rd; //skeleton and blend shape if (surf->owner->mesh_instance.is_valid()) { storage->mesh_instance_surface_get_vertex_arrays_and_format(surf->owner->mesh_instance, surf->surface_index, pipeline->get_vertex_input_mask(), vertex_array_rd, vertex_format); } else { storage->mesh_surface_get_vertex_arrays_and_format(mesh_surface, pipeline->get_vertex_input_mask(), vertex_array_rd, vertex_format); } index_array_rd = storage->mesh_surface_get_index_array(mesh_surface, element_info.lod_index); if (prev_vertex_array_rd != vertex_array_rd) { RD::get_singleton()->draw_list_bind_vertex_array(draw_list, vertex_array_rd); prev_vertex_array_rd = vertex_array_rd; } if (prev_index_array_rd != index_array_rd) { if (index_array_rd.is_valid()) { RD::get_singleton()->draw_list_bind_index_array(draw_list, index_array_rd); } prev_index_array_rd = index_array_rd; } RID pipeline_rd = pipeline->get_render_pipeline(vertex_format, framebuffer_format, p_params->force_wireframe, p_params->subpass, base_spec_constants); if (pipeline_rd != prev_pipeline_rd) { // checking with prev shader does not make so much sense, as // the pipeline may still be different. RD::get_singleton()->draw_list_bind_render_pipeline(draw_list, pipeline_rd); prev_pipeline_rd = pipeline_rd; } if (xforms_uniform_set.is_valid() && prev_xforms_uniform_set != xforms_uniform_set) { RD::get_singleton()->draw_list_bind_uniform_set(draw_list, xforms_uniform_set, TRANSFORMS_UNIFORM_SET); prev_xforms_uniform_set = xforms_uniform_set; } if (material_uniform_set != prev_material_uniform_set) { // Update uniform set. if (material_uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(material_uniform_set)) { // Material may not have a uniform set. RD::get_singleton()->draw_list_bind_uniform_set(draw_list, material_uniform_set, MATERIAL_UNIFORM_SET); } prev_material_uniform_set = material_uniform_set; } RD::get_singleton()->draw_list_set_push_constant(draw_list, &push_constant, sizeof(GeometryInstanceForwardMobile::PushConstant)); uint32_t instance_count = surf->owner->instance_count > 1 ? surf->owner->instance_count : 1; if (surf->flags & GeometryInstanceSurfaceDataCache::FLAG_USES_PARTICLE_TRAILS) { instance_count /= surf->owner->trail_steps; } RD::get_singleton()->draw_list_draw(draw_list, index_array_rd.is_valid(), instance_count); } } /* Geometry instance */ RendererSceneRender::GeometryInstance *RenderForwardMobile::geometry_instance_create(RID p_base) { RS::InstanceType type = storage->get_base_type(p_base); ERR_FAIL_COND_V(!((1 << type) & RS::INSTANCE_GEOMETRY_MASK), nullptr); GeometryInstanceForwardMobile *ginstance = geometry_instance_alloc.alloc(); ginstance->data = memnew(GeometryInstanceForwardMobile::Data); ginstance->data->base = p_base; ginstance->data->base_type = type; _geometry_instance_mark_dirty(ginstance); return ginstance; } void RenderForwardMobile::geometry_instance_set_skeleton(GeometryInstance *p_geometry_instance, RID p_skeleton) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->skeleton = p_skeleton; _geometry_instance_mark_dirty(ginstance); ginstance->data->dirty_dependencies = true; } void RenderForwardMobile::geometry_instance_set_material_override(GeometryInstance *p_geometry_instance, RID p_override) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->material_override = p_override; _geometry_instance_mark_dirty(ginstance); ginstance->data->dirty_dependencies = true; } void RenderForwardMobile::geometry_instance_set_surface_materials(GeometryInstance *p_geometry_instance, const Vector &p_materials) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->surface_materials = p_materials; _geometry_instance_mark_dirty(ginstance); ginstance->data->dirty_dependencies = true; } void RenderForwardMobile::geometry_instance_set_mesh_instance(GeometryInstance *p_geometry_instance, RID p_mesh_instance) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->mesh_instance = p_mesh_instance; _geometry_instance_mark_dirty(ginstance); } void RenderForwardMobile::geometry_instance_set_transform(GeometryInstance *p_geometry_instance, const Transform3D &p_transform, const AABB &p_aabb, const AABB &p_transformed_aabb) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->transform = p_transform; ginstance->mirror = p_transform.basis.determinant() < 0; ginstance->data->aabb = p_aabb; ginstance->transformed_aabb = p_transformed_aabb; Vector3 model_scale_vec = p_transform.basis.get_scale_abs(); // handle non uniform scale here float max_scale = MAX(model_scale_vec.x, MAX(model_scale_vec.y, model_scale_vec.z)); float min_scale = MIN(model_scale_vec.x, MIN(model_scale_vec.y, model_scale_vec.z)); ginstance->non_uniform_scale = max_scale >= 0.0 && (min_scale / max_scale) < 0.9; ginstance->lod_model_scale = max_scale; } void RenderForwardMobile::geometry_instance_set_layer_mask(GeometryInstance *p_geometry_instance, uint32_t p_layer_mask) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->layer_mask = p_layer_mask; } void RenderForwardMobile::geometry_instance_set_lod_bias(GeometryInstance *p_geometry_instance, float p_lod_bias) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->lod_bias = p_lod_bias; } void RenderForwardMobile::geometry_instance_set_fade_range(GeometryInstance *p_geometry_instance, bool p_enable_near, float p_near_begin, float p_near_end, bool p_enable_far, float p_far_begin, float p_far_end) { } void RenderForwardMobile::geometry_instance_set_transparency(GeometryInstance *p_geometry_instance, float p_transparency) { } void RenderForwardMobile::geometry_instance_set_parent_fade_alpha(GeometryInstance *p_geometry_instance, float p_alpha) { } void RenderForwardMobile::geometry_instance_set_use_baked_light(GeometryInstance *p_geometry_instance, bool p_enable) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->use_baked_light = p_enable; _geometry_instance_mark_dirty(ginstance); } void RenderForwardMobile::geometry_instance_set_use_dynamic_gi(GeometryInstance *p_geometry_instance, bool p_enable) { // !BAS! do we support this in mobile? // GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); // ERR_FAIL_COND(!ginstance); // ginstance->data->use_dynamic_gi = p_enable; // _geometry_instance_mark_dirty(ginstance); } void RenderForwardMobile::geometry_instance_set_use_lightmap(GeometryInstance *p_geometry_instance, RID p_lightmap_instance, const Rect2 &p_lightmap_uv_scale, int p_lightmap_slice_index) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->lightmap_instance = p_lightmap_instance; ginstance->lightmap_uv_scale = p_lightmap_uv_scale; ginstance->lightmap_slice_index = p_lightmap_slice_index; _geometry_instance_mark_dirty(ginstance); } void RenderForwardMobile::geometry_instance_set_lightmap_capture(GeometryInstance *p_geometry_instance, const Color *p_sh9) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); if (p_sh9) { if (ginstance->lightmap_sh == nullptr) { ginstance->lightmap_sh = geometry_instance_lightmap_sh.alloc(); } memcpy(ginstance->lightmap_sh->sh, p_sh9, sizeof(Color) * 9); } else { if (ginstance->lightmap_sh != nullptr) { geometry_instance_lightmap_sh.free(ginstance->lightmap_sh); ginstance->lightmap_sh = nullptr; } } _geometry_instance_mark_dirty(ginstance); } void RenderForwardMobile::geometry_instance_set_instance_shader_parameters_offset(GeometryInstance *p_geometry_instance, int32_t p_offset) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->shader_parameters_offset = p_offset; _geometry_instance_mark_dirty(ginstance); } void RenderForwardMobile::geometry_instance_set_cast_double_sided_shadows(GeometryInstance *p_geometry_instance, bool p_enable) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->data->cast_double_sided_shadows = p_enable; _geometry_instance_mark_dirty(ginstance); } Transform3D RenderForwardMobile::geometry_instance_get_transform(GeometryInstance *p_instance) { GeometryInstanceForwardMobile *ginstance = static_cast(p_instance); ERR_FAIL_COND_V(!ginstance, Transform3D()); return ginstance->transform; } AABB RenderForwardMobile::geometry_instance_get_aabb(GeometryInstance *p_instance) { GeometryInstanceForwardMobile *ginstance = static_cast(p_instance); ERR_FAIL_COND_V(!ginstance, AABB()); return ginstance->data->aabb; } void RenderForwardMobile::geometry_instance_free(GeometryInstance *p_geometry_instance) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); if (ginstance->lightmap_sh != nullptr) { geometry_instance_lightmap_sh.free(ginstance->lightmap_sh); } GeometryInstanceSurfaceDataCache *surf = ginstance->surface_caches; while (surf) { GeometryInstanceSurfaceDataCache *next = surf->next; geometry_instance_surface_alloc.free(surf); surf = next; } memdelete(ginstance->data); geometry_instance_alloc.free(ginstance); } uint32_t RenderForwardMobile::geometry_instance_get_pair_mask() { return ((1 << RS::INSTANCE_LIGHT) + (1 << RS::INSTANCE_REFLECTION_PROBE) + (1 << RS::INSTANCE_DECAL)); } void RenderForwardMobile::geometry_instance_pair_light_instances(GeometryInstance *p_geometry_instance, const RID *p_light_instances, uint32_t p_light_instance_count) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->omni_light_count = 0; ginstance->spot_light_count = 0; for (uint32_t i = 0; i < p_light_instance_count; i++) { RS::LightType type = light_instance_get_type(p_light_instances[i]); switch (type) { case RS::LIGHT_OMNI: { if (ginstance->omni_light_count < (uint32_t)MAX_RDL_CULL) { ginstance->omni_lights[ginstance->omni_light_count] = light_instance_get_forward_id(p_light_instances[i]); ginstance->omni_light_count++; } } break; case RS::LIGHT_SPOT: { if (ginstance->spot_light_count < (uint32_t)MAX_RDL_CULL) { ginstance->spot_lights[ginstance->spot_light_count] = light_instance_get_forward_id(p_light_instances[i]); ginstance->spot_light_count++; } } break; default: break; } } } void RenderForwardMobile::geometry_instance_pair_reflection_probe_instances(GeometryInstance *p_geometry_instance, const RID *p_reflection_probe_instances, uint32_t p_reflection_probe_instance_count) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->reflection_probe_count = p_reflection_probe_instance_count < (uint32_t)MAX_RDL_CULL ? p_reflection_probe_instance_count : (uint32_t)MAX_RDL_CULL; for (uint32_t i = 0; i < ginstance->reflection_probe_count; i++) { ginstance->reflection_probes[i] = reflection_probe_instance_get_forward_id(p_reflection_probe_instances[i]); } } void RenderForwardMobile::geometry_instance_pair_decal_instances(GeometryInstance *p_geometry_instance, const RID *p_decal_instances, uint32_t p_decal_instance_count) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->decals_count = p_decal_instance_count < (uint32_t)MAX_RDL_CULL ? p_decal_instance_count : (uint32_t)MAX_RDL_CULL; for (uint32_t i = 0; i < ginstance->decals_count; i++) { ginstance->decals[i] = decal_instance_get_forward_id(p_decal_instances[i]); } } void RenderForwardMobile::geometry_instance_pair_voxel_gi_instances(GeometryInstance *p_geometry_instance, const RID *p_voxel_gi_instances, uint32_t p_voxel_gi_instance_count) { // We do not have this here! } void RenderForwardMobile::geometry_instance_set_softshadow_projector_pairing(GeometryInstance *p_geometry_instance, bool p_softshadow, bool p_projector) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); ERR_FAIL_COND(!ginstance); ginstance->use_projector = p_projector; ginstance->use_soft_shadow = p_softshadow; } void RenderForwardMobile::_geometry_instance_mark_dirty(GeometryInstance *p_geometry_instance) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); if (ginstance->dirty_list_element.in_list()) { return; } //clear surface caches GeometryInstanceSurfaceDataCache *surf = ginstance->surface_caches; while (surf) { GeometryInstanceSurfaceDataCache *next = surf->next; geometry_instance_surface_alloc.free(surf); surf = next; } ginstance->surface_caches = nullptr; geometry_instance_dirty_list.add(&ginstance->dirty_list_element); } void RenderForwardMobile::_geometry_instance_add_surface_with_material(GeometryInstanceForwardMobile *ginstance, uint32_t p_surface, SceneShaderForwardMobile::MaterialData *p_material, uint32_t p_material_id, uint32_t p_shader_id, RID p_mesh) { bool has_read_screen_alpha = p_material->shader_data->uses_screen_texture || p_material->shader_data->uses_depth_texture || p_material->shader_data->uses_normal_texture; bool has_base_alpha = (p_material->shader_data->uses_alpha || has_read_screen_alpha); bool has_blend_alpha = p_material->shader_data->uses_blend_alpha; bool has_alpha = has_base_alpha || has_blend_alpha; uint32_t flags = 0; if (p_material->shader_data->uses_sss) { flags |= GeometryInstanceSurfaceDataCache::FLAG_USES_SUBSURFACE_SCATTERING; } if (p_material->shader_data->uses_screen_texture) { flags |= GeometryInstanceSurfaceDataCache::FLAG_USES_SCREEN_TEXTURE; } if (p_material->shader_data->uses_depth_texture) { flags |= GeometryInstanceSurfaceDataCache::FLAG_USES_DEPTH_TEXTURE; } if (p_material->shader_data->uses_normal_texture) { flags |= GeometryInstanceSurfaceDataCache::FLAG_USES_NORMAL_TEXTURE; } if (ginstance->data->cast_double_sided_shadows) { flags |= GeometryInstanceSurfaceDataCache::FLAG_USES_DOUBLE_SIDED_SHADOWS; } if (has_alpha || has_read_screen_alpha || p_material->shader_data->depth_draw == SceneShaderForwardMobile::ShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == SceneShaderForwardMobile::ShaderData::DEPTH_TEST_DISABLED) { //material is only meant for alpha pass flags |= GeometryInstanceSurfaceDataCache::FLAG_PASS_ALPHA; if (p_material->shader_data->uses_depth_pre_pass && !(p_material->shader_data->depth_draw == SceneShaderForwardMobile::ShaderData::DEPTH_DRAW_DISABLED || p_material->shader_data->depth_test == SceneShaderForwardMobile::ShaderData::DEPTH_TEST_DISABLED)) { flags |= GeometryInstanceSurfaceDataCache::FLAG_PASS_DEPTH; flags |= GeometryInstanceSurfaceDataCache::FLAG_PASS_SHADOW; } } else { flags |= GeometryInstanceSurfaceDataCache::FLAG_PASS_OPAQUE; flags |= GeometryInstanceSurfaceDataCache::FLAG_PASS_DEPTH; flags |= GeometryInstanceSurfaceDataCache::FLAG_PASS_SHADOW; } if (p_material->shader_data->uses_particle_trails) { flags |= GeometryInstanceSurfaceDataCache::FLAG_USES_PARTICLE_TRAILS; } SceneShaderForwardMobile::MaterialData *material_shadow = nullptr; void *surface_shadow = nullptr; if (!p_material->shader_data->uses_particle_trails && !p_material->shader_data->writes_modelview_or_projection && !p_material->shader_data->uses_vertex && !p_material->shader_data->uses_discard && !p_material->shader_data->uses_depth_pre_pass) { flags |= GeometryInstanceSurfaceDataCache::FLAG_USES_SHARED_SHADOW_MATERIAL; material_shadow = (SceneShaderForwardMobile::MaterialData *)storage->material_get_data(scene_shader.default_material, RendererStorageRD::SHADER_TYPE_3D); RID shadow_mesh = storage->mesh_get_shadow_mesh(p_mesh); if (shadow_mesh.is_valid()) { surface_shadow = storage->mesh_get_surface(shadow_mesh, p_surface); } } else { material_shadow = p_material; } GeometryInstanceSurfaceDataCache *sdcache = geometry_instance_surface_alloc.alloc(); sdcache->flags = flags; sdcache->shader = p_material->shader_data; sdcache->material_uniform_set = p_material->uniform_set; sdcache->surface = storage->mesh_get_surface(p_mesh, p_surface); sdcache->primitive = storage->mesh_surface_get_primitive(sdcache->surface); sdcache->surface_index = p_surface; if (ginstance->data->dirty_dependencies) { storage->base_update_dependency(p_mesh, &ginstance->data->dependency_tracker); } //shadow sdcache->shader_shadow = material_shadow->shader_data; sdcache->material_uniform_set_shadow = material_shadow->uniform_set; sdcache->surface_shadow = surface_shadow ? surface_shadow : sdcache->surface; sdcache->owner = ginstance; sdcache->next = ginstance->surface_caches; ginstance->surface_caches = sdcache; //sortkey sdcache->sort.sort_key1 = 0; sdcache->sort.sort_key2 = 0; sdcache->sort.surface_index = p_surface; sdcache->sort.material_id_low = p_material_id & 0x0000FFFF; sdcache->sort.material_id_hi = p_material_id >> 16; sdcache->sort.shader_id = p_shader_id; sdcache->sort.geometry_id = p_mesh.get_local_index(); // sdcache->sort.uses_forward_gi = ginstance->can_sdfgi; sdcache->sort.priority = p_material->priority; } void RenderForwardMobile::_geometry_instance_add_surface(GeometryInstanceForwardMobile *ginstance, uint32_t p_surface, RID p_material, RID p_mesh) { RID m_src; m_src = ginstance->data->material_override.is_valid() ? ginstance->data->material_override : p_material; SceneShaderForwardMobile::MaterialData *material = nullptr; if (m_src.is_valid()) { material = (SceneShaderForwardMobile::MaterialData *)storage->material_get_data(m_src, RendererStorageRD::SHADER_TYPE_3D); if (!material || !material->shader_data->valid) { material = nullptr; } } if (material) { if (ginstance->data->dirty_dependencies) { storage->material_update_dependency(m_src, &ginstance->data->dependency_tracker); } } else { material = (SceneShaderForwardMobile::MaterialData *)storage->material_get_data(scene_shader.default_material, RendererStorageRD::SHADER_TYPE_3D); m_src = scene_shader.default_material; } ERR_FAIL_COND(!material); _geometry_instance_add_surface_with_material(ginstance, p_surface, material, m_src.get_local_index(), storage->material_get_shader_id(m_src), p_mesh); while (material->next_pass.is_valid()) { RID next_pass = material->next_pass; material = (SceneShaderForwardMobile::MaterialData *)storage->material_get_data(next_pass, RendererStorageRD::SHADER_TYPE_3D); if (!material || !material->shader_data->valid) { break; } if (ginstance->data->dirty_dependencies) { storage->material_update_dependency(next_pass, &ginstance->data->dependency_tracker); } _geometry_instance_add_surface_with_material(ginstance, p_surface, material, next_pass.get_local_index(), storage->material_get_shader_id(next_pass), p_mesh); } } void RenderForwardMobile::_geometry_instance_update(GeometryInstance *p_geometry_instance) { GeometryInstanceForwardMobile *ginstance = static_cast(p_geometry_instance); if (ginstance->data->dirty_dependencies) { ginstance->data->dependency_tracker.update_begin(); } //add geometry for drawing switch (ginstance->data->base_type) { case RS::INSTANCE_MESH: { const RID *materials = nullptr; uint32_t surface_count; RID mesh = ginstance->data->base; materials = storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { //if no materials, no surfaces. const RID *inst_materials = ginstance->data->surface_materials.ptr(); uint32_t surf_mat_count = ginstance->data->surface_materials.size(); for (uint32_t j = 0; j < surface_count; j++) { RID material = (j < surf_mat_count && inst_materials[j].is_valid()) ? inst_materials[j] : materials[j]; _geometry_instance_add_surface(ginstance, j, material, mesh); } } ginstance->instance_count = 1; } break; case RS::INSTANCE_MULTIMESH: { RID mesh = storage->multimesh_get_mesh(ginstance->data->base); if (mesh.is_valid()) { const RID *materials = nullptr; uint32_t surface_count; materials = storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { for (uint32_t j = 0; j < surface_count; j++) { _geometry_instance_add_surface(ginstance, j, materials[j], mesh); } } ginstance->instance_count = storage->multimesh_get_instances_to_draw(ginstance->data->base); } } break; #if 0 case RS::INSTANCE_IMMEDIATE: { RasterizerStorageGLES3::Immediate *immediate = storage->immediate_owner.get_or_null(inst->base); ERR_CONTINUE(!immediate); _add_geometry(immediate, inst, nullptr, -1, p_depth_pass, p_shadow_pass); } break; #endif case RS::INSTANCE_PARTICLES: { int draw_passes = storage->particles_get_draw_passes(ginstance->data->base); for (int j = 0; j < draw_passes; j++) { RID mesh = storage->particles_get_draw_pass_mesh(ginstance->data->base, j); if (!mesh.is_valid()) { continue; } const RID *materials = nullptr; uint32_t surface_count; materials = storage->mesh_get_surface_count_and_materials(mesh, surface_count); if (materials) { for (uint32_t k = 0; k < surface_count; k++) { _geometry_instance_add_surface(ginstance, k, materials[k], mesh); } } } ginstance->instance_count = storage->particles_get_amount(ginstance->data->base, ginstance->trail_steps); } break; default: { } } //Fill push constant bool store_transform = true; ginstance->base_flags = 0; if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH; if (storage->multimesh_get_transform_format(ginstance->data->base) == RS::MULTIMESH_TRANSFORM_2D) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D; } if (storage->multimesh_uses_colors(ginstance->data->base)) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; } if (storage->multimesh_uses_custom_data(ginstance->data->base)) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; } ginstance->transforms_uniform_set = storage->multimesh_get_3d_uniform_set(ginstance->data->base, scene_shader.default_shader_rd, TRANSFORMS_UNIFORM_SET); } else if (ginstance->data->base_type == RS::INSTANCE_PARTICLES) { ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH; if (false) { // 2D particles ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_FORMAT_2D; } ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_COLOR; ginstance->base_flags |= INSTANCE_DATA_FLAG_MULTIMESH_HAS_CUSTOM_DATA; //for particles, stride is the trail size ginstance->base_flags |= (ginstance->trail_steps << INSTANCE_DATA_FLAGS_PARTICLE_TRAIL_SHIFT); if (!storage->particles_is_using_local_coords(ginstance->data->base)) { store_transform = false; } ginstance->transforms_uniform_set = storage->particles_get_instance_buffer_uniform_set(ginstance->data->base, scene_shader.default_shader_rd, TRANSFORMS_UNIFORM_SET); } else if (ginstance->data->base_type == RS::INSTANCE_MESH) { if (storage->skeleton_is_valid(ginstance->data->skeleton)) { ginstance->transforms_uniform_set = storage->skeleton_get_3d_uniform_set(ginstance->data->skeleton, scene_shader.default_shader_rd, TRANSFORMS_UNIFORM_SET); if (ginstance->data->dirty_dependencies) { storage->skeleton_update_dependency(ginstance->data->skeleton, &ginstance->data->dependency_tracker); } } } ginstance->store_transform_cache = store_transform; if (ginstance->data->dirty_dependencies) { ginstance->data->dependency_tracker.update_end(); ginstance->data->dirty_dependencies = false; } ginstance->dirty_list_element.remove_from_list(); } void RenderForwardMobile::_update_dirty_geometry_instances() { while (geometry_instance_dirty_list.first()) { _geometry_instance_update(geometry_instance_dirty_list.first()->self()); } } void RenderForwardMobile::_geometry_instance_dependency_changed(RendererStorage::DependencyChangedNotification p_notification, RendererStorage::DependencyTracker *p_tracker) { switch (p_notification) { case RendererStorage::DEPENDENCY_CHANGED_MATERIAL: case RendererStorage::DEPENDENCY_CHANGED_MESH: case RendererStorage::DEPENDENCY_CHANGED_PARTICLES: case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH: case RendererStorage::DEPENDENCY_CHANGED_SKELETON_DATA: { static_cast(singleton)->_geometry_instance_mark_dirty(static_cast(p_tracker->userdata)); } break; case RendererStorage::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES: { GeometryInstanceForwardMobile *ginstance = static_cast(p_tracker->userdata); if (ginstance->data->base_type == RS::INSTANCE_MULTIMESH) { ginstance->instance_count = static_cast(singleton)->storage->multimesh_get_instances_to_draw(ginstance->data->base); } } break; default: { //rest of notifications of no interest } break; } } void RenderForwardMobile::_geometry_instance_dependency_deleted(const RID &p_dependency, RendererStorage::DependencyTracker *p_tracker) { static_cast(singleton)->_geometry_instance_mark_dirty(static_cast(p_tracker->userdata)); } /* misc */ bool RenderForwardMobile::is_dynamic_gi_supported() const { return false; } bool RenderForwardMobile::is_clustered_enabled() const { return false; } bool RenderForwardMobile::is_volumetric_supported() const { return false; } uint32_t RenderForwardMobile::get_max_elements() const { return 256; } RenderForwardMobile *RenderForwardMobile::singleton = nullptr; void RenderForwardMobile::_update_shader_quality_settings() { Vector spec_constants; RD::PipelineSpecializationConstant sc; sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT; sc.constant_id = SPEC_CONSTANT_SOFT_SHADOW_SAMPLES; sc.int_value = soft_shadow_samples_get(); spec_constants.push_back(sc); sc.constant_id = SPEC_CONSTANT_PENUMBRA_SHADOW_SAMPLES; sc.int_value = penumbra_shadow_samples_get(); spec_constants.push_back(sc); sc.constant_id = SPEC_CONSTANT_DIRECTIONAL_SOFT_SHADOW_SAMPLES; sc.int_value = directional_soft_shadow_samples_get(); spec_constants.push_back(sc); sc.constant_id = SPEC_CONSTANT_DIRECTIONAL_PENUMBRA_SHADOW_SAMPLES; sc.int_value = directional_penumbra_shadow_samples_get(); spec_constants.push_back(sc); sc.type = RD::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL; sc.constant_id = SPEC_CONSTANT_DECAL_USE_MIPMAPS; sc.bool_value = decals_get_filter() == RS::DECAL_FILTER_NEAREST_MIPMAPS || decals_get_filter() == RS::DECAL_FILTER_LINEAR_MIPMAPS || decals_get_filter() == RS::DECAL_FILTER_LINEAR_MIPMAPS_ANISOTROPIC; spec_constants.push_back(sc); sc.constant_id = SPEC_CONSTANT_PROJECTOR_USE_MIPMAPS; sc.bool_value = light_projectors_get_filter() == RS::LIGHT_PROJECTOR_FILTER_NEAREST_MIPMAPS || light_projectors_get_filter() == RS::LIGHT_PROJECTOR_FILTER_LINEAR_MIPMAPS || light_projectors_get_filter() == RS::LIGHT_PROJECTOR_FILTER_LINEAR_MIPMAPS_ANISOTROPIC; spec_constants.push_back(sc); scene_shader.set_default_specialization_constants(spec_constants); _base_uniforms_changed(); //also need this } RenderForwardMobile::RenderForwardMobile(RendererStorageRD *p_storage) : RendererSceneRenderRD(p_storage) { singleton = this; sky.set_texture_format(_render_buffers_get_color_format()); String defines; defines += "\n#define MAX_ROUGHNESS_LOD " + itos(get_roughness_layers() - 1) + ".0\n"; if (is_using_radiance_cubemap_array()) { defines += "\n#define USE_RADIANCE_CUBEMAP_ARRAY \n"; } // defines += "\n#define SDFGI_OCT_SIZE " + itos(gi.sdfgi_get_lightprobe_octahedron_size()) + "\n"; defines += "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(MAX_DIRECTIONAL_LIGHTS) + "\n"; { //lightmaps scene_state.max_lightmaps = 2; defines += "\n#define MAX_LIGHTMAP_TEXTURES " + itos(scene_state.max_lightmaps) + "\n"; defines += "\n#define MAX_LIGHTMAPS " + itos(scene_state.max_lightmaps) + "\n"; scene_state.lightmap_buffer = RD::get_singleton()->storage_buffer_create(sizeof(LightmapData) * scene_state.max_lightmaps); } { //captures scene_state.max_lightmap_captures = 2048; scene_state.lightmap_captures = memnew_arr(LightmapCaptureData, scene_state.max_lightmap_captures); scene_state.lightmap_capture_buffer = RD::get_singleton()->storage_buffer_create(sizeof(LightmapCaptureData) * scene_state.max_lightmap_captures); } { defines += "\n#define MATERIAL_UNIFORM_SET " + itos(MATERIAL_UNIFORM_SET) + "\n"; } scene_shader.init(p_storage, defines); // !BAS! maybe we need a mobile version of this setting? render_list_thread_threshold = GLOBAL_GET("rendering/limits/forward_renderer/threaded_render_minimum_instances"); _update_shader_quality_settings(); } RenderForwardMobile::~RenderForwardMobile() { directional_shadow_atlas_set_size(0); //clear base uniform set if still valid for (uint32_t i = 0; i < render_pass_uniform_sets.size(); i++) { if (render_pass_uniform_sets[i].is_valid() && RD::get_singleton()->uniform_set_is_valid(render_pass_uniform_sets[i])) { RD::get_singleton()->free(render_pass_uniform_sets[i]); } } { for (uint32_t i = 0; i < scene_state.uniform_buffers.size(); i++) { RD::get_singleton()->free(scene_state.uniform_buffers[i]); } RD::get_singleton()->free(scene_state.lightmap_buffer); RD::get_singleton()->free(scene_state.lightmap_capture_buffer); memdelete_arr(scene_state.lightmap_captures); } }