// Copyright 2014 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Utilities for processing transparent channel. // // Author: Skal (pascal.massimino@gmail.com) #include "./dsp.h" #if defined(WEBP_USE_SSE2) #include //------------------------------------------------------------------------------ static int DispatchAlpha(const uint8_t* alpha, int alpha_stride, int width, int height, uint8_t* dst, int dst_stride) { // alpha_and stores an 'and' operation of all the alpha[] values. The final // value is not 0xff if any of the alpha[] is not equal to 0xff. uint32_t alpha_and = 0xff; int i, j; const __m128i zero = _mm_setzero_si128(); const __m128i rgb_mask = _mm_set1_epi32(0xffffff00u); // to preserve RGB const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); __m128i all_alphas = all_0xff; // We must be able to access 3 extra bytes after the last written byte // 'dst[4 * width - 4]', because we don't know if alpha is the first or the // last byte of the quadruplet. const int limit = (width - 1) & ~7; for (j = 0; j < height; ++j) { __m128i* out = (__m128i*)dst; for (i = 0; i < limit; i += 8) { // load 8 alpha bytes const __m128i a0 = _mm_loadl_epi64((const __m128i*)&alpha[i]); const __m128i a1 = _mm_unpacklo_epi8(a0, zero); const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); // load 8 dst pixels (32 bytes) const __m128i b0_lo = _mm_loadu_si128(out + 0); const __m128i b0_hi = _mm_loadu_si128(out + 1); // mask dst alpha values const __m128i b1_lo = _mm_and_si128(b0_lo, rgb_mask); const __m128i b1_hi = _mm_and_si128(b0_hi, rgb_mask); // combine const __m128i b2_lo = _mm_or_si128(b1_lo, a2_lo); const __m128i b2_hi = _mm_or_si128(b1_hi, a2_hi); // store _mm_storeu_si128(out + 0, b2_lo); _mm_storeu_si128(out + 1, b2_hi); // accumulate eight alpha 'and' in parallel all_alphas = _mm_and_si128(all_alphas, a0); out += 2; } for (; i < width; ++i) { const uint32_t alpha_value = alpha[i]; dst[4 * i] = alpha_value; alpha_and &= alpha_value; } alpha += alpha_stride; dst += dst_stride; } // Combine the eight alpha 'and' into a 8-bit mask. alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); return (alpha_and != 0xff); } static void DispatchAlphaToGreen(const uint8_t* alpha, int alpha_stride, int width, int height, uint32_t* dst, int dst_stride) { int i, j; const __m128i zero = _mm_setzero_si128(); const int limit = width & ~15; for (j = 0; j < height; ++j) { for (i = 0; i < limit; i += 16) { // process 16 alpha bytes const __m128i a0 = _mm_loadu_si128((const __m128i*)&alpha[i]); const __m128i a1 = _mm_unpacklo_epi8(zero, a0); // note the 'zero' first! const __m128i b1 = _mm_unpackhi_epi8(zero, a0); const __m128i a2_lo = _mm_unpacklo_epi16(a1, zero); const __m128i b2_lo = _mm_unpacklo_epi16(b1, zero); const __m128i a2_hi = _mm_unpackhi_epi16(a1, zero); const __m128i b2_hi = _mm_unpackhi_epi16(b1, zero); _mm_storeu_si128((__m128i*)&dst[i + 0], a2_lo); _mm_storeu_si128((__m128i*)&dst[i + 4], a2_hi); _mm_storeu_si128((__m128i*)&dst[i + 8], b2_lo); _mm_storeu_si128((__m128i*)&dst[i + 12], b2_hi); } for (; i < width; ++i) dst[i] = alpha[i] << 8; alpha += alpha_stride; dst += dst_stride; } } static int ExtractAlpha(const uint8_t* argb, int argb_stride, int width, int height, uint8_t* alpha, int alpha_stride) { // alpha_and stores an 'and' operation of all the alpha[] values. The final // value is not 0xff if any of the alpha[] is not equal to 0xff. uint32_t alpha_and = 0xff; int i, j; const __m128i a_mask = _mm_set1_epi32(0xffu); // to preserve alpha const __m128i all_0xff = _mm_set_epi32(0, 0, ~0u, ~0u); __m128i all_alphas = all_0xff; // We must be able to access 3 extra bytes after the last written byte // 'src[4 * width - 4]', because we don't know if alpha is the first or the // last byte of the quadruplet. const int limit = (width - 1) & ~7; for (j = 0; j < height; ++j) { const __m128i* src = (const __m128i*)argb; for (i = 0; i < limit; i += 8) { // load 32 argb bytes const __m128i a0 = _mm_loadu_si128(src + 0); const __m128i a1 = _mm_loadu_si128(src + 1); const __m128i b0 = _mm_and_si128(a0, a_mask); const __m128i b1 = _mm_and_si128(a1, a_mask); const __m128i c0 = _mm_packs_epi32(b0, b1); const __m128i d0 = _mm_packus_epi16(c0, c0); // store _mm_storel_epi64((__m128i*)&alpha[i], d0); // accumulate eight alpha 'and' in parallel all_alphas = _mm_and_si128(all_alphas, d0); src += 2; } for (; i < width; ++i) { const uint32_t alpha_value = argb[4 * i]; alpha[i] = alpha_value; alpha_and &= alpha_value; } argb += argb_stride; alpha += alpha_stride; } // Combine the eight alpha 'and' into a 8-bit mask. alpha_and &= _mm_movemask_epi8(_mm_cmpeq_epi8(all_alphas, all_0xff)); return (alpha_and == 0xff); } //------------------------------------------------------------------------------ // Non-dither premultiplied modes #define MULTIPLIER(a) ((a) * 0x8081) #define PREMULTIPLY(x, m) (((x) * (m)) >> 23) // We can't use a 'const int' for the SHUFFLE value, because it has to be an // immediate in the _mm_shufflexx_epi16() instruction. We really a macro here. #define APPLY_ALPHA(RGBX, SHUFFLE, MASK, MULT) do { \ const __m128i argb0 = _mm_loadl_epi64((__m128i*)&(RGBX)); \ const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); \ const __m128i alpha0 = _mm_and_si128(argb1, MASK); \ const __m128i alpha1 = _mm_shufflelo_epi16(alpha0, SHUFFLE); \ const __m128i alpha2 = _mm_shufflehi_epi16(alpha1, SHUFFLE); \ /* alpha2 = [0 a0 a0 a0][0 a1 a1 a1] */ \ const __m128i scale0 = _mm_mullo_epi16(alpha2, MULT); \ const __m128i scale1 = _mm_mulhi_epu16(alpha2, MULT); \ const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); \ const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); \ const __m128i argb4 = _mm_adds_epu16(argb2, argb3); \ const __m128i argb5 = _mm_srli_epi16(argb4, 7); \ const __m128i argb6 = _mm_or_si128(argb5, alpha0); \ const __m128i argb7 = _mm_packus_epi16(argb6, zero); \ _mm_storel_epi64((__m128i*)&(RGBX), argb7); \ } while (0) static void ApplyAlphaMultiply(uint8_t* rgba, int alpha_first, int w, int h, int stride) { const __m128i zero = _mm_setzero_si128(); const int kSpan = 2; const int w2 = w & ~(kSpan - 1); while (h-- > 0) { uint32_t* const rgbx = (uint32_t*)rgba; int i; if (!alpha_first) { const __m128i kMask = _mm_set_epi16(0xff, 0, 0, 0, 0xff, 0, 0, 0); const __m128i kMult = _mm_set_epi16(0, 0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081); for (i = 0; i < w2; i += kSpan) { APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 3, 3, 3), kMask, kMult); } } else { const __m128i kMask = _mm_set_epi16(0, 0, 0, 0xff, 0, 0, 0, 0xff); const __m128i kMult = _mm_set_epi16(0x8081, 0x8081, 0x8081, 0, 0x8081, 0x8081, 0x8081, 0); for (i = 0; i < w2; i += kSpan) { APPLY_ALPHA(rgbx[i], _MM_SHUFFLE(0, 0, 0, 3), kMask, kMult); } } // Finish with left-overs. for (; i < w; ++i) { uint8_t* const rgb = rgba + (alpha_first ? 1 : 0); const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3); const uint32_t a = alpha[4 * i]; if (a != 0xff) { const uint32_t mult = MULTIPLIER(a); rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult); rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult); rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult); } } rgba += stride; } } #undef MULTIPLIER #undef PREMULTIPLY // ----------------------------------------------------------------------------- // Apply alpha value to rows // We use: kINV255 = (1 << 24) / 255 = 0x010101 // So: a * kINV255 = (a << 16) | [(a << 8) | a] // -> _mm_mulhi_epu16() takes care of the (a<<16) part, // and _mm_mullo_epu16(a * 0x0101,...) takes care of the "(a << 8) | a" one. static void MultARGBRow(uint32_t* const ptr, int width, int inverse) { int x = 0; if (!inverse) { const int kSpan = 2; const __m128i zero = _mm_setzero_si128(); const __m128i kRound = _mm_set_epi16(0, 1 << 7, 1 << 7, 1 << 7, 0, 1 << 7, 1 << 7, 1 << 7); const __m128i kMult = _mm_set_epi16(0, 0x0101, 0x0101, 0x0101, 0, 0x0101, 0x0101, 0x0101); const __m128i kOne64 = _mm_set_epi16(1u << 8, 0, 0, 0, 1u << 8, 0, 0, 0); const int w2 = width & ~(kSpan - 1); for (x = 0; x < w2; x += kSpan) { const __m128i argb0 = _mm_loadl_epi64((__m128i*)&ptr[x]); const __m128i argb1 = _mm_unpacklo_epi8(argb0, zero); const __m128i tmp0 = _mm_shufflelo_epi16(argb1, _MM_SHUFFLE(3, 3, 3, 3)); const __m128i tmp1 = _mm_shufflehi_epi16(tmp0, _MM_SHUFFLE(3, 3, 3, 3)); const __m128i tmp2 = _mm_srli_epi64(tmp1, 16); const __m128i scale0 = _mm_mullo_epi16(tmp1, kMult); const __m128i scale1 = _mm_or_si128(tmp2, kOne64); const __m128i argb2 = _mm_mulhi_epu16(argb1, scale0); const __m128i argb3 = _mm_mullo_epi16(argb1, scale1); const __m128i argb4 = _mm_adds_epu16(argb2, argb3); const __m128i argb5 = _mm_adds_epu16(argb4, kRound); const __m128i argb6 = _mm_srli_epi16(argb5, 8); const __m128i argb7 = _mm_packus_epi16(argb6, zero); _mm_storel_epi64((__m128i*)&ptr[x], argb7); } } width -= x; if (width > 0) WebPMultARGBRowC(ptr + x, width, inverse); } static void MultRow(uint8_t* const ptr, const uint8_t* const alpha, int width, int inverse) { int x = 0; if (!inverse) { const int kSpan = 8; const __m128i zero = _mm_setzero_si128(); const __m128i kRound = _mm_set1_epi16(1 << 7); const int w2 = width & ~(kSpan - 1); for (x = 0; x < w2; x += kSpan) { const __m128i v0 = _mm_loadl_epi64((__m128i*)&ptr[x]); const __m128i v1 = _mm_unpacklo_epi8(v0, zero); const __m128i alpha0 = _mm_loadl_epi64((const __m128i*)&alpha[x]); const __m128i alpha1 = _mm_unpacklo_epi8(alpha0, zero); const __m128i alpha2 = _mm_unpacklo_epi8(alpha0, alpha0); const __m128i v2 = _mm_mulhi_epu16(v1, alpha2); const __m128i v3 = _mm_mullo_epi16(v1, alpha1); const __m128i v4 = _mm_adds_epu16(v2, v3); const __m128i v5 = _mm_adds_epu16(v4, kRound); const __m128i v6 = _mm_srli_epi16(v5, 8); const __m128i v7 = _mm_packus_epi16(v6, zero); _mm_storel_epi64((__m128i*)&ptr[x], v7); } } width -= x; if (width > 0) WebPMultRowC(ptr + x, alpha + x, width, inverse); } //------------------------------------------------------------------------------ // Entry point extern void WebPInitAlphaProcessingSSE2(void); WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingSSE2(void) { WebPMultARGBRow = MultARGBRow; WebPMultRow = MultRow; WebPApplyAlphaMultiply = ApplyAlphaMultiply; WebPDispatchAlpha = DispatchAlpha; WebPDispatchAlphaToGreen = DispatchAlphaToGreen; WebPExtractAlpha = ExtractAlpha; } #else // !WEBP_USE_SSE2 WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingSSE2) #endif // WEBP_USE_SSE2