/*************************************************************************/ /* pool_allocator.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "pool_allocator.h" #include "core/error/error_macros.h" #include "core/os/copymem.h" #include "core/os/memory.h" #include "core/os/os.h" #include "core/string/print_string.h" #include #define COMPACT_CHUNK(m_entry, m_to_pos) \ do { \ void *_dst = &((unsigned char *)pool)[m_to_pos]; \ void *_src = &((unsigned char *)pool)[(m_entry).pos]; \ movemem(_dst, _src, aligned((m_entry).len)); \ (m_entry).pos = m_to_pos; \ } while (0); void PoolAllocator::mt_lock() const { } void PoolAllocator::mt_unlock() const { } bool PoolAllocator::get_free_entry(EntryArrayPos *p_pos) { if (entry_count == entry_max) { return false; } for (int i = 0; i < entry_max; i++) { if (entry_array[i].len == 0) { *p_pos = i; return true; } } ERR_PRINT("Out of memory Chunks!"); return false; // } /** * Find a hole * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end * @param p_for_size hole size * @return false if hole found, true if no hole found */ bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) { /* position where previous entry ends. Defaults to zero (begin of pool) */ int prev_entry_end_pos = 0; for (int i = 0; i < entry_count; i++) { Entry &entry = entry_array[entry_indices[i]]; /* determine hole size to previous entry */ int hole_size = entry.pos - prev_entry_end_pos; /* determine if what we want fits in that hole */ if (hole_size >= p_for_size) { *p_pos = i; return true; } /* prepare for next one */ prev_entry_end_pos = entry_end(entry); } /* No holes between entries, check at the end..*/ if ((pool_size - prev_entry_end_pos) >= p_for_size) { *p_pos = entry_count; return true; } return false; } void PoolAllocator::compact(int p_up_to) { uint32_t prev_entry_end_pos = 0; if (p_up_to < 0) { p_up_to = entry_count; } for (int i = 0; i < p_up_to; i++) { Entry &entry = entry_array[entry_indices[i]]; /* determine hole size to previous entry */ int hole_size = entry.pos - prev_entry_end_pos; /* if we can compact, do it */ if (hole_size > 0 && !entry.lock) { COMPACT_CHUNK(entry, prev_entry_end_pos); } /* prepare for next one */ prev_entry_end_pos = entry_end(entry); } } void PoolAllocator::compact_up(int p_from) { uint32_t next_entry_end_pos = pool_size; // - static_area_size; for (int i = entry_count - 1; i >= p_from; i--) { Entry &entry = entry_array[entry_indices[i]]; /* determine hole size for next entry */ int hole_size = next_entry_end_pos - (entry.pos + aligned(entry.len)); /* if we can compact, do it */ if (hole_size > 0 && !entry.lock) { COMPACT_CHUNK(entry, (next_entry_end_pos - aligned(entry.len))); } /* prepare for next one */ next_entry_end_pos = entry.pos; } } bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos, Entry *p_entry) { EntryArrayPos entry_pos = entry_max; for (int i = 0; i < entry_count; i++) { if (&entry_array[entry_indices[i]] == p_entry) { entry_pos = i; break; } } if (entry_pos == entry_max) { return false; } *p_map_pos = entry_pos; return true; } PoolAllocator::ID PoolAllocator::alloc(int p_size) { ERR_FAIL_COND_V(p_size < 1, POOL_ALLOCATOR_INVALID_ID); #ifdef DEBUG_ENABLED if (p_size > free_mem) { OS::get_singleton()->debug_break(); } #endif ERR_FAIL_COND_V(p_size > free_mem, POOL_ALLOCATOR_INVALID_ID); mt_lock(); if (entry_count == entry_max) { mt_unlock(); ERR_PRINT("entry_count==entry_max"); return POOL_ALLOCATOR_INVALID_ID; } int size_to_alloc = aligned(p_size); EntryIndicesPos new_entry_indices_pos; if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { /* No hole could be found, try compacting mem */ compact(); /* Then search again */ if (!find_hole(&new_entry_indices_pos, size_to_alloc)) { mt_unlock(); ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "Memory can't be compacted further."); } } EntryArrayPos new_entry_array_pos; bool found_free_entry = get_free_entry(&new_entry_array_pos); if (!found_free_entry) { mt_unlock(); ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "No free entry found in PoolAllocator."); } /* move all entry indices up, make room for this one */ for (int i = entry_count; i > new_entry_indices_pos; i--) { entry_indices[i] = entry_indices[i - 1]; } entry_indices[new_entry_indices_pos] = new_entry_array_pos; entry_count++; Entry &entry = entry_array[entry_indices[new_entry_indices_pos]]; entry.len = p_size; entry.pos = (new_entry_indices_pos == 0) ? 0 : entry_end(entry_array[entry_indices[new_entry_indices_pos - 1]]); //alloc either at beginning or end of previous entry.lock = 0; entry.check = (check_count++) & CHECK_MASK; free_mem -= size_to_alloc; if (free_mem < free_mem_peak) { free_mem_peak = free_mem; } ID retval = (entry_indices[new_entry_indices_pos] << CHECK_BITS) | entry.check; mt_unlock(); //ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval ); return retval; } PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) { unsigned int check = p_mem & CHECK_MASK; int entry = p_mem >> CHECK_BITS; ERR_FAIL_INDEX_V(entry, entry_max, nullptr); ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr); ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr); return &entry_array[entry]; } const PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) const { unsigned int check = p_mem & CHECK_MASK; int entry = p_mem >> CHECK_BITS; ERR_FAIL_INDEX_V(entry, entry_max, nullptr); ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr); ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr); return &entry_array[entry]; } void PoolAllocator::free(ID p_mem) { mt_lock(); Entry *e = get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return; } if (e->lock) { mt_unlock(); ERR_PRINT("e->lock"); return; } EntryIndicesPos entry_indices_pos; bool index_found = find_entry_index(&entry_indices_pos, e); if (!index_found) { mt_unlock(); ERR_FAIL_COND(!index_found); } for (int i = entry_indices_pos; i < (entry_count - 1); i++) { entry_indices[i] = entry_indices[i + 1]; } entry_count--; free_mem += aligned(e->len); e->clear(); mt_unlock(); } int PoolAllocator::get_size(ID p_mem) const { int size; mt_lock(); const Entry *e = get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return 0; } size = e->len; mt_unlock(); return size; } Error PoolAllocator::resize(ID p_mem, int p_new_size) { mt_lock(); Entry *e = get_entry(p_mem); if (!e) { mt_unlock(); ERR_FAIL_COND_V(!e, ERR_INVALID_PARAMETER); } if (needs_locking && e->lock) { mt_unlock(); ERR_FAIL_COND_V(e->lock, ERR_ALREADY_IN_USE); } uint32_t alloc_size = aligned(p_new_size); if ((uint32_t)aligned(e->len) == alloc_size) { e->len = p_new_size; mt_unlock(); return OK; } else if (e->len > (uint32_t)p_new_size) { free_mem += aligned(e->len); free_mem -= alloc_size; e->len = p_new_size; mt_unlock(); return OK; } //p_new_size = align(p_new_size) int _free = free_mem; // - static_area_size; if (uint32_t(_free + aligned(e->len)) < alloc_size) { mt_unlock(); ERR_FAIL_V(ERR_OUT_OF_MEMORY); } EntryIndicesPos entry_indices_pos; bool index_found = find_entry_index(&entry_indices_pos, e); if (!index_found) { mt_unlock(); ERR_FAIL_COND_V(!index_found, ERR_BUG); } //no need to move stuff around, it fits before the next block uint32_t next_pos; if (entry_indices_pos + 1 == entry_count) { next_pos = pool_size; // - static_area_size; } else { next_pos = entry_array[entry_indices[entry_indices_pos + 1]].pos; } if ((next_pos - e->pos) > alloc_size) { free_mem += aligned(e->len); e->len = p_new_size; free_mem -= alloc_size; mt_unlock(); return OK; } //it doesn't fit, compact around BEFORE current index (make room behind) compact(entry_indices_pos + 1); if ((next_pos - e->pos) > alloc_size) { //now fits! hooray! free_mem += aligned(e->len); e->len = p_new_size; free_mem -= alloc_size; mt_unlock(); if (free_mem < free_mem_peak) { free_mem_peak = free_mem; } return OK; } //STILL doesn't fit, compact around AFTER current index (make room after) compact_up(entry_indices_pos + 1); if ((entry_array[entry_indices[entry_indices_pos + 1]].pos - e->pos) > alloc_size) { //now fits! hooray! free_mem += aligned(e->len); e->len = p_new_size; free_mem -= alloc_size; mt_unlock(); if (free_mem < free_mem_peak) { free_mem_peak = free_mem; } return OK; } mt_unlock(); ERR_FAIL_V(ERR_OUT_OF_MEMORY); } Error PoolAllocator::lock(ID p_mem) { if (!needs_locking) { return OK; } mt_lock(); Entry *e = get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return ERR_INVALID_PARAMETER; } e->lock++; mt_unlock(); return OK; } bool PoolAllocator::is_locked(ID p_mem) const { if (!needs_locking) { return false; } mt_lock(); const Entry *e = ((PoolAllocator *)(this))->get_entry(p_mem); if (!e) { mt_unlock(); ERR_PRINT("!e"); return false; } bool locked = e->lock; mt_unlock(); return locked; } const void *PoolAllocator::get(ID p_mem) const { if (!needs_locking) { const Entry *e = get_entry(p_mem); ERR_FAIL_COND_V(!e, nullptr); return &pool[e->pos]; } mt_lock(); const Entry *e = get_entry(p_mem); if (!e) { mt_unlock(); ERR_FAIL_COND_V(!e, nullptr); } if (e->lock == 0) { mt_unlock(); ERR_PRINT("e->lock == 0"); return nullptr; } if ((int)e->pos >= pool_size) { mt_unlock(); ERR_PRINT("e->pos<0 || e->pos>=pool_size"); return nullptr; } const void *ptr = &pool[e->pos]; mt_unlock(); return ptr; } void *PoolAllocator::get(ID p_mem) { if (!needs_locking) { Entry *e = get_entry(p_mem); ERR_FAIL_COND_V(!e, nullptr); return &pool[e->pos]; } mt_lock(); Entry *e = get_entry(p_mem); if (!e) { mt_unlock(); ERR_FAIL_COND_V(!e, nullptr); } if (e->lock == 0) { //assert(0); mt_unlock(); ERR_PRINT("e->lock == 0"); return nullptr; } if ((int)e->pos >= pool_size) { mt_unlock(); ERR_PRINT("e->pos<0 || e->pos>=pool_size"); return nullptr; } void *ptr = &pool[e->pos]; mt_unlock(); return ptr; } void PoolAllocator::unlock(ID p_mem) { if (!needs_locking) { return; } mt_lock(); Entry *e = get_entry(p_mem); if (!e) { mt_unlock(); ERR_FAIL_COND(!e); } if (e->lock == 0) { mt_unlock(); ERR_PRINT("e->lock == 0"); return; } e->lock--; mt_unlock(); } int PoolAllocator::get_used_mem() const { return pool_size - free_mem; } int PoolAllocator::get_free_peak() { return free_mem_peak; } int PoolAllocator::get_free_mem() { return free_mem; } void PoolAllocator::create_pool(void *p_mem, int p_size, int p_max_entries) { pool = (uint8_t *)p_mem; pool_size = p_size; entry_array = memnew_arr(Entry, p_max_entries); entry_indices = memnew_arr(int, p_max_entries); entry_max = p_max_entries; entry_count = 0; free_mem = p_size; free_mem_peak = p_size; check_count = 0; } PoolAllocator::PoolAllocator(int p_size, bool p_needs_locking, int p_max_entries) { mem_ptr = memalloc(p_size); ERR_FAIL_COND(!mem_ptr); align = 1; create_pool(mem_ptr, p_size, p_max_entries); needs_locking = p_needs_locking; } PoolAllocator::PoolAllocator(void *p_mem, int p_size, int p_align, bool p_needs_locking, int p_max_entries) { if (p_align > 1) { uint8_t *mem8 = (uint8_t *)p_mem; uint64_t ofs = (uint64_t)mem8; if (ofs % p_align) { int dif = p_align - (ofs % p_align); mem8 += p_align - (ofs % p_align); p_size -= dif; p_mem = (void *)mem8; } } create_pool(p_mem, p_size, p_max_entries); needs_locking = p_needs_locking; align = p_align; mem_ptr = nullptr; } PoolAllocator::PoolAllocator(int p_align, int p_size, bool p_needs_locking, int p_max_entries) { ERR_FAIL_COND(p_align < 1); mem_ptr = Memory::alloc_static(p_size + p_align, true); uint8_t *mem8 = (uint8_t *)mem_ptr; uint64_t ofs = (uint64_t)mem8; if (ofs % p_align) { mem8 += p_align - (ofs % p_align); } create_pool(mem8, p_size, p_max_entries); needs_locking = p_needs_locking; align = p_align; } PoolAllocator::~PoolAllocator() { if (mem_ptr) { memfree(mem_ptr); } memdelete_arr(entry_array); memdelete_arr(entry_indices); }