// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include // This work is based on: // Fabian Giesen. Simple lossless index buffer compression & follow-up. 2013 // Conor Stokes. Vertex Cache Optimised Index Buffer Compression. 2014 namespace meshopt { const unsigned char kIndexHeader = 0xe0; const unsigned char kSequenceHeader = 0xd0; static int gEncodeIndexVersion = 0; typedef unsigned int VertexFifo[16]; typedef unsigned int EdgeFifo[16][2]; static const unsigned int kTriangleIndexOrder[3][3] = { {0, 1, 2}, {1, 2, 0}, {2, 0, 1}, }; static const unsigned char kCodeAuxEncodingTable[16] = { 0x00, 0x76, 0x87, 0x56, 0x67, 0x78, 0xa9, 0x86, 0x65, 0x89, 0x68, 0x98, 0x01, 0x69, 0, 0, // last two entries aren't used for encoding }; static int rotateTriangle(unsigned int a, unsigned int b, unsigned int c, unsigned int next) { (void)a; return (b == next) ? 1 : (c == next) ? 2 : 0; } static int getEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, unsigned int c, size_t offset) { for (int i = 0; i < 16; ++i) { size_t index = (offset - 1 - i) & 15; unsigned int e0 = fifo[index][0]; unsigned int e1 = fifo[index][1]; if (e0 == a && e1 == b) return (i << 2) | 0; if (e0 == b && e1 == c) return (i << 2) | 1; if (e0 == c && e1 == a) return (i << 2) | 2; } return -1; } static void pushEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, size_t& offset) { fifo[offset][0] = a; fifo[offset][1] = b; offset = (offset + 1) & 15; } static int getVertexFifo(VertexFifo fifo, unsigned int v, size_t offset) { for (int i = 0; i < 16; ++i) { size_t index = (offset - 1 - i) & 15; if (fifo[index] == v) return i; } return -1; } static void pushVertexFifo(VertexFifo fifo, unsigned int v, size_t& offset, int cond = 1) { fifo[offset] = v; offset = (offset + cond) & 15; } static void encodeVByte(unsigned char*& data, unsigned int v) { // encode 32-bit value in up to 5 7-bit groups do { *data++ = (v & 127) | (v > 127 ? 128 : 0); v >>= 7; } while (v); } static unsigned int decodeVByte(const unsigned char*& data) { unsigned char lead = *data++; // fast path: single byte if (lead < 128) return lead; // slow path: up to 4 extra bytes // note that this loop always terminates, which is important for malformed data unsigned int result = lead & 127; unsigned int shift = 7; for (int i = 0; i < 4; ++i) { unsigned char group = *data++; result |= unsigned(group & 127) << shift; shift += 7; if (group < 128) break; } return result; } static void encodeIndex(unsigned char*& data, unsigned int index, unsigned int last) { unsigned int d = index - last; unsigned int v = (d << 1) ^ (int(d) >> 31); encodeVByte(data, v); } static unsigned int decodeIndex(const unsigned char*& data, unsigned int last) { unsigned int v = decodeVByte(data); unsigned int d = (v >> 1) ^ -int(v & 1); return last + d; } static int getCodeAuxIndex(unsigned char v, const unsigned char* table) { for (int i = 0; i < 16; ++i) if (table[i] == v) return i; return -1; } static void writeTriangle(void* destination, size_t offset, size_t index_size, unsigned int a, unsigned int b, unsigned int c) { if (index_size == 2) { static_cast(destination)[offset + 0] = (unsigned short)(a); static_cast(destination)[offset + 1] = (unsigned short)(b); static_cast(destination)[offset + 2] = (unsigned short)(c); } else { static_cast(destination)[offset + 0] = a; static_cast(destination)[offset + 1] = b; static_cast(destination)[offset + 2] = c; } } } // namespace meshopt size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count) { using namespace meshopt; assert(index_count % 3 == 0); // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table if (buffer_size < 1 + index_count / 3 + 16) return 0; int version = gEncodeIndexVersion; buffer[0] = (unsigned char)(kIndexHeader | version); EdgeFifo edgefifo; memset(edgefifo, -1, sizeof(edgefifo)); VertexFifo vertexfifo; memset(vertexfifo, -1, sizeof(vertexfifo)); size_t edgefifooffset = 0; size_t vertexfifooffset = 0; unsigned int next = 0; unsigned int last = 0; unsigned char* code = buffer + 1; unsigned char* data = code + index_count / 3; unsigned char* data_safe_end = buffer + buffer_size - 16; int fecmax = version >= 1 ? 13 : 15; // use static encoding table; it's possible to pack the result and then build an optimal table and repack // for now we keep it simple and use the table that has been generated based on symbol frequency on a training mesh set const unsigned char* codeaux_table = kCodeAuxEncodingTable; for (size_t i = 0; i < index_count; i += 3) { // make sure we have enough space to write a triangle // each triangle writes at most 16 bytes: 1b for codeaux and 5b for each free index // after this we can be sure we can write without extra bounds checks if (data > data_safe_end) return 0; int fer = getEdgeFifo(edgefifo, indices[i + 0], indices[i + 1], indices[i + 2], edgefifooffset); if (fer >= 0 && (fer >> 2) < 15) { const unsigned int* order = kTriangleIndexOrder[fer & 3]; unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]]; // encode edge index and vertex fifo index, next or free index int fe = fer >> 2; int fc = getVertexFifo(vertexfifo, c, vertexfifooffset); int fec = (fc >= 1 && fc < fecmax) ? fc : (c == next) ? (next++, 0) : 15; if (fec == 15 && version >= 1) { // encode last-1 and last+1 to optimize strip-like sequences if (c + 1 == last) fec = 13, last = c; if (c == last + 1) fec = 14, last = c; } *code++ = (unsigned char)((fe << 4) | fec); // note that we need to update the last index since free indices are delta-encoded if (fec == 15) encodeIndex(data, c, last), last = c; // we only need to push third vertex since first two are likely already in the vertex fifo if (fec == 0 || fec >= fecmax) pushVertexFifo(vertexfifo, c, vertexfifooffset); // we only need to push two new edges to edge fifo since the third one is already there pushEdgeFifo(edgefifo, c, b, edgefifooffset); pushEdgeFifo(edgefifo, a, c, edgefifooffset); } else { int rotation = rotateTriangle(indices[i + 0], indices[i + 1], indices[i + 2], next); const unsigned int* order = kTriangleIndexOrder[rotation]; unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]]; // if a/b/c are 0/1/2, we emit a reset code bool reset = false; if (a == 0 && b == 1 && c == 2 && next > 0 && version >= 1) { reset = true; next = 0; // reset vertex fifo to make sure we don't accidentally reference vertices from that in the future // this makes sure next continues to get incremented instead of being stuck memset(vertexfifo, -1, sizeof(vertexfifo)); } int fb = getVertexFifo(vertexfifo, b, vertexfifooffset); int fc = getVertexFifo(vertexfifo, c, vertexfifooffset); // after rotation, a is almost always equal to next, so we don't waste bits on FIFO encoding for a int fea = (a == next) ? (next++, 0) : 15; int feb = (fb >= 0 && fb < 14) ? (fb + 1) : (b == next) ? (next++, 0) : 15; int fec = (fc >= 0 && fc < 14) ? (fc + 1) : (c == next) ? (next++, 0) : 15; // we encode feb & fec in 4 bits using a table if possible, and as a full byte otherwise unsigned char codeaux = (unsigned char)((feb << 4) | fec); int codeauxindex = getCodeAuxIndex(codeaux, codeaux_table); // <14 encodes an index into codeaux table, 14 encodes fea=0, 15 encodes fea=15 if (fea == 0 && codeauxindex >= 0 && codeauxindex < 14 && !reset) { *code++ = (unsigned char)((15 << 4) | codeauxindex); } else { *code++ = (unsigned char)((15 << 4) | 14 | fea); *data++ = codeaux; } // note that we need to update the last index since free indices are delta-encoded if (fea == 15) encodeIndex(data, a, last), last = a; if (feb == 15) encodeIndex(data, b, last), last = b; if (fec == 15) encodeIndex(data, c, last), last = c; // only push vertices that weren't already in fifo if (fea == 0 || fea == 15) pushVertexFifo(vertexfifo, a, vertexfifooffset); if (feb == 0 || feb == 15) pushVertexFifo(vertexfifo, b, vertexfifooffset); if (fec == 0 || fec == 15) pushVertexFifo(vertexfifo, c, vertexfifooffset); // all three edges aren't in the fifo; pushing all of them is important so that we can match them for later triangles pushEdgeFifo(edgefifo, b, a, edgefifooffset); pushEdgeFifo(edgefifo, c, b, edgefifooffset); pushEdgeFifo(edgefifo, a, c, edgefifooffset); } } // make sure we have enough space to write codeaux table if (data > data_safe_end) return 0; // add codeaux encoding table to the end of the stream; this is used for decoding codeaux *and* as padding // we need padding for decoding to be able to assume that each triangle is encoded as <= 16 bytes of extra data // this is enough space for aux byte + 5 bytes per varint index which is the absolute worst case for any input for (size_t i = 0; i < 16; ++i) { // decoder assumes that table entries never refer to separately encoded indices assert((codeaux_table[i] & 0xf) != 0xf && (codeaux_table[i] >> 4) != 0xf); *data++ = codeaux_table[i]; } // since we encode restarts as codeaux without a table reference, we need to make sure 00 is encoded as a table reference assert(codeaux_table[0] == 0); assert(data >= buffer + index_count / 3 + 16); assert(data <= buffer + buffer_size); return data - buffer; } size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count) { assert(index_count % 3 == 0); // compute number of bits required for each index unsigned int vertex_bits = 1; while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits) vertex_bits++; // worst-case encoding is 2 header bytes + 3 varint-7 encoded index deltas unsigned int vertex_groups = (vertex_bits + 1 + 6) / 7; return 1 + (index_count / 3) * (2 + 3 * vertex_groups) + 16; } void meshopt_encodeIndexVersion(int version) { assert(unsigned(version) <= 1); meshopt::gEncodeIndexVersion = version; } int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size) { using namespace meshopt; assert(index_count % 3 == 0); assert(index_size == 2 || index_size == 4); // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table if (buffer_size < 1 + index_count / 3 + 16) return -2; if ((buffer[0] & 0xf0) != kIndexHeader) return -1; int version = buffer[0] & 0x0f; if (version > 1) return -1; EdgeFifo edgefifo; memset(edgefifo, -1, sizeof(edgefifo)); VertexFifo vertexfifo; memset(vertexfifo, -1, sizeof(vertexfifo)); size_t edgefifooffset = 0; size_t vertexfifooffset = 0; unsigned int next = 0; unsigned int last = 0; int fecmax = version >= 1 ? 13 : 15; // since we store 16-byte codeaux table at the end, triangle data has to begin before data_safe_end const unsigned char* code = buffer + 1; const unsigned char* data = code + index_count / 3; const unsigned char* data_safe_end = buffer + buffer_size - 16; const unsigned char* codeaux_table = data_safe_end; for (size_t i = 0; i < index_count; i += 3) { // make sure we have enough data to read for a triangle // each triangle reads at most 16 bytes of data: 1b for codeaux and 5b for each free index // after this we can be sure we can read without extra bounds checks if (data > data_safe_end) return -2; unsigned char codetri = *code++; if (codetri < 0xf0) { int fe = codetri >> 4; // fifo reads are wrapped around 16 entry buffer unsigned int a = edgefifo[(edgefifooffset - 1 - fe) & 15][0]; unsigned int b = edgefifo[(edgefifooffset - 1 - fe) & 15][1]; int fec = codetri & 15; // note: this is the most common path in the entire decoder // inside this if we try to stay branchless (by using cmov/etc.) since these aren't predictable if (fec < fecmax) { // fifo reads are wrapped around 16 entry buffer unsigned int cf = vertexfifo[(vertexfifooffset - 1 - fec) & 15]; unsigned int c = (fec == 0) ? next : cf; int fec0 = fec == 0; next += fec0; // output triangle writeTriangle(destination, i, index_size, a, b, c); // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0); pushEdgeFifo(edgefifo, c, b, edgefifooffset); pushEdgeFifo(edgefifo, a, c, edgefifooffset); } else { unsigned int c = 0; // fec - (fec ^ 3) decodes 13, 14 into -1, 1 // note that we need to update the last index since free indices are delta-encoded last = c = (fec != 15) ? last + (fec - (fec ^ 3)) : decodeIndex(data, last); // output triangle writeTriangle(destination, i, index_size, a, b, c); // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly pushVertexFifo(vertexfifo, c, vertexfifooffset); pushEdgeFifo(edgefifo, c, b, edgefifooffset); pushEdgeFifo(edgefifo, a, c, edgefifooffset); } } else { // fast path: read codeaux from the table if (codetri < 0xfe) { unsigned char codeaux = codeaux_table[codetri & 15]; // note: table can't contain feb/fec=15 int feb = codeaux >> 4; int fec = codeaux & 15; // fifo reads are wrapped around 16 entry buffer // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior unsigned int a = next++; unsigned int bf = vertexfifo[(vertexfifooffset - feb) & 15]; unsigned int b = (feb == 0) ? next : bf; int feb0 = feb == 0; next += feb0; unsigned int cf = vertexfifo[(vertexfifooffset - fec) & 15]; unsigned int c = (fec == 0) ? next : cf; int fec0 = fec == 0; next += fec0; // output triangle writeTriangle(destination, i, index_size, a, b, c); // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly pushVertexFifo(vertexfifo, a, vertexfifooffset); pushVertexFifo(vertexfifo, b, vertexfifooffset, feb0); pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0); pushEdgeFifo(edgefifo, b, a, edgefifooffset); pushEdgeFifo(edgefifo, c, b, edgefifooffset); pushEdgeFifo(edgefifo, a, c, edgefifooffset); } else { // slow path: read a full byte for codeaux instead of using a table lookup unsigned char codeaux = *data++; int fea = codetri == 0xfe ? 0 : 15; int feb = codeaux >> 4; int fec = codeaux & 15; // reset: codeaux is 0 but encoded as not-a-table if (codeaux == 0) next = 0; // fifo reads are wrapped around 16 entry buffer // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior unsigned int a = (fea == 0) ? next++ : 0; unsigned int b = (feb == 0) ? next++ : vertexfifo[(vertexfifooffset - feb) & 15]; unsigned int c = (fec == 0) ? next++ : vertexfifo[(vertexfifooffset - fec) & 15]; // note that we need to update the last index since free indices are delta-encoded if (fea == 15) last = a = decodeIndex(data, last); if (feb == 15) last = b = decodeIndex(data, last); if (fec == 15) last = c = decodeIndex(data, last); // output triangle writeTriangle(destination, i, index_size, a, b, c); // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly pushVertexFifo(vertexfifo, a, vertexfifooffset); pushVertexFifo(vertexfifo, b, vertexfifooffset, (feb == 0) | (feb == 15)); pushVertexFifo(vertexfifo, c, vertexfifooffset, (fec == 0) | (fec == 15)); pushEdgeFifo(edgefifo, b, a, edgefifooffset); pushEdgeFifo(edgefifo, c, b, edgefifooffset); pushEdgeFifo(edgefifo, a, c, edgefifooffset); } } } // we should've read all data bytes and stopped at the boundary between data and codeaux table if (data != data_safe_end) return -3; return 0; } size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count) { using namespace meshopt; // the minimum valid encoding is header, 1 byte per index and a 4-byte tail if (buffer_size < 1 + index_count + 4) return 0; int version = gEncodeIndexVersion; buffer[0] = (unsigned char)(kSequenceHeader | version); unsigned int last[2] = {}; unsigned int current = 0; unsigned char* data = buffer + 1; unsigned char* data_safe_end = buffer + buffer_size - 4; for (size_t i = 0; i < index_count; ++i) { // make sure we have enough data to write // each index writes at most 5 bytes of data; there's a 4 byte tail after data_safe_end // after this we can be sure we can write without extra bounds checks if (data >= data_safe_end) return 0; unsigned int index = indices[i]; // this is a heuristic that switches between baselines when the delta grows too large // we want the encoded delta to fit into one byte (7 bits), but 2 bits are used for sign and baseline index // for now we immediately switch the baseline when delta grows too large - this can be adjusted arbitrarily int cd = int(index - last[current]); current ^= ((cd < 0 ? -cd : cd) >= 30); // encode delta from the last index unsigned int d = index - last[current]; unsigned int v = (d << 1) ^ (int(d) >> 31); // note: low bit encodes the index of the last baseline which will be used for reconstruction encodeVByte(data, (v << 1) | current); // update last for the next iteration that uses it last[current] = index; } // make sure we have enough space to write tail if (data > data_safe_end) return 0; for (int k = 0; k < 4; ++k) *data++ = 0; return data - buffer; } size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count) { // compute number of bits required for each index unsigned int vertex_bits = 1; while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits) vertex_bits++; // worst-case encoding is 1 varint-7 encoded index delta for a K bit value and an extra bit unsigned int vertex_groups = (vertex_bits + 1 + 1 + 6) / 7; return 1 + index_count * vertex_groups + 4; } int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size) { using namespace meshopt; // the minimum valid encoding is header, 1 byte per index and a 4-byte tail if (buffer_size < 1 + index_count + 4) return -2; if ((buffer[0] & 0xf0) != kSequenceHeader) return -1; int version = buffer[0] & 0x0f; if (version > 1) return -1; const unsigned char* data = buffer + 1; const unsigned char* data_safe_end = buffer + buffer_size - 4; unsigned int last[2] = {}; for (size_t i = 0; i < index_count; ++i) { // make sure we have enough data to read // each index reads at most 5 bytes of data; there's a 4 byte tail after data_safe_end // after this we can be sure we can read without extra bounds checks if (data >= data_safe_end) return -2; unsigned int v = decodeVByte(data); // decode the index of the last baseline unsigned int current = v & 1; v >>= 1; // reconstruct index as a delta unsigned int d = (v >> 1) ^ -int(v & 1); unsigned int index = last[current] + d; // update last for the next iteration that uses it last[current] = index; if (index_size == 2) { static_cast(destination)[i] = (unsigned short)(index); } else { static_cast(destination)[i] = index; } } // we should've read all data bytes and stopped at the boundary between data and tail if (data != data_safe_end) return -3; return 0; }