/*************************************************************************/ /* editor_scene_importer_gltf.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "editor_scene_importer_gltf.h" #include "core/crypto/crypto_core.h" #include "core/io/json.h" #include "core/math/disjoint_set.h" #include "core/math/math_defs.h" #include "core/os/file_access.h" #include "core/os/os.h" #include "modules/regex/regex.h" #include "scene/3d/bone_attachment_3d.h" #include "scene/3d/camera_3d.h" #include "scene/3d/mesh_instance_3d.h" #include "scene/animation/animation_player.h" #include "scene/resources/surface_tool.h" uint32_t EditorSceneImporterGLTF::get_import_flags() const { return IMPORT_SCENE | IMPORT_ANIMATION; } void EditorSceneImporterGLTF::get_extensions(List *r_extensions) const { r_extensions->push_back("gltf"); r_extensions->push_back("glb"); } Error EditorSceneImporterGLTF::_parse_json(const String &p_path, GLTFState &state) { Error err; FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) { return err; } Vector array; array.resize(f->get_len()); f->get_buffer(array.ptrw(), array.size()); String text; text.parse_utf8((const char *)array.ptr(), array.size()); String err_txt; int err_line; Variant v; err = JSON::parse(text, v, err_txt, err_line); if (err != OK) { _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); return err; } state.json = v; return OK; } Error EditorSceneImporterGLTF::_parse_glb(const String &p_path, GLTFState &state) { Error err; FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) { return err; } uint32_t magic = f->get_32(); ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF f->get_32(); // version f->get_32(); // length uint32_t chunk_length = f->get_32(); uint32_t chunk_type = f->get_32(); ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON Vector json_data; json_data.resize(chunk_length); uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length); ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); String text; text.parse_utf8((const char *)json_data.ptr(), json_data.size()); String err_txt; int err_line; Variant v; err = JSON::parse(text, v, err_txt, err_line); if (err != OK) { _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); return err; } state.json = v; //data? chunk_length = f->get_32(); chunk_type = f->get_32(); if (f->eof_reached()) { return OK; //all good } ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN state.glb_data.resize(chunk_length); len = f->get_buffer(state.glb_data.ptrw(), chunk_length); ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); return OK; } static Vector3 _arr_to_vec3(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 3, Vector3()); return Vector3(p_array[0], p_array[1], p_array[2]); } static Quat _arr_to_quat(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 4, Quat()); return Quat(p_array[0], p_array[1], p_array[2], p_array[3]); } static Transform _arr_to_xform(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 16, Transform()); Transform xform; xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2])); xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6])); xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10])); xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14])); return xform; } String EditorSceneImporterGLTF::_sanitize_scene_name(const String &name) { RegEx regex("([^a-zA-Z0-9_ -]+)"); String p_name = regex.sub(name, "", true); return p_name; } String EditorSceneImporterGLTF::_gen_unique_name(GLTFState &state, const String &p_name) { const String s_name = _sanitize_scene_name(p_name); String name; int index = 1; while (true) { name = s_name; if (index > 1) { name += " " + itos(index); } if (!state.unique_names.has(name)) { break; } index++; } state.unique_names.insert(name); return name; } String EditorSceneImporterGLTF::_sanitize_bone_name(const String &name) { String p_name = name.camelcase_to_underscore(true); RegEx pattern_nocolon(":"); p_name = pattern_nocolon.sub(p_name, "_", true); RegEx pattern_noslash("/"); p_name = pattern_noslash.sub(p_name, "_", true); RegEx pattern_nospace(" +"); p_name = pattern_nospace.sub(p_name, "_", true); RegEx pattern_multiple("_+"); p_name = pattern_multiple.sub(p_name, "_", true); RegEx pattern_padded("0+(\\d+)"); p_name = pattern_padded.sub(p_name, "$1", true); return p_name; } String EditorSceneImporterGLTF::_gen_unique_bone_name(GLTFState &state, const GLTFSkeletonIndex skel_i, const String &p_name) { String s_name = _sanitize_bone_name(p_name); if (s_name.empty()) { s_name = "bone"; } String name; int index = 1; while (true) { name = s_name; if (index > 1) { name += "_" + itos(index); } if (!state.skeletons[skel_i].unique_names.has(name)) { break; } index++; } state.skeletons.write[skel_i].unique_names.insert(name); return name; } Error EditorSceneImporterGLTF::_parse_scenes(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("scenes"), ERR_FILE_CORRUPT); const Array &scenes = state.json["scenes"]; int loaded_scene = 0; if (state.json.has("scene")) { loaded_scene = state.json["scene"]; } else { WARN_PRINT("The load-time scene is not defined in the glTF2 file. Picking the first scene."); } if (scenes.size()) { ERR_FAIL_COND_V(loaded_scene >= scenes.size(), ERR_FILE_CORRUPT); const Dictionary &s = scenes[loaded_scene]; ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE); const Array &nodes = s["nodes"]; for (int j = 0; j < nodes.size(); j++) { state.root_nodes.push_back(nodes[j]); } if (s.has("name") && s["name"] != "") { state.scene_name = _gen_unique_name(state, s["name"]); } else { state.scene_name = _gen_unique_name(state, "Scene"); } } return OK; } Error EditorSceneImporterGLTF::_parse_nodes(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("nodes"), ERR_FILE_CORRUPT); const Array &nodes = state.json["nodes"]; for (int i = 0; i < nodes.size(); i++) { GLTFNode *node = memnew(GLTFNode); const Dictionary &n = nodes[i]; if (n.has("name")) { node->name = n["name"]; } if (n.has("camera")) { node->camera = n["camera"]; } if (n.has("mesh")) { node->mesh = n["mesh"]; } if (n.has("skin")) { node->skin = n["skin"]; } if (n.has("matrix")) { node->xform = _arr_to_xform(n["matrix"]); } else { if (n.has("translation")) { node->translation = _arr_to_vec3(n["translation"]); } if (n.has("rotation")) { node->rotation = _arr_to_quat(n["rotation"]); } if (n.has("scale")) { node->scale = _arr_to_vec3(n["scale"]); } node->xform.basis.set_quat_scale(node->rotation, node->scale); node->xform.origin = node->translation; } if (n.has("extensions")) { Dictionary extensions = n["extensions"]; if (extensions.has("KHR_lights_punctual")) { Dictionary lights_punctual = extensions["KHR_lights_punctual"]; if (lights_punctual.has("light")) { GLTFLightIndex light = lights_punctual["light"]; node->light = light; } } } if (n.has("children")) { const Array &children = n["children"]; for (int j = 0; j < children.size(); j++) { node->children.push_back(children[j]); } } state.nodes.push_back(node); } // build the hierarchy for (GLTFNodeIndex node_i = 0; node_i < state.nodes.size(); node_i++) { for (int j = 0; j < state.nodes[node_i]->children.size(); j++) { GLTFNodeIndex child_i = state.nodes[node_i]->children[j]; ERR_FAIL_INDEX_V(child_i, state.nodes.size(), ERR_FILE_CORRUPT); ERR_CONTINUE(state.nodes[child_i]->parent != -1); //node already has a parent, wtf. state.nodes[child_i]->parent = node_i; } } _compute_node_heights(state); return OK; } void EditorSceneImporterGLTF::_compute_node_heights(GLTFState &state) { state.root_nodes.clear(); for (GLTFNodeIndex node_i = 0; node_i < state.nodes.size(); ++node_i) { GLTFNode *node = state.nodes[node_i]; node->height = 0; GLTFNodeIndex current_i = node_i; while (current_i >= 0) { const GLTFNodeIndex parent_i = state.nodes[current_i]->parent; if (parent_i >= 0) { ++node->height; } current_i = parent_i; } if (node->height == 0) { state.root_nodes.push_back(node_i); } } } static Vector _parse_base64_uri(const String &uri) { int start = uri.find(","); ERR_FAIL_COND_V(start == -1, Vector()); CharString substr = uri.right(start + 1).ascii(); int strlen = substr.length(); Vector buf; buf.resize(strlen / 4 * 3 + 1 + 1); size_t len = 0; ERR_FAIL_COND_V(CryptoCore::b64_decode(buf.ptrw(), buf.size(), &len, (unsigned char *)substr.get_data(), strlen) != OK, Vector()); buf.resize(len); return buf; } Error EditorSceneImporterGLTF::_parse_buffers(GLTFState &state, const String &p_base_path) { if (!state.json.has("buffers")) { return OK; } const Array &buffers = state.json["buffers"]; for (GLTFBufferIndex i = 0; i < buffers.size(); i++) { if (i == 0 && state.glb_data.size()) { state.buffers.push_back(state.glb_data); } else { const Dictionary &buffer = buffers[i]; if (buffer.has("uri")) { Vector buffer_data; String uri = buffer["uri"]; if (uri.begins_with("data:")) { // Embedded data using base64. // Validate data MIME types and throw an error if it's one we don't know/support. if (!uri.begins_with("data:application/octet-stream;base64") && !uri.begins_with("data:application/gltf-buffer;base64")) { ERR_PRINT("glTF: Got buffer with an unknown URI data type: " + uri); } buffer_data = _parse_base64_uri(uri); } else { // Relative path to an external image file. uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows. buffer_data = FileAccess::get_file_as_array(uri); ERR_FAIL_COND_V_MSG(buffer.size() == 0, ERR_PARSE_ERROR, "glTF: Couldn't load binary file as an array: " + uri); } ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR); int byteLength = buffer["byteLength"]; ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR); state.buffers.push_back(buffer_data); } } } print_verbose("glTF: Total buffers: " + itos(state.buffers.size())); return OK; } Error EditorSceneImporterGLTF::_parse_buffer_views(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("bufferViews"), ERR_FILE_CORRUPT); const Array &buffers = state.json["bufferViews"]; for (GLTFBufferViewIndex i = 0; i < buffers.size(); i++) { const Dictionary &d = buffers[i]; GLTFBufferView buffer_view; ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR); buffer_view.buffer = d["buffer"]; ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR); buffer_view.byte_length = d["byteLength"]; if (d.has("byteOffset")) { buffer_view.byte_offset = d["byteOffset"]; } if (d.has("byteStride")) { buffer_view.byte_stride = d["byteStride"]; } if (d.has("target")) { const int target = d["target"]; buffer_view.indices = target == ELEMENT_ARRAY_BUFFER; } state.buffer_views.push_back(buffer_view); } print_verbose("glTF: Total buffer views: " + itos(state.buffer_views.size())); return OK; } EditorSceneImporterGLTF::GLTFType EditorSceneImporterGLTF::_get_type_from_str(const String &p_string) { if (p_string == "SCALAR") { return TYPE_SCALAR; } if (p_string == "VEC2") { return TYPE_VEC2; } if (p_string == "VEC3") { return TYPE_VEC3; } if (p_string == "VEC4") { return TYPE_VEC4; } if (p_string == "MAT2") { return TYPE_MAT2; } if (p_string == "MAT3") { return TYPE_MAT3; } if (p_string == "MAT4") { return TYPE_MAT4; } ERR_FAIL_V(TYPE_SCALAR); } Error EditorSceneImporterGLTF::_parse_accessors(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("accessors"), ERR_FILE_CORRUPT); const Array &accessors = state.json["accessors"]; for (GLTFAccessorIndex i = 0; i < accessors.size(); i++) { const Dictionary &d = accessors[i]; GLTFAccessor accessor; ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR); accessor.component_type = d["componentType"]; ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR); accessor.count = d["count"]; ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); accessor.type = _get_type_from_str(d["type"]); if (d.has("bufferView")) { accessor.buffer_view = d["bufferView"]; //optional because it may be sparse... } if (d.has("byteOffset")) { accessor.byte_offset = d["byteOffset"]; } if (d.has("max")) { accessor.max = d["max"]; } if (d.has("min")) { accessor.min = d["min"]; } if (d.has("sparse")) { //eeh.. const Dictionary &s = d["sparse"]; ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR); accessor.sparse_count = s["count"]; ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR); const Dictionary &si = s["indices"]; ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR); accessor.sparse_indices_buffer_view = si["bufferView"]; ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR); accessor.sparse_indices_component_type = si["componentType"]; if (si.has("byteOffset")) { accessor.sparse_indices_byte_offset = si["byteOffset"]; } ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR); const Dictionary &sv = s["values"]; ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR); accessor.sparse_values_buffer_view = sv["bufferView"]; if (sv.has("byteOffset")) { accessor.sparse_values_byte_offset = sv["byteOffset"]; } } state.accessors.push_back(accessor); } print_verbose("glTF: Total accessors: " + itos(state.accessors.size())); return OK; } String EditorSceneImporterGLTF::_get_component_type_name(const uint32_t p_component) { switch (p_component) { case COMPONENT_TYPE_BYTE: return "Byte"; case COMPONENT_TYPE_UNSIGNED_BYTE: return "UByte"; case COMPONENT_TYPE_SHORT: return "Short"; case COMPONENT_TYPE_UNSIGNED_SHORT: return "UShort"; case COMPONENT_TYPE_INT: return "Int"; case COMPONENT_TYPE_FLOAT: return "Float"; } return ""; } String EditorSceneImporterGLTF::_get_type_name(const GLTFType p_component) { static const char *names[] = { "float", "vec2", "vec3", "vec4", "mat2", "mat3", "mat4" }; return names[p_component]; } Error EditorSceneImporterGLTF::_decode_buffer_view(GLTFState &state, double *dst, const GLTFBufferViewIndex p_buffer_view, const int skip_every, const int skip_bytes, const int element_size, const int count, const GLTFType type, const int component_count, const int component_type, const int component_size, const bool normalized, const int byte_offset, const bool for_vertex) { const GLTFBufferView &bv = state.buffer_views[p_buffer_view]; int stride = bv.byte_stride ? bv.byte_stride : element_size; if (for_vertex && stride % 4) { stride += 4 - (stride % 4); //according to spec must be multiple of 4 } ERR_FAIL_INDEX_V(bv.buffer, state.buffers.size(), ERR_PARSE_ERROR); const uint32_t offset = bv.byte_offset + byte_offset; Vector buffer = state.buffers[bv.buffer]; //copy on write, so no performance hit const uint8_t *bufptr = buffer.ptr(); //use to debug print_verbose("glTF: type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count)); print_verbose("glTF: accessor offset" + itos(byte_offset) + " view offset: " + itos(bv.byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv.byte_length)); const int buffer_end = (stride * (count - 1)) + element_size; ERR_FAIL_COND_V(buffer_end > bv.byte_length, ERR_PARSE_ERROR); ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR); //fill everything as doubles for (int i = 0; i < count; i++) { const uint8_t *src = &bufptr[offset + i * stride]; for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { src += skip_bytes; } double d = 0; switch (component_type) { case COMPONENT_TYPE_BYTE: { int8_t b = int8_t(*src); if (normalized) { d = (double(b) / 128.0); } else { d = double(b); } } break; case COMPONENT_TYPE_UNSIGNED_BYTE: { uint8_t b = *src; if (normalized) { d = (double(b) / 255.0); } else { d = double(b); } } break; case COMPONENT_TYPE_SHORT: { int16_t s = *(int16_t *)src; if (normalized) { d = (double(s) / 32768.0); } else { d = double(s); } } break; case COMPONENT_TYPE_UNSIGNED_SHORT: { uint16_t s = *(uint16_t *)src; if (normalized) { d = (double(s) / 65535.0); } else { d = double(s); } } break; case COMPONENT_TYPE_INT: { d = *(int *)src; } break; case COMPONENT_TYPE_FLOAT: { d = *(float *)src; } break; } *dst++ = d; src += component_size; } } return OK; } int EditorSceneImporterGLTF::_get_component_type_size(const int component_type) { switch (component_type) { case COMPONENT_TYPE_BYTE: return 1; break; case COMPONENT_TYPE_UNSIGNED_BYTE: return 1; break; case COMPONENT_TYPE_SHORT: return 2; break; case COMPONENT_TYPE_UNSIGNED_SHORT: return 2; break; case COMPONENT_TYPE_INT: return 4; break; case COMPONENT_TYPE_FLOAT: return 4; break; default: { ERR_FAIL_V(0); } } return 0; } Vector EditorSceneImporterGLTF::_decode_accessor(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { //spec, for reference: //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment ERR_FAIL_INDEX_V(p_accessor, state.accessors.size(), Vector()); const GLTFAccessor &a = state.accessors[p_accessor]; const int component_count_for_type[7] = { 1, 2, 3, 4, 4, 9, 16 }; const int component_count = component_count_for_type[a.type]; const int component_size = _get_component_type_size(a.component_type); ERR_FAIL_COND_V(component_size == 0, Vector()); int element_size = component_count * component_size; int skip_every = 0; int skip_bytes = 0; //special case of alignments, as described in spec switch (a.component_type) { case COMPONENT_TYPE_BYTE: case COMPONENT_TYPE_UNSIGNED_BYTE: { if (a.type == TYPE_MAT2) { skip_every = 2; skip_bytes = 2; element_size = 8; //override for this case } if (a.type == TYPE_MAT3) { skip_every = 3; skip_bytes = 1; element_size = 12; //override for this case } } break; case COMPONENT_TYPE_SHORT: case COMPONENT_TYPE_UNSIGNED_SHORT: { if (a.type == TYPE_MAT3) { skip_every = 6; skip_bytes = 4; element_size = 16; //override for this case } } break; default: { } } Vector dst_buffer; dst_buffer.resize(component_count * a.count); double *dst = dst_buffer.ptrw(); if (a.buffer_view >= 0) { ERR_FAIL_INDEX_V(a.buffer_view, state.buffer_views.size(), Vector()); const Error err = _decode_buffer_view(state, dst, a.buffer_view, skip_every, skip_bytes, element_size, a.count, a.type, component_count, a.component_type, component_size, a.normalized, a.byte_offset, p_for_vertex); if (err != OK) { return Vector(); } } else { //fill with zeros, as bufferview is not defined. for (int i = 0; i < (a.count * component_count); i++) { dst_buffer.write[i] = 0; } } if (a.sparse_count > 0) { // I could not find any file using this, so this code is so far untested Vector indices; indices.resize(a.sparse_count); const int indices_component_size = _get_component_type_size(a.sparse_indices_component_type); Error err = _decode_buffer_view(state, indices.ptrw(), a.sparse_indices_buffer_view, 0, 0, indices_component_size, a.sparse_count, TYPE_SCALAR, 1, a.sparse_indices_component_type, indices_component_size, false, a.sparse_indices_byte_offset, false); if (err != OK) { return Vector(); } Vector data; data.resize(component_count * a.sparse_count); err = _decode_buffer_view(state, data.ptrw(), a.sparse_values_buffer_view, skip_every, skip_bytes, element_size, a.sparse_count, a.type, component_count, a.component_type, component_size, a.normalized, a.sparse_values_byte_offset, p_for_vertex); if (err != OK) { return Vector(); } for (int i = 0; i < indices.size(); i++) { const int write_offset = int(indices[i]) * component_count; for (int j = 0; j < component_count; j++) { dst[write_offset + j] = data[i * component_count + j]; } } } return dst_buffer; } Vector EditorSceneImporterGLTF::_decode_accessor_as_ints(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size(); ret.resize(ret_size); { int *w = ret.ptrw(); for (int i = 0; i < ret_size; i++) { w[i] = int(attribs_ptr[i]); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_floats(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size(); ret.resize(ret_size); { float *w = ret.ptrw(); for (int i = 0; i < ret_size; i++) { w[i] = float(attribs_ptr[i]); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_vec2(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / 2; ret.resize(ret_size); { Vector2 *w = ret.ptrw(); for (int i = 0; i < ret_size; i++) { w[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_vec3(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / 3; ret.resize(ret_size); { Vector3 *w = ret.ptrw(); for (int i = 0; i < ret_size; i++) { w[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_color(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } const int type = state.accessors[p_accessor].type; ERR_FAIL_COND_V(!(type == TYPE_VEC3 || type == TYPE_VEC4), ret); int vec_len = 3; if (type == TYPE_VEC4) { vec_len = 4; } ERR_FAIL_COND_V(attribs.size() % vec_len != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / vec_len; ret.resize(ret_size); { Color *w = ret.ptrw(); for (int i = 0; i < ret_size; i++) { w[i] = Color(attribs_ptr[i * vec_len + 0], attribs_ptr[i * vec_len + 1], attribs_ptr[i * vec_len + 2], vec_len == 4 ? attribs_ptr[i * 4 + 3] : 1.0); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_quat(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); const double *attribs_ptr = attribs.ptr(); const int ret_size = attribs.size() / 4; ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized(); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_xform2d(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); ret.resize(attribs.size() / 4); for (int i = 0; i < ret.size(); i++) { ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]); ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]); } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_basis(GLTFState &state, const GLTFAccessorIndex p_accessor, bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret); ret.resize(attribs.size() / 9); for (int i = 0; i < ret.size(); i++) { ret.write[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2])); ret.write[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5])); ret.write[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8])); } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_xform(GLTFState &state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) { const Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) { return ret; } ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret); ret.resize(attribs.size() / 16); for (int i = 0; i < ret.size(); i++) { ret.write[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2])); ret.write[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6])); ret.write[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10])); ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14])); } return ret; } Error EditorSceneImporterGLTF::_parse_meshes(GLTFState &state) { if (!state.json.has("meshes")) { return OK; } uint32_t mesh_flags = 0; Array meshes = state.json["meshes"]; for (GLTFMeshIndex i = 0; i < meshes.size(); i++) { print_verbose("glTF: Parsing mesh: " + itos(i)); Dictionary d = meshes[i]; GLTFMesh mesh; mesh.mesh.instance(); ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR); Array primitives = d["primitives"]; const Dictionary &extras = d.has("extras") ? (Dictionary)d["extras"] : Dictionary(); for (int j = 0; j < primitives.size(); j++) { Dictionary p = primitives[j]; Array array; array.resize(Mesh::ARRAY_MAX); ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR); Dictionary a = p["attributes"]; Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; if (p.has("mode")) { const int mode = p["mode"]; ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT); static const Mesh::PrimitiveType primitives2[7] = { Mesh::PRIMITIVE_POINTS, Mesh::PRIMITIVE_LINES, Mesh::PRIMITIVE_LINES, //loop not supported, should ce converted Mesh::PRIMITIVE_LINES, Mesh::PRIMITIVE_TRIANGLES, Mesh::PRIMITIVE_TRIANGLE_STRIP, Mesh::PRIMITIVE_TRIANGLES, //fan not supported, should be converted #ifndef _MSC_VER #warning line loop and triangle fan are not supported and need to be converted to lines and triangles #endif }; primitive = primitives2[mode]; } ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR); if (a.has("POSITION")) { array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true); } if (a.has("NORMAL")) { array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true); } if (a.has("TANGENT")) { array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true); } if (a.has("TEXCOORD_0")) { array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true); } if (a.has("TEXCOORD_1")) { array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true); } if (a.has("COLOR_0")) { array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true); } if (a.has("JOINTS_0")) { array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true); } if (a.has("WEIGHTS_0")) { Vector weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true); { //gltf does not seem to normalize the weights for some reason.. int wc = weights.size(); float *w = weights.ptrw(); for (int k = 0; k < wc; k += 4) { float total = 0.0; total += w[k + 0]; total += w[k + 1]; total += w[k + 2]; total += w[k + 3]; if (total > 0.0) { w[k + 0] /= total; w[k + 1] /= total; w[k + 2] /= total; w[k + 3] /= total; } } } array[Mesh::ARRAY_WEIGHTS] = weights; } if (p.has("indices")) { Vector indices = _decode_accessor_as_ints(state, p["indices"], false); if (primitive == Mesh::PRIMITIVE_TRIANGLES) { //swap around indices, convert ccw to cw for front face const int is = indices.size(); int *w = indices.ptrw(); for (int k = 0; k < is; k += 3) { SWAP(w[k + 1], w[k + 2]); } } array[Mesh::ARRAY_INDEX] = indices; } else if (primitive == Mesh::PRIMITIVE_TRIANGLES) { //generate indices because they need to be swapped for CW/CCW const Vector &vertices = array[Mesh::ARRAY_VERTEX]; ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR); Vector indices; const int vs = vertices.size(); indices.resize(vs); { int *w = indices.ptrw(); for (int k = 0; k < vs; k += 3) { w[k] = k; w[k + 1] = k + 2; w[k + 2] = k + 1; } } array[Mesh::ARRAY_INDEX] = indices; } bool generate_tangents = (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL")); if (generate_tangents) { //must generate mikktspace tangents.. ergh.. Ref st; st.instance(); st->create_from_triangle_arrays(array); st->generate_tangents(); array = st->commit_to_arrays(); } Array morphs; //blend shapes if (p.has("targets")) { print_verbose("glTF: Mesh has targets"); const Array &targets = p["targets"]; //ideally BLEND_SHAPE_MODE_RELATIVE since gltf2 stores in displacement //but it could require a larger refactor? mesh.mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); if (j == 0) { const Array &target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array(); for (int k = 0; k < targets.size(); k++) { const String name = k < target_names.size() ? (String)target_names[k] : String("morph_") + itos(k); mesh.mesh->add_blend_shape(name); } } for (int k = 0; k < targets.size(); k++) { const Dictionary &t = targets[k]; Array array_copy; array_copy.resize(Mesh::ARRAY_MAX); for (int l = 0; l < Mesh::ARRAY_MAX; l++) { array_copy[l] = array[l]; } array_copy[Mesh::ARRAY_INDEX] = Variant(); if (t.has("POSITION")) { Vector varr = _decode_accessor_as_vec3(state, t["POSITION"], true); const Vector src_varr = array[Mesh::ARRAY_VERTEX]; const int size = src_varr.size(); ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); { const int max_idx = varr.size(); varr.resize(size); Vector3 *w_varr = varr.ptrw(); const Vector3 *r_varr = varr.ptr(); const Vector3 *r_src_varr = src_varr.ptr(); for (int l = 0; l < size; l++) { if (l < max_idx) { w_varr[l] = r_varr[l] + r_src_varr[l]; } else { w_varr[l] = r_src_varr[l]; } } } array_copy[Mesh::ARRAY_VERTEX] = varr; } if (t.has("NORMAL")) { Vector narr = _decode_accessor_as_vec3(state, t["NORMAL"], true); const Vector src_narr = array[Mesh::ARRAY_NORMAL]; int size = src_narr.size(); ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); { int max_idx = narr.size(); narr.resize(size); Vector3 *w_narr = narr.ptrw(); const Vector3 *r_narr = narr.ptr(); const Vector3 *r_src_narr = src_narr.ptr(); for (int l = 0; l < size; l++) { if (l < max_idx) { w_narr[l] = r_narr[l] + r_src_narr[l]; } else { w_narr[l] = r_src_narr[l]; } } } array_copy[Mesh::ARRAY_NORMAL] = narr; } if (t.has("TANGENT")) { const Vector tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true); const Vector src_tangents = array[Mesh::ARRAY_TANGENT]; ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR); Vector tangents_v4; { int max_idx = tangents_v3.size(); int size4 = src_tangents.size(); tangents_v4.resize(size4); float *w4 = tangents_v4.ptrw(); const Vector3 *r3 = tangents_v3.ptr(); const float *r4 = src_tangents.ptr(); for (int l = 0; l < size4 / 4; l++) { if (l < max_idx) { w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0]; w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1]; w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2]; } else { w4[l * 4 + 0] = r4[l * 4 + 0]; w4[l * 4 + 1] = r4[l * 4 + 1]; w4[l * 4 + 2] = r4[l * 4 + 2]; } w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value } } array_copy[Mesh::ARRAY_TANGENT] = tangents_v4; } if (generate_tangents) { Ref st; st.instance(); st->create_from_triangle_arrays(array_copy); st->deindex(); st->generate_tangents(); array_copy = st->commit_to_arrays(); } morphs.push_back(array_copy); } } //just add it mesh.mesh->add_surface_from_arrays(primitive, array, morphs, Dictionary(), mesh_flags); if (p.has("material")) { const int material = p["material"]; ERR_FAIL_INDEX_V(material, state.materials.size(), ERR_FILE_CORRUPT); const Ref &mat = state.materials[material]; mesh.mesh->surface_set_material(mesh.mesh->get_surface_count() - 1, mat); } else { Ref mat; mat.instance(); mat->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); mesh.mesh->surface_set_material(mesh.mesh->get_surface_count() - 1, mat); } } mesh.blend_weights.resize(mesh.mesh->get_blend_shape_count()); for (int32_t weight_i = 0; weight_i < mesh.blend_weights.size(); weight_i++) { mesh.blend_weights.write[weight_i] = 0.0f; } if (d.has("weights")) { const Array &weights = d["weights"]; ERR_FAIL_COND_V(mesh.blend_weights.size() != weights.size(), ERR_PARSE_ERROR); for (int j = 0; j < weights.size(); j++) { mesh.blend_weights.write[j] = weights[j]; } } state.meshes.push_back(mesh); } print_verbose("glTF: Total meshes: " + itos(state.meshes.size())); return OK; } Error EditorSceneImporterGLTF::_parse_images(GLTFState &state, const String &p_base_path) { if (!state.json.has("images")) { return OK; } // Ref: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#images const Array &images = state.json["images"]; for (int i = 0; i < images.size(); i++) { const Dictionary &d = images[i]; // glTF 2.0 supports PNG and JPEG types, which can be specified as (from spec): // "- a URI to an external file in one of the supported images formats, or // - a URI with embedded base64-encoded data, or // - a reference to a bufferView; in that case mimeType must be defined." // Since mimeType is optional for external files and base64 data, we'll have to // fall back on letting Godot parse the data to figure out if it's PNG or JPEG. // We'll assume that we use either URI or bufferView, so let's warn the user // if their image somehow uses both. And fail if it has neither. ERR_CONTINUE_MSG(!d.has("uri") && !d.has("bufferView"), "Invalid image definition in glTF file, it should specific an 'uri' or 'bufferView'."); if (d.has("uri") && d.has("bufferView")) { WARN_PRINT("Invalid image definition in glTF file using both 'uri' and 'bufferView'. 'bufferView' will take precedence."); } String mimetype; if (d.has("mimeType")) { // Should be "image/png" or "image/jpeg". mimetype = d["mimeType"]; } Vector data; const uint8_t *data_ptr = nullptr; int data_size = 0; if (d.has("uri")) { // Handles the first two bullet points from the spec (embedded data, or external file). String uri = d["uri"]; if (uri.begins_with("data:")) { // Embedded data using base64. // Validate data MIME types and throw a warning if it's one we don't know/support. if (!uri.begins_with("data:application/octet-stream;base64") && !uri.begins_with("data:application/gltf-buffer;base64") && !uri.begins_with("data:image/png;base64") && !uri.begins_with("data:image/jpeg;base64")) { WARN_PRINT(vformat("glTF: Image index '%d' uses an unsupported URI data type: %s. Skipping it.", i, uri)); state.images.push_back(Ref()); // Placeholder to keep count. continue; } data = _parse_base64_uri(uri); data_ptr = data.ptr(); data_size = data.size(); // mimeType is optional, but if we have it defined in the URI, let's use it. if (mimetype.empty()) { if (uri.begins_with("data:image/png;base64")) { mimetype = "image/png"; } else if (uri.begins_with("data:image/jpeg;base64")) { mimetype = "image/jpeg"; } } } else { // Relative path to an external image file. uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows. // The spec says that if mimeType is defined, we should enforce it. // So we should only rely on ResourceLoader::load if mimeType is not defined, // otherwise we should use the same logic as for buffers. if (mimetype == "image/png" || mimetype == "image/jpeg") { // Load data buffer and rely on PNG and JPEG-specific logic below to load the image. // This makes it possible to load a file with a wrong extension but correct MIME type, // e.g. "foo.jpg" containing PNG data and with MIME type "image/png". ResourceLoader would fail. data = FileAccess::get_file_as_array(uri); ERR_FAIL_COND_V_MSG(data.size() == 0, ERR_PARSE_ERROR, "glTF: Couldn't load image file as an array: " + uri); data_ptr = data.ptr(); data_size = data.size(); } else { // Good old ResourceLoader will rely on file extension. Ref texture = ResourceLoader::load(uri); state.images.push_back(texture); continue; } } } else if (d.has("bufferView")) { // Handles the third bullet point from the spec (bufferView). ERR_FAIL_COND_V_MSG(mimetype.empty(), ERR_FILE_CORRUPT, vformat("glTF: Image index '%d' specifies 'bufferView' but no 'mimeType', which is invalid.", i)); const GLTFBufferViewIndex bvi = d["bufferView"]; ERR_FAIL_INDEX_V(bvi, state.buffer_views.size(), ERR_PARAMETER_RANGE_ERROR); const GLTFBufferView &bv = state.buffer_views[bvi]; const GLTFBufferIndex bi = bv.buffer; ERR_FAIL_INDEX_V(bi, state.buffers.size(), ERR_PARAMETER_RANGE_ERROR); ERR_FAIL_COND_V(bv.byte_offset + bv.byte_length > state.buffers[bi].size(), ERR_FILE_CORRUPT); data_ptr = &state.buffers[bi][bv.byte_offset]; data_size = bv.byte_length; } Ref img; if (mimetype == "image/png") { // Load buffer as PNG. ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_png_mem_loader_func(data_ptr, data_size); } else if (mimetype == "image/jpeg") { // Loader buffer as JPEG. ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_jpg_mem_loader_func(data_ptr, data_size); } else { // We can land here if we got an URI with base64-encoded data with application/* MIME type, // and the optional mimeType property was not defined to tell us how to handle this data (or was invalid). // So let's try PNG first, then JPEG. ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_png_mem_loader_func(data_ptr, data_size); if (img.is_null()) { ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE); img = Image::_jpg_mem_loader_func(data_ptr, data_size); } } ERR_FAIL_COND_V_MSG(img.is_null(), ERR_FILE_CORRUPT, vformat("glTF: Couldn't load image index '%d' with its given mimetype: %s.", i, mimetype)); Ref t; t.instance(); t->create_from_image(img); state.images.push_back(t); } print_verbose("glTF: Total images: " + itos(state.images.size())); return OK; } Error EditorSceneImporterGLTF::_parse_textures(GLTFState &state) { if (!state.json.has("textures")) { return OK; } const Array &textures = state.json["textures"]; for (GLTFTextureIndex i = 0; i < textures.size(); i++) { const Dictionary &d = textures[i]; ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR); GLTFTexture t; t.src_image = d["source"]; state.textures.push_back(t); } return OK; } Ref EditorSceneImporterGLTF::_get_texture(GLTFState &state, const GLTFTextureIndex p_texture) { ERR_FAIL_INDEX_V(p_texture, state.textures.size(), Ref()); const GLTFImageIndex image = state.textures[p_texture].src_image; ERR_FAIL_INDEX_V(image, state.images.size(), Ref()); return state.images[image]; } Error EditorSceneImporterGLTF::_parse_materials(GLTFState &state) { if (!state.json.has("materials")) { return OK; } const Array &materials = state.json["materials"]; for (GLTFMaterialIndex i = 0; i < materials.size(); i++) { const Dictionary &d = materials[i]; Ref material; material.instance(); if (d.has("name")) { material->set_name(d["name"]); } material->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true); if (d.has("pbrMetallicRoughness")) { const Dictionary &mr = d["pbrMetallicRoughness"]; if (mr.has("baseColorFactor")) { const Array &arr = mr["baseColorFactor"]; ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR); const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb(); material->set_albedo(c); } if (mr.has("baseColorTexture")) { const Dictionary &bct = mr["baseColorTexture"]; if (bct.has("index")) { material->set_texture(StandardMaterial3D::TEXTURE_ALBEDO, _get_texture(state, bct["index"])); } if (!mr.has("baseColorFactor")) { material->set_albedo(Color(1, 1, 1)); } } if (mr.has("metallicFactor")) { material->set_metallic(mr["metallicFactor"]); } else { material->set_metallic(1.0); } if (mr.has("roughnessFactor")) { material->set_roughness(mr["roughnessFactor"]); } else { material->set_roughness(1.0); } if (mr.has("metallicRoughnessTexture")) { const Dictionary &bct = mr["metallicRoughnessTexture"]; if (bct.has("index")) { const Ref t = _get_texture(state, bct["index"]); material->set_texture(StandardMaterial3D::TEXTURE_METALLIC, t); material->set_metallic_texture_channel(StandardMaterial3D::TEXTURE_CHANNEL_BLUE); material->set_texture(StandardMaterial3D::TEXTURE_ROUGHNESS, t); material->set_roughness_texture_channel(StandardMaterial3D::TEXTURE_CHANNEL_GREEN); if (!mr.has("metallicFactor")) { material->set_metallic(1); } if (!mr.has("roughnessFactor")) { material->set_roughness(1); } } } } if (d.has("normalTexture")) { const Dictionary &bct = d["normalTexture"]; if (bct.has("index")) { material->set_texture(StandardMaterial3D::TEXTURE_NORMAL, _get_texture(state, bct["index"])); material->set_feature(StandardMaterial3D::FEATURE_NORMAL_MAPPING, true); } if (bct.has("scale")) { material->set_normal_scale(bct["scale"]); } } if (d.has("occlusionTexture")) { const Dictionary &bct = d["occlusionTexture"]; if (bct.has("index")) { material->set_texture(StandardMaterial3D::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"])); material->set_ao_texture_channel(StandardMaterial3D::TEXTURE_CHANNEL_RED); material->set_feature(StandardMaterial3D::FEATURE_AMBIENT_OCCLUSION, true); } } if (d.has("emissiveFactor")) { const Array &arr = d["emissiveFactor"]; ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); const Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); material->set_feature(StandardMaterial3D::FEATURE_EMISSION, true); material->set_emission(c); } if (d.has("emissiveTexture")) { const Dictionary &bct = d["emissiveTexture"]; if (bct.has("index")) { material->set_texture(StandardMaterial3D::TEXTURE_EMISSION, _get_texture(state, bct["index"])); material->set_feature(StandardMaterial3D::FEATURE_EMISSION, true); material->set_emission(Color(0, 0, 0)); } } if (d.has("doubleSided")) { const bool ds = d["doubleSided"]; if (ds) { material->set_cull_mode(StandardMaterial3D::CULL_DISABLED); } } if (d.has("alphaMode")) { const String &am = d["alphaMode"]; if (am == "BLEND") { material->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS); } else if (am == "MASK") { material->set_transparency(StandardMaterial3D::TRANSPARENCY_ALPHA_SCISSOR); if (d.has("alphaCutoff")) { material->set_alpha_scissor_threshold(d["alphaCutoff"]); } else { material->set_alpha_scissor_threshold(0.5f); } } } state.materials.push_back(material); } print_verbose("glTF: Total materials: " + itos(state.materials.size())); return OK; } EditorSceneImporterGLTF::GLTFNodeIndex EditorSceneImporterGLTF::_find_highest_node(GLTFState &state, const Vector &subset) { int highest = -1; GLTFNodeIndex best_node = -1; for (int i = 0; i < subset.size(); ++i) { const GLTFNodeIndex node_i = subset[i]; const GLTFNode *node = state.nodes[node_i]; if (highest == -1 || node->height < highest) { highest = node->height; best_node = node_i; } } return best_node; } bool EditorSceneImporterGLTF::_capture_nodes_in_skin(GLTFState &state, GLTFSkin &skin, const GLTFNodeIndex node_index) { bool found_joint = false; for (int i = 0; i < state.nodes[node_index]->children.size(); ++i) { found_joint |= _capture_nodes_in_skin(state, skin, state.nodes[node_index]->children[i]); } if (found_joint) { // Mark it if we happen to find another skins joint... if (state.nodes[node_index]->joint && skin.joints.find(node_index) < 0) { skin.joints.push_back(node_index); } else if (skin.non_joints.find(node_index) < 0) { skin.non_joints.push_back(node_index); } } if (skin.joints.find(node_index) > 0) { return true; } return false; } void EditorSceneImporterGLTF::_capture_nodes_for_multirooted_skin(GLTFState &state, GLTFSkin &skin) { DisjointSet disjoint_set; for (int i = 0; i < skin.joints.size(); ++i) { const GLTFNodeIndex node_index = skin.joints[i]; const GLTFNodeIndex parent = state.nodes[node_index]->parent; disjoint_set.insert(node_index); if (skin.joints.find(parent) >= 0) { disjoint_set.create_union(parent, node_index); } } Vector roots; disjoint_set.get_representatives(roots); if (roots.size() <= 1) { return; } int maxHeight = -1; // Determine the max height rooted tree for (int i = 0; i < roots.size(); ++i) { const GLTFNodeIndex root = roots[i]; if (maxHeight == -1 || state.nodes[root]->height < maxHeight) { maxHeight = state.nodes[root]->height; } } // Go up the tree till all of the multiple roots of the skin are at the same hierarchy level. // This sucks, but 99% of all game engines (not just Godot) would have this same issue. for (int i = 0; i < roots.size(); ++i) { GLTFNodeIndex current_node = roots[i]; while (state.nodes[current_node]->height > maxHeight) { GLTFNodeIndex parent = state.nodes[current_node]->parent; if (state.nodes[parent]->joint && skin.joints.find(parent) < 0) { skin.joints.push_back(parent); } else if (skin.non_joints.find(parent) < 0) { skin.non_joints.push_back(parent); } current_node = parent; } // replace the roots roots.write[i] = current_node; } // Climb up the tree until they all have the same parent bool all_same; do { all_same = true; const GLTFNodeIndex first_parent = state.nodes[roots[0]]->parent; for (int i = 1; i < roots.size(); ++i) { all_same &= (first_parent == state.nodes[roots[i]]->parent); } if (!all_same) { for (int i = 0; i < roots.size(); ++i) { const GLTFNodeIndex current_node = roots[i]; const GLTFNodeIndex parent = state.nodes[current_node]->parent; if (state.nodes[parent]->joint && skin.joints.find(parent) < 0) { skin.joints.push_back(parent); } else if (skin.non_joints.find(parent) < 0) { skin.non_joints.push_back(parent); } roots.write[i] = parent; } } } while (!all_same); } Error EditorSceneImporterGLTF::_expand_skin(GLTFState &state, GLTFSkin &skin) { _capture_nodes_for_multirooted_skin(state, skin); // Grab all nodes that lay in between skin joints/nodes DisjointSet disjoint_set; Vector all_skin_nodes; all_skin_nodes.append_array(skin.joints); all_skin_nodes.append_array(skin.non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const GLTFNodeIndex node_index = all_skin_nodes[i]; const GLTFNodeIndex parent = state.nodes[node_index]->parent; disjoint_set.insert(node_index); if (all_skin_nodes.find(parent) >= 0) { disjoint_set.create_union(parent, node_index); } } Vector out_owners; disjoint_set.get_representatives(out_owners); Vector out_roots; for (int i = 0; i < out_owners.size(); ++i) { Vector set; disjoint_set.get_members(set, out_owners[i]); const GLTFNodeIndex root = _find_highest_node(state, set); ERR_FAIL_COND_V(root < 0, FAILED); out_roots.push_back(root); } out_roots.sort(); for (int i = 0; i < out_roots.size(); ++i) { _capture_nodes_in_skin(state, skin, out_roots[i]); } skin.roots = out_roots; return OK; } Error EditorSceneImporterGLTF::_verify_skin(GLTFState &state, GLTFSkin &skin) { // This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is) // In case additional interpolating logic is added to the skins, this will help ensure that you // do not cause it to self implode into a fiery blaze // We are going to re-calculate the root nodes and compare them to the ones saved in the skin, // then ensure the multiple trees (if they exist) are on the same sublevel // Grab all nodes that lay in between skin joints/nodes DisjointSet disjoint_set; Vector all_skin_nodes; all_skin_nodes.append_array(skin.joints); all_skin_nodes.append_array(skin.non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const GLTFNodeIndex node_index = all_skin_nodes[i]; const GLTFNodeIndex parent = state.nodes[node_index]->parent; disjoint_set.insert(node_index); if (all_skin_nodes.find(parent) >= 0) { disjoint_set.create_union(parent, node_index); } } Vector out_owners; disjoint_set.get_representatives(out_owners); Vector out_roots; for (int i = 0; i < out_owners.size(); ++i) { Vector set; disjoint_set.get_members(set, out_owners[i]); const GLTFNodeIndex root = _find_highest_node(state, set); ERR_FAIL_COND_V(root < 0, FAILED); out_roots.push_back(root); } out_roots.sort(); ERR_FAIL_COND_V(out_roots.size() == 0, FAILED); // Make sure the roots are the exact same (they better be) ERR_FAIL_COND_V(out_roots.size() != skin.roots.size(), FAILED); for (int i = 0; i < out_roots.size(); ++i) { ERR_FAIL_COND_V(out_roots[i] != skin.roots[i], FAILED); } // Single rooted skin? Perfectly ok! if (out_roots.size() == 1) { return OK; } // Make sure all parents of a multi-rooted skin are the SAME const GLTFNodeIndex parent = state.nodes[out_roots[0]]->parent; for (int i = 1; i < out_roots.size(); ++i) { if (state.nodes[out_roots[i]]->parent != parent) { return FAILED; } } return OK; } Error EditorSceneImporterGLTF::_parse_skins(GLTFState &state) { if (!state.json.has("skins")) { return OK; } const Array &skins = state.json["skins"]; // Create the base skins, and mark nodes that are joints for (int i = 0; i < skins.size(); i++) { const Dictionary &d = skins[i]; GLTFSkin skin; ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR); const Array &joints = d["joints"]; if (d.has("inverseBindMatrices")) { skin.inverse_binds = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false); ERR_FAIL_COND_V(skin.inverse_binds.size() != joints.size(), ERR_PARSE_ERROR); } for (int j = 0; j < joints.size(); j++) { const GLTFNodeIndex node = joints[j]; ERR_FAIL_INDEX_V(node, state.nodes.size(), ERR_PARSE_ERROR); skin.joints.push_back(node); skin.joints_original.push_back(node); state.nodes[node]->joint = true; } if (d.has("name")) { skin.name = d["name"]; } if (d.has("skeleton")) { skin.skin_root = d["skeleton"]; } state.skins.push_back(skin); } for (GLTFSkinIndex i = 0; i < state.skins.size(); ++i) { GLTFSkin &skin = state.skins.write[i]; // Expand the skin to capture all the extra non-joints that lie in between the actual joints, // and expand the hierarchy to ensure multi-rooted trees lie on the same height level ERR_FAIL_COND_V(_expand_skin(state, skin), ERR_PARSE_ERROR); ERR_FAIL_COND_V(_verify_skin(state, skin), ERR_PARSE_ERROR); } print_verbose("glTF: Total skins: " + itos(state.skins.size())); return OK; } Error EditorSceneImporterGLTF::_determine_skeletons(GLTFState &state) { // Using a disjoint set, we are going to potentially combine all skins that are actually branches // of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton. // This is another unclear issue caused by the current glTF specification. DisjointSet skeleton_sets; for (GLTFSkinIndex skin_i = 0; skin_i < state.skins.size(); ++skin_i) { const GLTFSkin &skin = state.skins[skin_i]; Vector all_skin_nodes; all_skin_nodes.append_array(skin.joints); all_skin_nodes.append_array(skin.non_joints); for (int i = 0; i < all_skin_nodes.size(); ++i) { const GLTFNodeIndex node_index = all_skin_nodes[i]; const GLTFNodeIndex parent = state.nodes[node_index]->parent; skeleton_sets.insert(node_index); if (all_skin_nodes.find(parent) >= 0) { skeleton_sets.create_union(parent, node_index); } } // We are going to connect the separate skin subtrees in each skin together // so that the final roots are entire sets of valid skin trees for (int i = 1; i < skin.roots.size(); ++i) { skeleton_sets.create_union(skin.roots[0], skin.roots[i]); } } { // attempt to joint all touching subsets (siblings/parent are part of another skin) Vector groups_representatives; skeleton_sets.get_representatives(groups_representatives); Vector highest_group_members; Vector> groups; for (int i = 0; i < groups_representatives.size(); ++i) { Vector group; skeleton_sets.get_members(group, groups_representatives[i]); highest_group_members.push_back(_find_highest_node(state, group)); groups.push_back(group); } for (int i = 0; i < highest_group_members.size(); ++i) { const GLTFNodeIndex node_i = highest_group_members[i]; // Attach any siblings together (this needs to be done n^2/2 times) for (int j = i + 1; j < highest_group_members.size(); ++j) { const GLTFNodeIndex node_j = highest_group_members[j]; // Even if they are siblings under the root! :) if (state.nodes[node_i]->parent == state.nodes[node_j]->parent) { skeleton_sets.create_union(node_i, node_j); } } // Attach any parenting going on together (we need to do this n^2 times) const GLTFNodeIndex node_i_parent = state.nodes[node_i]->parent; if (node_i_parent >= 0) { for (int j = 0; j < groups.size() && i != j; ++j) { const Vector &group = groups[j]; if (group.find(node_i_parent) >= 0) { const GLTFNodeIndex node_j = highest_group_members[j]; skeleton_sets.create_union(node_i, node_j); } } } } } // At this point, the skeleton groups should be finalized Vector skeleton_owners; skeleton_sets.get_representatives(skeleton_owners); // Mark all the skins actual skeletons, after we have merged them for (GLTFSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) { const GLTFNodeIndex skeleton_owner = skeleton_owners[skel_i]; GLTFSkeleton skeleton; Vector skeleton_nodes; skeleton_sets.get_members(skeleton_nodes, skeleton_owner); for (GLTFSkinIndex skin_i = 0; skin_i < state.skins.size(); ++skin_i) { GLTFSkin &skin = state.skins.write[skin_i]; // If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton for (int i = 0; i < skeleton_nodes.size(); ++i) { GLTFNodeIndex skel_node_i = skeleton_nodes[i]; if (skin.joints.find(skel_node_i) >= 0 || skin.non_joints.find(skel_node_i) >= 0) { skin.skeleton = skel_i; continue; } } } Vector non_joints; for (int i = 0; i < skeleton_nodes.size(); ++i) { const GLTFNodeIndex node_i = skeleton_nodes[i]; if (state.nodes[node_i]->joint) { skeleton.joints.push_back(node_i); } else { non_joints.push_back(node_i); } } state.skeletons.push_back(skeleton); _reparent_non_joint_skeleton_subtrees(state, state.skeletons.write[skel_i], non_joints); } for (GLTFSkeletonIndex skel_i = 0; skel_i < state.skeletons.size(); ++skel_i) { GLTFSkeleton &skeleton = state.skeletons.write[skel_i]; for (int i = 0; i < skeleton.joints.size(); ++i) { const GLTFNodeIndex node_i = skeleton.joints[i]; GLTFNode *node = state.nodes[node_i]; ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR); ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR); node->skeleton = skel_i; } ERR_FAIL_COND_V(_determine_skeleton_roots(state, skel_i), ERR_PARSE_ERROR); } return OK; } Error EditorSceneImporterGLTF::_reparent_non_joint_skeleton_subtrees(GLTFState &state, GLTFSkeleton &skeleton, const Vector &non_joints) { DisjointSet subtree_set; // Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector) // This way we can find any joints that lie in between joints, as the current glTF specification // mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we // can remove this code. // skinD depicted here explains this issue: // https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin for (int i = 0; i < non_joints.size(); ++i) { const GLTFNodeIndex node_i = non_joints[i]; subtree_set.insert(node_i); const GLTFNodeIndex parent_i = state.nodes[node_i]->parent; if (parent_i >= 0 && non_joints.find(parent_i) >= 0 && !state.nodes[parent_i]->joint) { subtree_set.create_union(parent_i, node_i); } } // Find all the non joint subtrees and re-parent them to a new "fake" joint Vector non_joint_subtree_roots; subtree_set.get_representatives(non_joint_subtree_roots); for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) { const GLTFNodeIndex subtree_root = non_joint_subtree_roots[root_i]; Vector subtree_nodes; subtree_set.get_members(subtree_nodes, subtree_root); for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) { ERR_FAIL_COND_V(_reparent_to_fake_joint(state, skeleton, subtree_nodes[subtree_i]), FAILED); // We modified the tree, recompute all the heights _compute_node_heights(state); } } return OK; } Error EditorSceneImporterGLTF::_reparent_to_fake_joint(GLTFState &state, GLTFSkeleton &skeleton, const GLTFNodeIndex node_index) { GLTFNode *node = state.nodes[node_index]; // Can we just "steal" this joint if it is just a spatial node? if (node->skin < 0 && node->mesh < 0 && node->camera < 0) { node->joint = true; // Add the joint to the skeletons joints skeleton.joints.push_back(node_index); return OK; } GLTFNode *fake_joint = memnew(GLTFNode); const GLTFNodeIndex fake_joint_index = state.nodes.size(); state.nodes.push_back(fake_joint); // We better not be a joint, or we messed up in our logic if (node->joint) { return FAILED; } fake_joint->translation = node->translation; fake_joint->rotation = node->rotation; fake_joint->scale = node->scale; fake_joint->xform = node->xform; fake_joint->joint = true; // We can use the exact same name here, because the joint will be inside a skeleton and not the scene fake_joint->name = node->name; // Clear the nodes transforms, since it will be parented to the fake joint node->translation = Vector3(0, 0, 0); node->rotation = Quat(); node->scale = Vector3(1, 1, 1); node->xform = Transform(); // Transfer the node children to the fake joint for (int child_i = 0; child_i < node->children.size(); ++child_i) { GLTFNode *child = state.nodes[node->children[child_i]]; child->parent = fake_joint_index; } fake_joint->children = node->children; node->children.clear(); // add the fake joint to the parent and remove the original joint if (node->parent >= 0) { GLTFNode *parent = state.nodes[node->parent]; parent->children.erase(node_index); parent->children.push_back(fake_joint_index); fake_joint->parent = node->parent; } // Add the node to the fake joint fake_joint->children.push_back(node_index); node->parent = fake_joint_index; node->fake_joint_parent = fake_joint_index; // Add the fake joint to the skeletons joints skeleton.joints.push_back(fake_joint_index); // Replace skin_skeletons with fake joints if we must. for (GLTFSkinIndex skin_i = 0; skin_i < state.skins.size(); ++skin_i) { GLTFSkin &skin = state.skins.write[skin_i]; if (skin.skin_root == node_index) { skin.skin_root = fake_joint_index; } } return OK; } Error EditorSceneImporterGLTF::_determine_skeleton_roots(GLTFState &state, const GLTFSkeletonIndex skel_i) { DisjointSet disjoint_set; for (GLTFNodeIndex i = 0; i < state.nodes.size(); ++i) { const GLTFNode *node = state.nodes[i]; if (node->skeleton != skel_i) { continue; } disjoint_set.insert(i); if (node->parent >= 0 && state.nodes[node->parent]->skeleton == skel_i) { disjoint_set.create_union(node->parent, i); } } GLTFSkeleton &skeleton = state.skeletons.write[skel_i]; Vector owners; disjoint_set.get_representatives(owners); Vector roots; for (int i = 0; i < owners.size(); ++i) { Vector set; disjoint_set.get_members(set, owners[i]); const GLTFNodeIndex root = _find_highest_node(state, set); ERR_FAIL_COND_V(root < 0, FAILED); roots.push_back(root); } roots.sort(); skeleton.roots = roots; if (roots.size() == 0) { return FAILED; } else if (roots.size() == 1) { return OK; } // Check that the subtrees have the same parent root const GLTFNodeIndex parent = state.nodes[roots[0]]->parent; for (int i = 1; i < roots.size(); ++i) { if (state.nodes[roots[i]]->parent != parent) { return FAILED; } } return OK; } Error EditorSceneImporterGLTF::_create_skeletons(GLTFState &state) { for (GLTFSkeletonIndex skel_i = 0; skel_i < state.skeletons.size(); ++skel_i) { GLTFSkeleton &gltf_skeleton = state.skeletons.write[skel_i]; Skeleton3D *skeleton = memnew(Skeleton3D); gltf_skeleton.godot_skeleton = skeleton; // Make a unique name, no gltf node represents this skeleton skeleton->set_name(_gen_unique_name(state, "Skeleton")); List bones; for (int i = 0; i < gltf_skeleton.roots.size(); ++i) { bones.push_back(gltf_skeleton.roots[i]); } // Make the skeleton creation deterministic by going through the roots in // a sorted order, and DEPTH FIRST bones.sort(); while (!bones.empty()) { const GLTFNodeIndex node_i = bones.front()->get(); bones.pop_front(); GLTFNode *node = state.nodes[node_i]; ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED); { // Add all child nodes to the stack (deterministically) Vector child_nodes; for (int i = 0; i < node->children.size(); ++i) { const GLTFNodeIndex child_i = node->children[i]; if (state.nodes[child_i]->skeleton == skel_i) { child_nodes.push_back(child_i); } } // Depth first insertion child_nodes.sort(); for (int i = child_nodes.size() - 1; i >= 0; --i) { bones.push_front(child_nodes[i]); } } const int bone_index = skeleton->get_bone_count(); if (node->name.empty()) { node->name = "bone"; } node->name = _gen_unique_bone_name(state, skel_i, node->name); skeleton->add_bone(node->name); skeleton->set_bone_rest(bone_index, node->xform); if (node->parent >= 0 && state.nodes[node->parent]->skeleton == skel_i) { const int bone_parent = skeleton->find_bone(state.nodes[node->parent]->name); ERR_FAIL_COND_V(bone_parent < 0, FAILED); skeleton->set_bone_parent(bone_index, skeleton->find_bone(state.nodes[node->parent]->name)); } state.scene_nodes.insert(node_i, skeleton); } } ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(state), ERR_PARSE_ERROR); return OK; } Error EditorSceneImporterGLTF::_map_skin_joints_indices_to_skeleton_bone_indices(GLTFState &state) { for (GLTFSkinIndex skin_i = 0; skin_i < state.skins.size(); ++skin_i) { GLTFSkin &skin = state.skins.write[skin_i]; const GLTFSkeleton &skeleton = state.skeletons[skin.skeleton]; for (int joint_index = 0; joint_index < skin.joints_original.size(); ++joint_index) { const GLTFNodeIndex node_i = skin.joints_original[joint_index]; const GLTFNode *node = state.nodes[node_i]; skin.joint_i_to_name.insert(joint_index, node->name); const int bone_index = skeleton.godot_skeleton->find_bone(node->name); ERR_FAIL_COND_V(bone_index < 0, FAILED); skin.joint_i_to_bone_i.insert(joint_index, bone_index); } } return OK; } Error EditorSceneImporterGLTF::_create_skins(GLTFState &state) { for (GLTFSkinIndex skin_i = 0; skin_i < state.skins.size(); ++skin_i) { GLTFSkin &gltf_skin = state.skins.write[skin_i]; Ref skin; skin.instance(); // Some skins don't have IBM's! What absolute monsters! const bool has_ibms = !gltf_skin.inverse_binds.empty(); for (int joint_i = 0; joint_i < gltf_skin.joints_original.size(); ++joint_i) { Transform xform; if (has_ibms) { xform = gltf_skin.inverse_binds[joint_i]; } if (state.use_named_skin_binds) { StringName name = gltf_skin.joint_i_to_name[joint_i]; skin->add_named_bind(name, xform); } else { int bone_i = gltf_skin.joint_i_to_bone_i[joint_i]; skin->add_bind(bone_i, xform); } } gltf_skin.godot_skin = skin; } // Purge the duplicates! _remove_duplicate_skins(state); // Create unique names now, after removing duplicates for (GLTFSkinIndex skin_i = 0; skin_i < state.skins.size(); ++skin_i) { Ref skin = state.skins[skin_i].godot_skin; if (skin->get_name().empty()) { // Make a unique name, no gltf node represents this skin skin->set_name(_gen_unique_name(state, "Skin")); } } return OK; } bool EditorSceneImporterGLTF::_skins_are_same(const Ref &skin_a, const Ref &skin_b) { if (skin_a->get_bind_count() != skin_b->get_bind_count()) { return false; } for (int i = 0; i < skin_a->get_bind_count(); ++i) { if (skin_a->get_bind_bone(i) != skin_b->get_bind_bone(i)) { return false; } Transform a_xform = skin_a->get_bind_pose(i); Transform b_xform = skin_b->get_bind_pose(i); if (a_xform != b_xform) { return false; } } return true; } void EditorSceneImporterGLTF::_remove_duplicate_skins(GLTFState &state) { for (int i = 0; i < state.skins.size(); ++i) { for (int j = i + 1; j < state.skins.size(); ++j) { const Ref &skin_i = state.skins[i].godot_skin; const Ref &skin_j = state.skins[j].godot_skin; if (_skins_are_same(skin_i, skin_j)) { // replace it and delete the old state.skins.write[j].godot_skin = skin_i; } } } } Error EditorSceneImporterGLTF::_parse_lights(GLTFState &state) { if (!state.json.has("extensions")) { return OK; } Dictionary extensions = state.json["extensions"]; if (!extensions.has("KHR_lights_punctual")) { return OK; } Dictionary lights_punctual = extensions["KHR_lights_punctual"]; if (!lights_punctual.has("lights")) { return OK; } const Array &lights = lights_punctual["lights"]; for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) { const Dictionary &d = lights[light_i]; GLTFLight light; ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); const String &type = d["type"]; light.type = type; if (d.has("color")) { const Array &arr = d["color"]; ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); const Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); light.color = c; } if (d.has("intensity")) { light.intensity = d["intensity"]; } if (d.has("range")) { light.range = d["range"]; } if (type == "spot") { const Dictionary &spot = d["spot"]; light.inner_cone_angle = spot["innerConeAngle"]; light.outer_cone_angle = spot["outerConeAngle"]; ERR_FAIL_COND_V_MSG(light.inner_cone_angle >= light.outer_cone_angle, ERR_PARSE_ERROR, "The inner angle must be smaller than the outer angle."); } else if (type != "point" && type != "directional") { ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Light type is unknown."); } state.lights.push_back(light); } print_verbose("glTF: Total lights: " + itos(state.lights.size())); return OK; } Error EditorSceneImporterGLTF::_parse_cameras(GLTFState &state) { if (!state.json.has("cameras")) { return OK; } const Array &cameras = state.json["cameras"]; for (GLTFCameraIndex i = 0; i < cameras.size(); i++) { const Dictionary &d = cameras[i]; GLTFCamera camera; ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); const String &type = d["type"]; if (type == "orthographic") { camera.perspective = false; if (d.has("orthographic")) { const Dictionary &og = d["orthographic"]; camera.fov_size = og["ymag"]; camera.zfar = og["zfar"]; camera.znear = og["znear"]; } else { camera.fov_size = 10; } } else if (type == "perspective") { camera.perspective = true; if (d.has("perspective")) { const Dictionary &ppt = d["perspective"]; // GLTF spec is in radians, Godot's camera is in degrees. camera.fov_size = (double)ppt["yfov"] * 180.0 / Math_PI; camera.zfar = ppt["zfar"]; camera.znear = ppt["znear"]; } else { camera.fov_size = 10; } } else { ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Camera should be in 'orthographic' or 'perspective'"); } state.cameras.push_back(camera); } print_verbose("glTF: Total cameras: " + itos(state.cameras.size())); return OK; } Error EditorSceneImporterGLTF::_parse_animations(GLTFState &state) { if (!state.json.has("animations")) { return OK; } const Array &animations = state.json["animations"]; for (GLTFAnimationIndex i = 0; i < animations.size(); i++) { const Dictionary &d = animations[i]; GLTFAnimation animation; if (!d.has("channels") || !d.has("samplers")) { continue; } Array channels = d["channels"]; Array samplers = d["samplers"]; if (d.has("name")) { String name = d["name"]; if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) { animation.loop = true; } animation.name = _sanitize_scene_name(name); } for (int j = 0; j < channels.size(); j++) { const Dictionary &c = channels[j]; if (!c.has("target")) { continue; } const Dictionary &t = c["target"]; if (!t.has("node") || !t.has("path")) { continue; } ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR); const int sampler = c["sampler"]; ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR); GLTFNodeIndex node = t["node"]; String path = t["path"]; ERR_FAIL_INDEX_V(node, state.nodes.size(), ERR_PARSE_ERROR); GLTFAnimation::Track *track = nullptr; if (!animation.tracks.has(node)) { animation.tracks[node] = GLTFAnimation::Track(); } track = &animation.tracks[node]; const Dictionary &s = samplers[sampler]; ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR); ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR); const int input = s["input"]; const int output = s["output"]; GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR; int output_count = 1; if (s.has("interpolation")) { const String &in = s["interpolation"]; if (in == "STEP") { interp = GLTFAnimation::INTERP_STEP; } else if (in == "LINEAR") { interp = GLTFAnimation::INTERP_LINEAR; } else if (in == "CATMULLROMSPLINE") { interp = GLTFAnimation::INTERP_CATMULLROMSPLINE; output_count = 3; } else if (in == "CUBICSPLINE") { interp = GLTFAnimation::INTERP_CUBIC_SPLINE; output_count = 3; } } const Vector times = _decode_accessor_as_floats(state, input, false); if (path == "translation") { const Vector translations = _decode_accessor_as_vec3(state, output, false); track->translation_track.interpolation = interp; track->translation_track.times = Variant(times); //convert via variant track->translation_track.values = Variant(translations); //convert via variant } else if (path == "rotation") { const Vector rotations = _decode_accessor_as_quat(state, output, false); track->rotation_track.interpolation = interp; track->rotation_track.times = Variant(times); //convert via variant track->rotation_track.values = rotations; //convert via variant } else if (path == "scale") { const Vector scales = _decode_accessor_as_vec3(state, output, false); track->scale_track.interpolation = interp; track->scale_track.times = Variant(times); //convert via variant track->scale_track.values = Variant(scales); //convert via variant } else if (path == "weights") { const Vector weights = _decode_accessor_as_floats(state, output, false); ERR_FAIL_INDEX_V(state.nodes[node]->mesh, state.meshes.size(), ERR_PARSE_ERROR); const GLTFMesh *mesh = &state.meshes[state.nodes[node]->mesh]; ERR_FAIL_COND_V(mesh->blend_weights.size() == 0, ERR_PARSE_ERROR); const int wc = mesh->blend_weights.size(); track->weight_tracks.resize(wc); const int expected_value_count = times.size() * output_count * wc; ERR_FAIL_COND_V_MSG(weights.size() != expected_value_count, ERR_PARSE_ERROR, "Invalid weight data, expected " + itos(expected_value_count) + " weight values, got " + itos(weights.size()) + " instead."); const int wlen = weights.size() / wc; const float *r = weights.ptr(); for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea GLTFAnimation::Channel cf; cf.interpolation = interp; cf.times = Variant(times); Vector wdata; wdata.resize(wlen); for (int l = 0; l < wlen; l++) { wdata.write[l] = r[l * wc + k]; } cf.values = wdata; track->weight_tracks.write[k] = cf; } } else { WARN_PRINT("Invalid path '" + path + "'."); } } state.animations.push_back(animation); } print_verbose("glTF: Total animations '" + itos(state.animations.size()) + "'."); return OK; } void EditorSceneImporterGLTF::_assign_scene_names(GLTFState &state) { for (int i = 0; i < state.nodes.size(); i++) { GLTFNode *n = state.nodes[i]; // Any joints get unique names generated when the skeleton is made, unique to the skeleton if (n->skeleton >= 0) { continue; } if (n->name.empty()) { if (n->mesh >= 0) { n->name = "Mesh"; } else if (n->camera >= 0) { n->name = "Camera"; } else { n->name = "Node"; } } n->name = _gen_unique_name(state, n->name); } } BoneAttachment3D *EditorSceneImporterGLTF::_generate_bone_attachment(GLTFState &state, Skeleton3D *skeleton, const GLTFNodeIndex node_index) { const GLTFNode *gltf_node = state.nodes[node_index]; const GLTFNode *bone_node = state.nodes[gltf_node->parent]; BoneAttachment3D *bone_attachment = memnew(BoneAttachment3D); print_verbose("glTF: Creating bone attachment for: " + gltf_node->name); ERR_FAIL_COND_V(!bone_node->joint, nullptr); bone_attachment->set_bone_name(bone_node->name); return bone_attachment; } MeshInstance3D *EditorSceneImporterGLTF::_generate_mesh_instance(GLTFState &state, Node *scene_parent, const GLTFNodeIndex node_index) { const GLTFNode *gltf_node = state.nodes[node_index]; ERR_FAIL_INDEX_V(gltf_node->mesh, state.meshes.size(), nullptr); MeshInstance3D *mi = memnew(MeshInstance3D); print_verbose("glTF: Creating mesh for: " + gltf_node->name); GLTFMesh &mesh = state.meshes.write[gltf_node->mesh]; mi->set_mesh(mesh.mesh); if (mesh.mesh->get_name() == "") { mesh.mesh->set_name(gltf_node->name); } for (int i = 0; i < mesh.blend_weights.size(); i++) { mi->set("blend_shapes/" + mesh.mesh->get_blend_shape_name(i), mesh.blend_weights[i]); } return mi; } Light3D *EditorSceneImporterGLTF::_generate_light(GLTFState &state, Node *scene_parent, const GLTFNodeIndex node_index) { const GLTFNode *gltf_node = state.nodes[node_index]; ERR_FAIL_INDEX_V(gltf_node->light, state.lights.size(), nullptr); print_verbose("glTF: Creating light for: " + gltf_node->name); const GLTFLight &l = state.lights[gltf_node->light]; float intensity = l.intensity; if (intensity > 10) { // GLTF spec has the default around 1, but Blender defaults lights to 100. // The only sane way to handle this is to check where it came from and // handle it accordingly. If it's over 10, it probably came from Blender. intensity /= 100; } if (l.type == "directional") { DirectionalLight3D *light = memnew(DirectionalLight3D); light->set_param(Light3D::PARAM_ENERGY, intensity); light->set_color(l.color); return light; } const float range = CLAMP(l.range, 0, 4096); // Doubling the range will double the effective brightness, so we need double attenuation (half brightness). // We want to have double intensity give double brightness, so we need half the attenuation. const float attenuation = range / intensity; if (l.type == "point") { OmniLight3D *light = memnew(OmniLight3D); light->set_param(OmniLight3D::PARAM_ATTENUATION, attenuation); light->set_param(OmniLight3D::PARAM_RANGE, range); light->set_color(l.color); return light; } if (l.type == "spot") { SpotLight3D *light = memnew(SpotLight3D); light->set_param(SpotLight3D::PARAM_ATTENUATION, attenuation); light->set_param(SpotLight3D::PARAM_RANGE, range); light->set_param(SpotLight3D::PARAM_SPOT_ANGLE, Math::rad2deg(l.outer_cone_angle)); light->set_color(l.color); // Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b // The points in desmos are not exact, except for (1, infinity). float angle_ratio = l.inner_cone_angle / l.outer_cone_angle; float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1; light->set_param(SpotLight3D::PARAM_SPOT_ATTENUATION, angle_attenuation); return light; } return nullptr; } Camera3D *EditorSceneImporterGLTF::_generate_camera(GLTFState &state, Node *scene_parent, const GLTFNodeIndex node_index) { const GLTFNode *gltf_node = state.nodes[node_index]; ERR_FAIL_INDEX_V(gltf_node->camera, state.cameras.size(), nullptr); Camera3D *camera = memnew(Camera3D); print_verbose("glTF: Creating camera for: " + gltf_node->name); const GLTFCamera &c = state.cameras[gltf_node->camera]; if (c.perspective) { camera->set_perspective(c.fov_size, c.znear, c.zfar); } else { camera->set_orthogonal(c.fov_size, c.znear, c.zfar); } return camera; } Node3D *EditorSceneImporterGLTF::_generate_spatial(GLTFState &state, Node *scene_parent, const GLTFNodeIndex node_index) { const GLTFNode *gltf_node = state.nodes[node_index]; Node3D *spatial = memnew(Node3D); print_verbose("glTF: Creating spatial for: " + gltf_node->name); return spatial; } void EditorSceneImporterGLTF::_generate_scene_node(GLTFState &state, Node *scene_parent, Node3D *scene_root, const GLTFNodeIndex node_index) { const GLTFNode *gltf_node = state.nodes[node_index]; Node3D *current_node = nullptr; // Is our parent a skeleton Skeleton3D *active_skeleton = Object::cast_to(scene_parent); if (gltf_node->skeleton >= 0) { Skeleton3D *skeleton = state.skeletons[gltf_node->skeleton].godot_skeleton; if (active_skeleton != skeleton) { ERR_FAIL_COND_MSG(active_skeleton != nullptr, "glTF: Generating scene detected direct parented Skeletons"); // Add it to the scene if it has not already been added if (skeleton->get_parent() == nullptr) { scene_parent->add_child(skeleton); skeleton->set_owner(scene_root); } } active_skeleton = skeleton; current_node = skeleton; } // If we have an active skeleton, and the node is node skinned, we need to create a bone attachment if (current_node == nullptr && active_skeleton != nullptr && gltf_node->skin < 0) { BoneAttachment3D *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index); scene_parent->add_child(bone_attachment); bone_attachment->set_owner(scene_root); // There is no gltf_node that represent this, so just directly create a unique name bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment")); // We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node // and attach it to the bone_attachment scene_parent = bone_attachment; } // We still have not managed to make a node if (current_node == nullptr) { if (gltf_node->mesh >= 0) { current_node = _generate_mesh_instance(state, scene_parent, node_index); } else if (gltf_node->camera >= 0) { current_node = _generate_camera(state, scene_parent, node_index); } else if (gltf_node->light >= 0) { current_node = _generate_light(state, scene_parent, node_index); } else { current_node = _generate_spatial(state, scene_parent, node_index); } scene_parent->add_child(current_node); current_node->set_owner(scene_root); current_node->set_transform(gltf_node->xform); current_node->set_name(gltf_node->name); } state.scene_nodes.insert(node_index, current_node); for (int i = 0; i < gltf_node->children.size(); ++i) { _generate_scene_node(state, current_node, scene_root, gltf_node->children[i]); } } template struct EditorSceneImporterGLTFInterpolate { T lerp(const T &a, const T &b, float c) const { return a + (b - a) * c; } T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) { const float t2 = t * t; const float t3 = t2 * t; return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); } T bezier(T start, T control_1, T control_2, T end, float t) { /* Formula from Wikipedia article on Bezier curves. */ const real_t omt = (1.0 - t); const real_t omt2 = omt * omt; const real_t omt3 = omt2 * omt; const real_t t2 = t * t; const real_t t3 = t2 * t; return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; } }; // thank you for existing, partial specialization template <> struct EditorSceneImporterGLTFInterpolate { Quat lerp(const Quat &a, const Quat &b, const float c) const { ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quat(), "The quaternion \"a\" must be normalized."); ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quat(), "The quaternion \"b\" must be normalized."); return a.slerp(b, c).normalized(); } Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, const float c) { ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quat(), "The quaternion \"p1\" must be normalized."); ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quat(), "The quaternion \"p2\" must be normalized."); return p1.slerp(p2, c).normalized(); } Quat bezier(const Quat start, const Quat control_1, const Quat control_2, const Quat end, const float t) { ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quat(), "The start quaternion must be normalized."); ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quat(), "The end quaternion must be normalized."); return start.slerp(end, t).normalized(); } }; template T EditorSceneImporterGLTF::_interpolate_track(const Vector &p_times, const Vector &p_values, const float p_time, const GLTFAnimation::Interpolation p_interp) { //could use binary search, worth it? int idx = -1; for (int i = 0; i < p_times.size(); i++) { if (p_times[i] > p_time) { break; } idx++; } EditorSceneImporterGLTFInterpolate interp; switch (p_interp) { case GLTFAnimation::INTERP_LINEAR: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.lerp(p_values[idx], p_values[idx + 1], c); } break; case GLTFAnimation::INTERP_STEP: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } return p_values[idx]; } break; case GLTFAnimation::INTERP_CATMULLROMSPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[1 + p_times.size() - 1]; } const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c); } break; case GLTFAnimation::INTERP_CUBIC_SPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[(p_times.size() - 1) * 3 + 1]; } const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); const T from = p_values[idx * 3 + 1]; const T c1 = from + p_values[idx * 3 + 2]; const T to = p_values[idx * 3 + 4]; const T c2 = to + p_values[idx * 3 + 3]; return interp.bezier(from, c1, c2, to, c); } break; } ERR_FAIL_V(p_values[0]); } void EditorSceneImporterGLTF::_import_animation(GLTFState &state, AnimationPlayer *ap, const GLTFAnimationIndex index, const int bake_fps) { const GLTFAnimation &anim = state.animations[index]; String name = anim.name; if (name.empty()) { // No node represent these, and they are not in the hierarchy, so just make a unique name name = _gen_unique_name(state, "Animation"); } Ref animation; animation.instance(); animation->set_name(name); if (anim.loop) { animation->set_loop(true); } float length = 0; for (Map::Element *E = anim.tracks.front(); E; E = E->next()) { const GLTFAnimation::Track &track = E->get(); //need to find the path NodePath node_path; GLTFNodeIndex node_index = E->key(); if (state.nodes[node_index]->fake_joint_parent >= 0) { // Should be same as parent node_index = state.nodes[node_index]->fake_joint_parent; } const GLTFNode *node = state.nodes[E->key()]; if (node->skeleton >= 0) { const Skeleton3D *sk = Object::cast_to(state.scene_nodes.find(node_index)->get()); ERR_FAIL_COND(sk == nullptr); const String path = ap->get_parent()->get_path_to(sk); const String bone = node->name; node_path = path + ":" + bone; } else { node_path = ap->get_parent()->get_path_to(state.scene_nodes.find(node_index)->get()); } for (int i = 0; i < track.rotation_track.times.size(); i++) { length = MAX(length, track.rotation_track.times[i]); } for (int i = 0; i < track.translation_track.times.size(); i++) { length = MAX(length, track.translation_track.times[i]); } for (int i = 0; i < track.scale_track.times.size(); i++) { length = MAX(length, track.scale_track.times[i]); } for (int i = 0; i < track.weight_tracks.size(); i++) { for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { length = MAX(length, track.weight_tracks[i].times[j]); } } if (track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) { //make transform track int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_TRANSFORM); animation->track_set_path(track_idx, node_path); animation->track_set_imported(track_idx, true); //first determine animation length const float increment = 1.0 / float(bake_fps); float time = 0.0; Vector3 base_pos; Quat base_rot; Vector3 base_scale = Vector3(1, 1, 1); if (!track.rotation_track.values.size()) { base_rot = state.nodes[E->key()]->rotation.normalized(); } if (!track.translation_track.values.size()) { base_pos = state.nodes[E->key()]->translation; } if (!track.scale_track.values.size()) { base_scale = state.nodes[E->key()]->scale; } bool last = false; while (true) { Vector3 pos = base_pos; Quat rot = base_rot; Vector3 scale = base_scale; if (track.translation_track.times.size()) { pos = _interpolate_track(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation); } if (track.rotation_track.times.size()) { rot = _interpolate_track(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation); } if (track.scale_track.times.size()) { scale = _interpolate_track(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation); } if (node->skeleton >= 0) { Transform xform; xform.basis.set_quat_scale(rot, scale); xform.origin = pos; const Skeleton3D *skeleton = state.skeletons[node->skeleton].godot_skeleton; const int bone_idx = skeleton->find_bone(node->name); xform = skeleton->get_bone_rest(bone_idx).affine_inverse() * xform; rot = xform.basis.get_rotation_quat(); rot.normalize(); scale = xform.basis.get_scale(); pos = xform.origin; } animation->transform_track_insert_key(track_idx, time, pos, rot, scale); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } } for (int i = 0; i < track.weight_tracks.size(); i++) { ERR_CONTINUE(node->mesh < 0 || node->mesh >= state.meshes.size()); const GLTFMesh &mesh = state.meshes[node->mesh]; const String prop = "blend_shapes/" + mesh.mesh->get_blend_shape_name(i); const String blend_path = String(node_path) + ":" + prop; const int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_VALUE); animation->track_set_path(track_idx, blend_path); // Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation, // the other modes have to be baked. GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation; if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) { animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR); for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { const float t = track.weight_tracks[i].times[j]; const float w = track.weight_tracks[i].values[j]; animation->track_insert_key(track_idx, t, w); } } else { // CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies. const float increment = 1.0 / float(bake_fps); float time = 0.0; bool last = false; while (true) { _interpolate_track(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } } } } animation->set_length(length); ap->add_animation(name, animation); } void EditorSceneImporterGLTF::_process_mesh_instances(GLTFState &state, Node3D *scene_root) { for (GLTFNodeIndex node_i = 0; node_i < state.nodes.size(); ++node_i) { const GLTFNode *node = state.nodes[node_i]; if (node->skin >= 0 && node->mesh >= 0) { const GLTFSkinIndex skin_i = node->skin; Map::Element *mi_element = state.scene_nodes.find(node_i); MeshInstance3D *mi = Object::cast_to(mi_element->get()); ERR_FAIL_COND(mi == nullptr); const GLTFSkeletonIndex skel_i = state.skins[node->skin].skeleton; const GLTFSkeleton &gltf_skeleton = state.skeletons[skel_i]; Skeleton3D *skeleton = gltf_skeleton.godot_skeleton; ERR_FAIL_COND(skeleton == nullptr); mi->get_parent()->remove_child(mi); skeleton->add_child(mi); mi->set_owner(scene_root); mi->set_skin(state.skins[skin_i].godot_skin); mi->set_skeleton_path(mi->get_path_to(skeleton)); mi->set_transform(Transform()); } } } Node3D *EditorSceneImporterGLTF::_generate_scene(GLTFState &state, const int p_bake_fps) { Node3D *root = memnew(Node3D); // scene_name is already unique root->set_name(state.scene_name); for (int i = 0; i < state.root_nodes.size(); ++i) { _generate_scene_node(state, root, root, state.root_nodes[i]); } _process_mesh_instances(state, root); if (state.animations.size()) { AnimationPlayer *ap = memnew(AnimationPlayer); ap->set_name("AnimationPlayer"); root->add_child(ap); ap->set_owner(root); for (int i = 0; i < state.animations.size(); i++) { _import_animation(state, ap, i, p_bake_fps); } } return root; } Node *EditorSceneImporterGLTF::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List *r_missing_deps, Error *r_err) { print_verbose(vformat("glTF: Importing file %s as scene.", p_path)); GLTFState state; if (p_path.to_lower().ends_with("glb")) { //binary file //text file Error err = _parse_glb(p_path, state); if (err) { return nullptr; } } else { //text file Error err = _parse_json(p_path, state); if (err) { return nullptr; } } ERR_FAIL_COND_V(!state.json.has("asset"), nullptr); Dictionary asset = state.json["asset"]; ERR_FAIL_COND_V(!asset.has("version"), nullptr); String version = asset["version"]; state.import_flags = p_flags; state.major_version = version.get_slice(".", 0).to_int(); state.minor_version = version.get_slice(".", 1).to_int(); state.use_named_skin_binds = p_flags & IMPORT_USE_NAMED_SKIN_BINDS; /* STEP 0 PARSE SCENE */ Error err = _parse_scenes(state); if (err != OK) { return nullptr; } /* STEP 1 PARSE NODES */ err = _parse_nodes(state); if (err != OK) { return nullptr; } /* STEP 2 PARSE BUFFERS */ err = _parse_buffers(state, p_path.get_base_dir()); if (err != OK) { return nullptr; } /* STEP 3 PARSE BUFFER VIEWS */ err = _parse_buffer_views(state); if (err != OK) { return nullptr; } /* STEP 4 PARSE ACCESSORS */ err = _parse_accessors(state); if (err != OK) { return nullptr; } /* STEP 5 PARSE IMAGES */ err = _parse_images(state, p_path.get_base_dir()); if (err != OK) { return nullptr; } /* STEP 6 PARSE TEXTURES */ err = _parse_textures(state); if (err != OK) { return nullptr; } /* STEP 7 PARSE TEXTURES */ err = _parse_materials(state); if (err != OK) { return nullptr; } /* STEP 9 PARSE SKINS */ err = _parse_skins(state); if (err != OK) { return nullptr; } /* STEP 10 DETERMINE SKELETONS */ err = _determine_skeletons(state); if (err != OK) { return nullptr; } /* STEP 11 CREATE SKELETONS */ err = _create_skeletons(state); if (err != OK) { return nullptr; } /* STEP 12 CREATE SKINS */ err = _create_skins(state); if (err != OK) { return nullptr; } /* STEP 13 PARSE MESHES (we have enough info now) */ err = _parse_meshes(state); if (err != OK) { return nullptr; } /* STEP 14 PARSE LIGHTS */ err = _parse_lights(state); if (err != OK) { return NULL; } /* STEP 15 PARSE CAMERAS */ err = _parse_cameras(state); if (err != OK) { return nullptr; } /* STEP 16 PARSE ANIMATIONS */ err = _parse_animations(state); if (err != OK) { return nullptr; } /* STEP 17 ASSIGN SCENE NAMES */ _assign_scene_names(state); /* STEP 18 MAKE SCENE! */ Node3D *scene = _generate_scene(state, p_bake_fps); return scene; } Ref EditorSceneImporterGLTF::import_animation(const String &p_path, uint32_t p_flags, int p_bake_fps) { return Ref(); } EditorSceneImporterGLTF::EditorSceneImporterGLTF() { }