/*************************************************************************/ /* editor_scene_importer_gltf.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "editor_scene_importer_gltf.h" #include "core/io/json.h" #include "core/math/math_defs.h" #include "core/os/file_access.h" #include "core/os/os.h" #include "scene/3d/camera.h" #include "scene/3d/mesh_instance.h" #include "scene/animation/animation_player.h" #include "scene/resources/surface_tool.h" #include "thirdparty/misc/base64.h" uint32_t EditorSceneImporterGLTF::get_import_flags() const { return IMPORT_SCENE | IMPORT_ANIMATION; } void EditorSceneImporterGLTF::get_extensions(List *r_extensions) const { r_extensions->push_back("gltf"); r_extensions->push_back("glb"); } Error EditorSceneImporterGLTF::_parse_json(const String &p_path, GLTFState &state) { Error err; FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) { return err; } Vector array; array.resize(f->get_len()); f->get_buffer(array.ptrw(), array.size()); String text; text.parse_utf8((const char *)array.ptr(), array.size()); String err_txt; int err_line; Variant v; err = JSON::parse(text, v, err_txt, err_line); if (err != OK) { _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); return err; } state.json = v; return OK; } Error EditorSceneImporterGLTF::_parse_glb(const String &p_path, GLTFState &state) { Error err; FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) { return err; } uint32_t magic = f->get_32(); ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF f->get_32(); // version f->get_32(); // length uint32_t chunk_length = f->get_32(); uint32_t chunk_type = f->get_32(); ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON Vector json_data; json_data.resize(chunk_length); uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length); ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); String text; text.parse_utf8((const char *)json_data.ptr(), json_data.size()); String err_txt; int err_line; Variant v; err = JSON::parse(text, v, err_txt, err_line); if (err != OK) { _err_print_error("", p_path.utf8().get_data(), err_line, err_txt.utf8().get_data(), ERR_HANDLER_SCRIPT); return err; } state.json = v; //data? chunk_length = f->get_32(); chunk_type = f->get_32(); if (f->eof_reached()) { return OK; //all good } ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN state.glb_data.resize(chunk_length); len = f->get_buffer(state.glb_data.ptrw(), chunk_length); ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT); return OK; } static Vector3 _arr_to_vec3(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 3, Vector3()); return Vector3(p_array[0], p_array[1], p_array[2]); } static Quat _arr_to_quat(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 4, Quat()); return Quat(p_array[0], p_array[1], p_array[2], p_array[3]); } static Transform _arr_to_xform(const Array &p_array) { ERR_FAIL_COND_V(p_array.size() != 16, Transform()); Transform xform; xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2])); xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6])); xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10])); xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14])); return xform; } String EditorSceneImporterGLTF::_gen_unique_name(GLTFState &state, const String &p_name) { int index = 1; String name; while (true) { name = p_name; if (index > 1) { name += " " + itos(index); } if (!state.unique_names.has(name)) { break; } index++; } state.unique_names.insert(name); return name; } Error EditorSceneImporterGLTF::_parse_scenes(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("scenes"), ERR_FILE_CORRUPT); Array scenes = state.json["scenes"]; for (int i = 0; i < 1; i++) { //only first scene is imported Dictionary s = scenes[i]; ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE); Array nodes = s["nodes"]; for (int j = 0; j < nodes.size(); j++) { state.root_nodes.push_back(nodes[j]); } if (s.has("name")) { state.scene_name = s["name"]; } } return OK; } Error EditorSceneImporterGLTF::_parse_nodes(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("nodes"), ERR_FILE_CORRUPT); Array nodes = state.json["nodes"]; for (int i = 0; i < nodes.size(); i++) { GLTFNode *node = memnew(GLTFNode); Dictionary n = nodes[i]; if (n.has("name")) { node->name = n["name"]; } if (n.has("camera")) { node->camera = n["camera"]; } if (n.has("mesh")) { node->mesh = n["mesh"]; } if (n.has("skin")) { node->skin = n["skin"]; /* if (!state.skin_users.has(node->skin)) { state.skin_users[node->skin] = Vector(); } state.skin_users[node->skin].push_back(i); */ } if (n.has("matrix")) { node->xform = _arr_to_xform(n["matrix"]); } else { if (n.has("translation")) { node->translation = _arr_to_vec3(n["translation"]); } if (n.has("rotation")) { node->rotation = _arr_to_quat(n["rotation"]); } if (n.has("scale")) { node->scale = _arr_to_vec3(n["scale"]); } node->xform.basis.set_quat_scale(node->rotation, node->scale); node->xform.origin = node->translation; } if (n.has("children")) { Array children = n["children"]; for (int j = 0; j < children.size(); j++) { node->children.push_back(children[j]); } } state.nodes.push_back(node); } //build the hierarchy for (int i = 0; i < state.nodes.size(); i++) { for (int j = 0; j < state.nodes[i]->children.size(); j++) { int child = state.nodes[i]->children[j]; ERR_FAIL_INDEX_V(child, state.nodes.size(), ERR_FILE_CORRUPT); ERR_CONTINUE(state.nodes[child]->parent != -1); //node already has a parent, wtf. state.nodes[child]->parent = i; } } return OK; } static Vector _parse_base64_uri(const String &uri) { int start = uri.find(","); ERR_FAIL_COND_V(start == -1, Vector()); CharString substr = uri.right(start + 1).ascii(); int strlen = substr.length(); Vector buf; buf.resize(strlen / 4 * 3 + 1 + 1); int len = base64_decode((char *)buf.ptr(), (char *)substr.get_data(), strlen); buf.resize(len); return buf; } Error EditorSceneImporterGLTF::_parse_buffers(GLTFState &state, const String &p_base_path) { if (!state.json.has("buffers")) return OK; Array buffers = state.json["buffers"]; for (int i = 0; i < buffers.size(); i++) { if (i == 0 && state.glb_data.size()) { state.buffers.push_back(state.glb_data); } else { Dictionary buffer = buffers[i]; if (buffer.has("uri")) { Vector buffer_data; String uri = buffer["uri"]; if (uri.findn("data:application/octet-stream;base64") == 0) { //embedded data buffer_data = _parse_base64_uri(uri); } else { uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows buffer_data = FileAccess::get_file_as_array(uri); ERR_FAIL_COND_V(buffer.size() == 0, ERR_PARSE_ERROR); } ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR); int byteLength = buffer["byteLength"]; ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR); state.buffers.push_back(buffer_data); } } } print_verbose("glTF: Total buffers: " + itos(state.buffers.size())); return OK; } Error EditorSceneImporterGLTF::_parse_buffer_views(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("bufferViews"), ERR_FILE_CORRUPT); Array buffers = state.json["bufferViews"]; for (int i = 0; i < buffers.size(); i++) { Dictionary d = buffers[i]; GLTFBufferView buffer_view; ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR); buffer_view.buffer = d["buffer"]; ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR); buffer_view.byte_length = d["byteLength"]; if (d.has("byteOffset")) { buffer_view.byte_offset = d["byteOffset"]; } if (d.has("byteStride")) { buffer_view.byte_stride = d["byteStride"]; } if (d.has("target")) { int target = d["target"]; buffer_view.indices = target == ELEMENT_ARRAY_BUFFER; } state.buffer_views.push_back(buffer_view); } print_verbose("glTF: Total buffer views: " + itos(state.buffer_views.size())); return OK; } EditorSceneImporterGLTF::GLTFType EditorSceneImporterGLTF::_get_type_from_str(const String &p_string) { if (p_string == "SCALAR") return TYPE_SCALAR; if (p_string == "VEC2") return TYPE_VEC2; if (p_string == "VEC3") return TYPE_VEC3; if (p_string == "VEC4") return TYPE_VEC4; if (p_string == "MAT2") return TYPE_MAT2; if (p_string == "MAT3") return TYPE_MAT3; if (p_string == "MAT4") return TYPE_MAT4; ERR_FAIL_V(TYPE_SCALAR); } Error EditorSceneImporterGLTF::_parse_accessors(GLTFState &state) { ERR_FAIL_COND_V(!state.json.has("accessors"), ERR_FILE_CORRUPT); Array accessors = state.json["accessors"]; for (int i = 0; i < accessors.size(); i++) { Dictionary d = accessors[i]; GLTFAccessor accessor; ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR); accessor.component_type = d["componentType"]; ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR); accessor.count = d["count"]; ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); accessor.type = _get_type_from_str(d["type"]); if (d.has("bufferView")) { accessor.buffer_view = d["bufferView"]; //optional because it may be sparse... } if (d.has("byteOffset")) { accessor.byte_offset = d["byteOffset"]; } if (d.has("max")) { accessor.max = d["max"]; } if (d.has("min")) { accessor.min = d["min"]; } if (d.has("sparse")) { //eeh.. Dictionary s = d["sparse"]; ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR); accessor.sparse_count = d["count"]; ERR_FAIL_COND_V(!d.has("indices"), ERR_PARSE_ERROR); Dictionary si = d["indices"]; ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR); accessor.sparse_indices_buffer_view = si["bufferView"]; ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR); accessor.sparse_indices_component_type = si["componentType"]; if (si.has("byteOffset")) { accessor.sparse_indices_byte_offset = si["byteOffset"]; } ERR_FAIL_COND_V(!d.has("values"), ERR_PARSE_ERROR); Dictionary sv = d["values"]; ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR); accessor.sparse_values_buffer_view = sv["bufferView"]; if (sv.has("byteOffset")) { accessor.sparse_values_byte_offset = sv["byteOffset"]; } } state.accessors.push_back(accessor); } print_verbose("glTF: Total accessors: " + itos(state.accessors.size())); return OK; } String EditorSceneImporterGLTF::_get_component_type_name(uint32_t p_component) { switch (p_component) { case COMPONENT_TYPE_BYTE: return "Byte"; case COMPONENT_TYPE_UNSIGNED_BYTE: return "UByte"; case COMPONENT_TYPE_SHORT: return "Short"; case COMPONENT_TYPE_UNSIGNED_SHORT: return "UShort"; case COMPONENT_TYPE_INT: return "Int"; case COMPONENT_TYPE_FLOAT: return "Float"; } return ""; } String EditorSceneImporterGLTF::_get_type_name(GLTFType p_component) { static const char *names[] = { "float", "vec2", "vec3", "vec4", "mat2", "mat3", "mat4" }; return names[p_component]; } Error EditorSceneImporterGLTF::_decode_buffer_view(GLTFState &state, int p_buffer_view, double *dst, int skip_every, int skip_bytes, int element_size, int count, GLTFType type, int component_count, int component_type, int component_size, bool normalized, int byte_offset, bool for_vertex) { const GLTFBufferView &bv = state.buffer_views[p_buffer_view]; int stride = bv.byte_stride ? bv.byte_stride : element_size; if (for_vertex && stride % 4) { stride += 4 - (stride % 4); //according to spec must be multiple of 4 } ERR_FAIL_INDEX_V(bv.buffer, state.buffers.size(), ERR_PARSE_ERROR); uint32_t offset = bv.byte_offset + byte_offset; Vector buffer = state.buffers[bv.buffer]; //copy on write, so no performance hit const uint8_t *bufptr = buffer.ptr(); //use to debug print_verbose("glTF: type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count)); print_verbose("glTF: accessor offset" + itos(byte_offset) + " view offset: " + itos(bv.byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv.byte_length)); int buffer_end = (stride * (count - 1)) + element_size; ERR_FAIL_COND_V(buffer_end > bv.byte_length, ERR_PARSE_ERROR); ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR); //fill everything as doubles for (int i = 0; i < count; i++) { const uint8_t *src = &bufptr[offset + i * stride]; for (int j = 0; j < component_count; j++) { if (skip_every && j > 0 && (j % skip_every) == 0) { src += skip_bytes; } double d = 0; switch (component_type) { case COMPONENT_TYPE_BYTE: { int8_t b = int8_t(*src); if (normalized) { d = (double(b) / 128.0); } else { d = double(b); } } break; case COMPONENT_TYPE_UNSIGNED_BYTE: { uint8_t b = *src; if (normalized) { d = (double(b) / 255.0); } else { d = double(b); } } break; case COMPONENT_TYPE_SHORT: { int16_t s = *(int16_t *)src; if (normalized) { d = (double(s) / 32768.0); } else { d = double(s); } } break; case COMPONENT_TYPE_UNSIGNED_SHORT: { uint16_t s = *(uint16_t *)src; if (normalized) { d = (double(s) / 65535.0); } else { d = double(s); } } break; case COMPONENT_TYPE_INT: { d = *(int *)src; } break; case COMPONENT_TYPE_FLOAT: { d = *(float *)src; } break; } *dst++ = d; src += component_size; } } return OK; } int EditorSceneImporterGLTF::_get_component_type_size(int component_type) { switch (component_type) { case COMPONENT_TYPE_BYTE: return 1; break; case COMPONENT_TYPE_UNSIGNED_BYTE: return 1; break; case COMPONENT_TYPE_SHORT: return 2; break; case COMPONENT_TYPE_UNSIGNED_SHORT: return 2; break; case COMPONENT_TYPE_INT: return 4; break; case COMPONENT_TYPE_FLOAT: return 4; break; default: { ERR_FAIL_V(0); } } return 0; } Vector EditorSceneImporterGLTF::_decode_accessor(GLTFState &state, int p_accessor, bool p_for_vertex) { //spec, for reference: //https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment ERR_FAIL_INDEX_V(p_accessor, state.accessors.size(), Vector()); const GLTFAccessor &a = state.accessors[p_accessor]; int component_count_for_type[7] = { 1, 2, 3, 4, 4, 9, 16 }; int component_count = component_count_for_type[a.type]; int component_size = _get_component_type_size(a.component_type); ERR_FAIL_COND_V(component_size == 0, Vector()); int element_size = component_count * component_size; int skip_every = 0; int skip_bytes = 0; //special case of alignments, as described in spec switch (a.component_type) { case COMPONENT_TYPE_BYTE: case COMPONENT_TYPE_UNSIGNED_BYTE: { if (a.type == TYPE_MAT2) { skip_every = 2; skip_bytes = 2; element_size = 8; //override for this case } if (a.type == TYPE_MAT3) { skip_every = 3; skip_bytes = 1; element_size = 12; //override for this case } } break; case COMPONENT_TYPE_SHORT: case COMPONENT_TYPE_UNSIGNED_SHORT: { if (a.type == TYPE_MAT3) { skip_every = 6; skip_bytes = 4; element_size = 16; //override for this case } } break; default: {} } Vector dst_buffer; dst_buffer.resize(component_count * a.count); double *dst = dst_buffer.ptrw(); if (a.buffer_view >= 0) { ERR_FAIL_INDEX_V(a.buffer_view, state.buffer_views.size(), Vector()); Error err = _decode_buffer_view(state, a.buffer_view, dst, skip_every, skip_bytes, element_size, a.count, a.type, component_count, a.component_type, component_size, a.normalized, a.byte_offset, p_for_vertex); if (err != OK) return Vector(); } else { //fill with zeros, as bufferview is not defined. for (int i = 0; i < (a.count * component_count); i++) { dst_buffer.write[i] = 0; } } if (a.sparse_count > 0) { // I could not find any file using this, so this code is so far untested Vector indices; indices.resize(a.sparse_count); int indices_component_size = _get_component_type_size(a.sparse_indices_component_type); Error err = _decode_buffer_view(state, a.sparse_indices_buffer_view, indices.ptrw(), 0, 0, indices_component_size, a.sparse_count, TYPE_SCALAR, 1, a.sparse_indices_component_type, indices_component_size, false, a.sparse_indices_byte_offset, false); if (err != OK) return Vector(); Vector data; data.resize(component_count * a.sparse_count); err = _decode_buffer_view(state, a.sparse_values_buffer_view, data.ptrw(), skip_every, skip_bytes, element_size, a.sparse_count, a.type, component_count, a.component_type, component_size, a.normalized, a.sparse_values_byte_offset, p_for_vertex); if (err != OK) return Vector(); for (int i = 0; i < indices.size(); i++) { int write_offset = int(indices[i]) * component_count; for (int j = 0; j < component_count; j++) { dst[write_offset + j] = data[i * component_count + j]; } } } return dst_buffer; } PoolVector EditorSceneImporterGLTF::_decode_accessor_as_ints(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); PoolVector ret; if (attribs.size() == 0) return ret; const double *attribs_ptr = attribs.ptr(); int ret_size = attribs.size(); ret.resize(ret_size); { PoolVector::Write w = ret.write(); for (int i = 0; i < ret_size; i++) { w[i] = int(attribs_ptr[i]); } } return ret; } PoolVector EditorSceneImporterGLTF::_decode_accessor_as_floats(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); PoolVector ret; if (attribs.size() == 0) return ret; const double *attribs_ptr = attribs.ptr(); int ret_size = attribs.size(); ret.resize(ret_size); { PoolVector::Write w = ret.write(); for (int i = 0; i < ret_size; i++) { w[i] = float(attribs_ptr[i]); } } return ret; } PoolVector EditorSceneImporterGLTF::_decode_accessor_as_vec2(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); PoolVector ret; if (attribs.size() == 0) return ret; ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret); const double *attribs_ptr = attribs.ptr(); int ret_size = attribs.size() / 2; ret.resize(ret_size); { PoolVector::Write w = ret.write(); for (int i = 0; i < ret_size; i++) { w[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]); } } return ret; } PoolVector EditorSceneImporterGLTF::_decode_accessor_as_vec3(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); PoolVector ret; if (attribs.size() == 0) return ret; ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret); const double *attribs_ptr = attribs.ptr(); int ret_size = attribs.size() / 3; ret.resize(ret_size); { PoolVector::Write w = ret.write(); for (int i = 0; i < ret_size; i++) { w[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]); } } return ret; } PoolVector EditorSceneImporterGLTF::_decode_accessor_as_color(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); PoolVector ret; if (attribs.size() == 0) return ret; int type = state.accessors[p_accessor].type; ERR_FAIL_COND_V(!(type == TYPE_VEC3 || type == TYPE_VEC4), ret); int components; if (type == TYPE_VEC3) { components = 3; } else { // TYPE_VEC4 components = 4; } ERR_FAIL_COND_V(attribs.size() % components != 0, ret); const double *attribs_ptr = attribs.ptr(); int ret_size = attribs.size() / components; ret.resize(ret_size); { PoolVector::Write w = ret.write(); for (int i = 0; i < ret_size; i++) { w[i] = Color(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], components == 4 ? attribs_ptr[i * 4 + 3] : 1.0); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_quat(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) return ret; ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); const double *attribs_ptr = attribs.ptr(); int ret_size = attribs.size() / 4; ret.resize(ret_size); { for (int i = 0; i < ret_size; i++) { ret.write[i] = Quat(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized(); } } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_xform2d(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) return ret; ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret); ret.resize(attribs.size() / 4); for (int i = 0; i < ret.size(); i++) { ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]); ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]); } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_basis(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) return ret; ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret); ret.resize(attribs.size() / 9); for (int i = 0; i < ret.size(); i++) { ret.write[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2])); ret.write[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5])); ret.write[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8])); } return ret; } Vector EditorSceneImporterGLTF::_decode_accessor_as_xform(GLTFState &state, int p_accessor, bool p_for_vertex) { Vector attribs = _decode_accessor(state, p_accessor, p_for_vertex); Vector ret; if (attribs.size() == 0) return ret; ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret); ret.resize(attribs.size() / 16); for (int i = 0; i < ret.size(); i++) { ret.write[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2])); ret.write[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6])); ret.write[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10])); ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14])); } return ret; } Error EditorSceneImporterGLTF::_parse_meshes(GLTFState &state) { if (!state.json.has("meshes")) return OK; Array meshes = state.json["meshes"]; for (int i = 0; i < meshes.size(); i++) { print_verbose("glTF: Parsing mesh: " + itos(i)); Dictionary d = meshes[i]; GLTFMesh mesh; mesh.mesh.instance(); ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR); Array primitives = d["primitives"]; Dictionary extras = d.has("extras") ? (Dictionary)d["extras"] : Dictionary(); for (int j = 0; j < primitives.size(); j++) { Dictionary p = primitives[j]; Array array; array.resize(Mesh::ARRAY_MAX); ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR); Dictionary a = p["attributes"]; Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES; if (p.has("mode")) { int mode = p["mode"]; ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT); static const Mesh::PrimitiveType primitives2[7] = { Mesh::PRIMITIVE_POINTS, Mesh::PRIMITIVE_LINES, Mesh::PRIMITIVE_LINE_LOOP, Mesh::PRIMITIVE_LINE_STRIP, Mesh::PRIMITIVE_TRIANGLES, Mesh::PRIMITIVE_TRIANGLE_STRIP, Mesh::PRIMITIVE_TRIANGLE_FAN, }; primitive = primitives2[mode]; } ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR); if (a.has("POSITION")) { array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true); } if (a.has("NORMAL")) { array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true); } if (a.has("TANGENT")) { array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true); } if (a.has("TEXCOORD_0")) { array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true); } if (a.has("TEXCOORD_1")) { array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true); } if (a.has("COLOR_0")) { array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true); } if (a.has("JOINTS_0")) { array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true); } if (a.has("WEIGHTS_0")) { PoolVector weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true); { //gltf does not seem to normalize the weights for some reason.. int wc = weights.size(); PoolVector::Write w = weights.write(); //PoolVector v = array[Mesh::ARRAY_BONES]; //PoolVector::Read r = v.read(); for (int k = 0; k < wc; k += 4) { float total = 0.0; total += w[k + 0]; total += w[k + 1]; total += w[k + 2]; total += w[k + 3]; if (total > 0.0) { w[k + 0] /= total; w[k + 1] /= total; w[k + 2] /= total; w[k + 3] /= total; } //print_verbose(itos(j / 4) + ": " + itos(r[j + 0]) + ":" + rtos(w[j + 0]) + ", " + itos(r[j + 1]) + ":" + rtos(w[j + 1]) + ", " + itos(r[j + 2]) + ":" + rtos(w[j + 2]) + ", " + itos(r[j + 3]) + ":" + rtos(w[j + 3])); } } array[Mesh::ARRAY_WEIGHTS] = weights; } if (p.has("indices")) { PoolVector indices = _decode_accessor_as_ints(state, p["indices"], false); if (primitive == Mesh::PRIMITIVE_TRIANGLES) { //swap around indices, convert ccw to cw for front face int is = indices.size(); PoolVector::Write w = indices.write(); for (int k = 0; k < is; k += 3) { SWAP(w[k + 1], w[k + 2]); } } array[Mesh::ARRAY_INDEX] = indices; } else if (primitive == Mesh::PRIMITIVE_TRIANGLES) { //generate indices because they need to be swapped for CW/CCW PoolVector vertices = array[Mesh::ARRAY_VERTEX]; ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR); PoolVector indices; int vs = vertices.size(); indices.resize(vs); { PoolVector::Write w = indices.write(); for (int k = 0; k < vs; k += 3) { w[k] = k; w[k + 1] = k + 2; w[k + 2] = k + 1; } } array[Mesh::ARRAY_INDEX] = indices; } bool generated_tangents = false; Variant erased_indices; if (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL")) { //must generate mikktspace tangents.. ergh.. Ref st; st.instance(); st->create_from_triangle_arrays(array); if (p.has("targets")) { //morph targets should not be reindexed, as array size might differ //removing indices is the best bet here st->deindex(); erased_indices = a[Mesh::ARRAY_INDEX]; a[Mesh::ARRAY_INDEX] = Variant(); } st->generate_tangents(); array = st->commit_to_arrays(); generated_tangents = true; } Array morphs; //blend shapes if (p.has("targets")) { print_verbose("glTF: Mesh has targets"); Array targets = p["targets"]; //ideally BLEND_SHAPE_MODE_RELATIVE since gltf2 stores in displacement //but it could require a larger refactor? mesh.mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED); if (j == 0) { Array target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array(); for (int k = 0; k < targets.size(); k++) { String name = k < target_names.size() ? (String)target_names[k] : String("morph_") + itos(k); mesh.mesh->add_blend_shape(name); } } for (int k = 0; k < targets.size(); k++) { Dictionary t = targets[k]; Array array_copy; array_copy.resize(Mesh::ARRAY_MAX); for (int l = 0; l < Mesh::ARRAY_MAX; l++) { array_copy[l] = array[l]; } array_copy[Mesh::ARRAY_INDEX] = Variant(); if (t.has("POSITION")) { PoolVector varr = _decode_accessor_as_vec3(state, t["POSITION"], true); PoolVector src_varr = array[Mesh::ARRAY_VERTEX]; int size = src_varr.size(); ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); { int max_idx = varr.size(); varr.resize(size); PoolVector::Write w_varr = varr.write(); PoolVector::Read r_varr = varr.read(); PoolVector::Read r_src_varr = src_varr.read(); for (int l = 0; l < size; l++) { if (l < max_idx) { w_varr[l] = r_varr[l] + r_src_varr[l]; } else { w_varr[l] = r_src_varr[l]; } } } array_copy[Mesh::ARRAY_VERTEX] = varr; } if (t.has("NORMAL")) { PoolVector narr = _decode_accessor_as_vec3(state, t["NORMAL"], true); PoolVector src_narr = array[Mesh::ARRAY_NORMAL]; int size = src_narr.size(); ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR); { int max_idx = narr.size(); narr.resize(size); PoolVector::Write w_narr = narr.write(); PoolVector::Read r_narr = narr.read(); PoolVector::Read r_src_narr = src_narr.read(); for (int l = 0; l < size; l++) { if (l < max_idx) { w_narr[l] = r_narr[l] + r_src_narr[l]; } else { w_narr[l] = r_src_narr[l]; } } } array_copy[Mesh::ARRAY_NORMAL] = narr; } if (t.has("TANGENT")) { PoolVector tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true); PoolVector tangents_v4; PoolVector src_tangents = array[Mesh::ARRAY_TANGENT]; ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR); { int max_idx = tangents_v3.size(); int size4 = src_tangents.size(); tangents_v4.resize(size4); PoolVector::Write w4 = tangents_v4.write(); PoolVector::Read r3 = tangents_v3.read(); PoolVector::Read r4 = src_tangents.read(); for (int l = 0; l < size4 / 4; l++) { if (l < max_idx) { w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0]; w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1]; w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2]; } else { w4[l * 4 + 0] = r4[l * 4 + 0]; w4[l * 4 + 1] = r4[l * 4 + 1]; w4[l * 4 + 2] = r4[l * 4 + 2]; } w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value } } array_copy[Mesh::ARRAY_TANGENT] = tangents_v4; } if (generated_tangents) { Ref st; st.instance(); array_copy[Mesh::ARRAY_INDEX] = erased_indices; //needed for tangent generation, erased by deindex st->create_from_triangle_arrays(array_copy); st->deindex(); st->generate_tangents(); array_copy = st->commit_to_arrays(); } morphs.push_back(array_copy); } } //just add it mesh.mesh->add_surface_from_arrays(primitive, array, morphs); if (p.has("material")) { int material = p["material"]; ERR_FAIL_INDEX_V(material, state.materials.size(), ERR_FILE_CORRUPT); Ref mat = state.materials[material]; mesh.mesh->surface_set_material(mesh.mesh->get_surface_count() - 1, mat); } } if (d.has("weights")) { Array weights = d["weights"]; ERR_FAIL_COND_V(mesh.mesh->get_blend_shape_count() != weights.size(), ERR_PARSE_ERROR); mesh.blend_weights.resize(weights.size()); for (int j = 0; j < weights.size(); j++) { mesh.blend_weights.write[j] = weights[j]; } } state.meshes.push_back(mesh); } print_verbose("glTF: Total meshes: " + itos(state.meshes.size())); return OK; } Error EditorSceneImporterGLTF::_parse_images(GLTFState &state, const String &p_base_path) { if (!state.json.has("images")) return OK; Array images = state.json["images"]; for (int i = 0; i < images.size(); i++) { Dictionary d = images[i]; String mimetype; if (d.has("mimeType")) { mimetype = d["mimeType"]; } Vector data; const uint8_t *data_ptr = NULL; int data_size = 0; if (d.has("uri")) { String uri = d["uri"]; if (uri.findn("data:application/octet-stream;base64") == 0 || uri.findn("data:" + mimetype + ";base64") == 0) { //embedded data data = _parse_base64_uri(uri); data_ptr = data.ptr(); data_size = data.size(); } else { uri = p_base_path.plus_file(uri).replace("\\", "/"); //fix for windows Ref texture = ResourceLoader::load(uri); state.images.push_back(texture); continue; } } if (d.has("bufferView")) { int bvi = d["bufferView"]; ERR_FAIL_INDEX_V(bvi, state.buffer_views.size(), ERR_PARAMETER_RANGE_ERROR); const GLTFBufferView &bv = state.buffer_views[bvi]; int bi = bv.buffer; ERR_FAIL_INDEX_V(bi, state.buffers.size(), ERR_PARAMETER_RANGE_ERROR); ERR_FAIL_COND_V(bv.byte_offset + bv.byte_length > state.buffers[bi].size(), ERR_FILE_CORRUPT); data_ptr = &state.buffers[bi][bv.byte_offset]; data_size = bv.byte_length; } ERR_FAIL_COND_V(mimetype == "", ERR_FILE_CORRUPT); if (mimetype.findn("png") != -1) { //is a png Ref img = Image::_png_mem_loader_func(data_ptr, data_size); ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT); Ref t; t.instance(); t->create_from_image(img); state.images.push_back(t); continue; } if (mimetype.findn("jpeg") != -1) { //is a jpg Ref img = Image::_jpg_mem_loader_func(data_ptr, data_size); ERR_FAIL_COND_V(img.is_null(), ERR_FILE_CORRUPT); Ref t; t.instance(); t->create_from_image(img); state.images.push_back(t); continue; } ERR_FAIL_V(ERR_FILE_CORRUPT); } print_verbose("Total images: " + itos(state.images.size())); return OK; } Error EditorSceneImporterGLTF::_parse_textures(GLTFState &state) { if (!state.json.has("textures")) return OK; Array textures = state.json["textures"]; for (int i = 0; i < textures.size(); i++) { Dictionary d = textures[i]; ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR); GLTFTexture t; t.src_image = d["source"]; state.textures.push_back(t); } return OK; } Ref EditorSceneImporterGLTF::_get_texture(GLTFState &state, int p_texture) { ERR_FAIL_INDEX_V(p_texture, state.textures.size(), Ref()); int image = state.textures[p_texture].src_image; ERR_FAIL_INDEX_V(image, state.images.size(), Ref()); return state.images[image]; } Error EditorSceneImporterGLTF::_parse_materials(GLTFState &state) { if (!state.json.has("materials")) return OK; Array materials = state.json["materials"]; for (int i = 0; i < materials.size(); i++) { Dictionary d = materials[i]; Ref material; material.instance(); if (d.has("name")) { material->set_name(d["name"]); } if (d.has("pbrMetallicRoughness")) { Dictionary mr = d["pbrMetallicRoughness"]; if (mr.has("baseColorFactor")) { Array arr = mr["baseColorFactor"]; ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR); Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb(); material->set_albedo(c); } if (mr.has("baseColorTexture")) { Dictionary bct = mr["baseColorTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_ALBEDO, _get_texture(state, bct["index"])); } if (!mr.has("baseColorFactor")) { material->set_albedo(Color(1, 1, 1)); } } if (mr.has("metallicFactor")) { material->set_metallic(mr["metallicFactor"]); } else { material->set_metallic(1.0); } if (mr.has("roughnessFactor")) { material->set_roughness(mr["roughnessFactor"]); } else { material->set_roughness(1.0); } if (mr.has("metallicRoughnessTexture")) { Dictionary bct = mr["metallicRoughnessTexture"]; if (bct.has("index")) { Ref t = _get_texture(state, bct["index"]); material->set_texture(SpatialMaterial::TEXTURE_METALLIC, t); material->set_metallic_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_BLUE); material->set_texture(SpatialMaterial::TEXTURE_ROUGHNESS, t); material->set_roughness_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_GREEN); if (!mr.has("metallicFactor")) { material->set_metallic(1); } if (!mr.has("roughnessFactor")) { material->set_roughness(1); } } } } if (d.has("normalTexture")) { Dictionary bct = d["normalTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_NORMAL, _get_texture(state, bct["index"])); material->set_feature(SpatialMaterial::FEATURE_NORMAL_MAPPING, true); } if (bct.has("scale")) { material->set_normal_scale(bct["scale"]); } } if (d.has("occlusionTexture")) { Dictionary bct = d["occlusionTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"])); material->set_ao_texture_channel(SpatialMaterial::TEXTURE_CHANNEL_RED); material->set_feature(SpatialMaterial::FEATURE_AMBIENT_OCCLUSION, true); } } if (d.has("emissiveFactor")) { Array arr = d["emissiveFactor"]; ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR); Color c = Color(arr[0], arr[1], arr[2]).to_srgb(); material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); material->set_emission(c); } if (d.has("emissiveTexture")) { Dictionary bct = d["emissiveTexture"]; if (bct.has("index")) { material->set_texture(SpatialMaterial::TEXTURE_EMISSION, _get_texture(state, bct["index"])); material->set_feature(SpatialMaterial::FEATURE_EMISSION, true); material->set_emission(Color(0, 0, 0)); } } if (d.has("doubleSided")) { bool ds = d["doubleSided"]; if (ds) { material->set_cull_mode(SpatialMaterial::CULL_DISABLED); } } if (d.has("alphaMode")) { String am = d["alphaMode"]; if (am != "OPAQUE") { material->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true); } } state.materials.push_back(material); } print_verbose("Total materials: " + itos(state.materials.size())); return OK; } Error EditorSceneImporterGLTF::_parse_skins(GLTFState &state) { if (!state.json.has("skins")) return OK; Array skins = state.json["skins"]; for (int i = 0; i < skins.size(); i++) { Dictionary d = skins[i]; GLTFSkin skin; ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR); Array joints = d["joints"]; Vector bind_matrices; if (d.has("inverseBindMatrices")) { bind_matrices = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false); ERR_FAIL_COND_V(bind_matrices.size() != joints.size(), ERR_PARSE_ERROR); } for (int j = 0; j < joints.size(); j++) { int index = joints[j]; ERR_FAIL_INDEX_V(index, state.nodes.size(), ERR_PARSE_ERROR); GLTFNode::Joint joint; joint.skin = state.skins.size(); joint.bone = j; state.nodes[index]->joints.push_back(joint); GLTFSkin::Bone bone; bone.node = index; if (bind_matrices.size()) { bone.inverse_bind = bind_matrices[j]; } skin.bones.push_back(bone); } print_verbose("glTF: Skin has skeleton? " + itos(d.has("skeleton"))); if (d.has("skeleton")) { int skeleton = d["skeleton"]; ERR_FAIL_INDEX_V(skeleton, state.nodes.size(), ERR_PARSE_ERROR); print_verbose("glTF: Setting skeleton skin to" + itos(skeleton)); skin.skeleton = skeleton; if (!state.skeleton_nodes.has(skeleton)) { state.skeleton_nodes[skeleton] = Vector(); } state.skeleton_nodes[skeleton].push_back(i); } if (d.has("name")) { skin.name = d["name"]; } //locate the right place to put a Skeleton node /* if (state.skin_users.has(i)) { Vector users = state.skin_users[i]; int skin_node = -1; for (int j = 0; j < users.size(); j++) { int user = state.nodes[users[j]]->parent; //always go from parent if (j == 0) { skin_node = user; } else if (skin_node != -1) { bool found = false; while (skin_node >= 0) { int cuser = user; while (cuser != -1) { if (cuser == skin_node) { found = true; break; } cuser = state.nodes[skin_node]->parent; } if (found) break; skin_node = state.nodes[skin_node]->parent; } if (!found) { skin_node = -1; //just leave where it is } //find a common parent } } if (skin_node != -1) { for (int j = 0; j < users.size(); j++) { state.nodes[users[j]]->child_of_skeleton = i; } state.nodes[skin_node]->skeleton_children.push_back(i); } } */ state.skins.push_back(skin); } print_verbose("glTF: Total skins: " + itos(state.skins.size())); //now return OK; } Error EditorSceneImporterGLTF::_parse_cameras(GLTFState &state) { if (!state.json.has("cameras")) return OK; Array cameras = state.json["cameras"]; for (int i = 0; i < cameras.size(); i++) { Dictionary d = cameras[i]; GLTFCamera camera; ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR); String type = d["type"]; if (type == "orthographic") { camera.perspective = false; if (d.has("orthographic")) { Dictionary og = d["orthographic"]; camera.fov_size = og["ymag"]; camera.zfar = og["zfar"]; camera.znear = og["znear"]; } else { camera.fov_size = 10; } } else if (type == "perspective") { camera.perspective = true; if (d.has("perspective")) { Dictionary ppt = d["perspective"]; // GLTF spec is in radians, Godot's camera is in degrees. camera.fov_size = (double)ppt["yfov"] * 180.0 / Math_PI; camera.zfar = ppt["zfar"]; camera.znear = ppt["znear"]; } else { camera.fov_size = 10; } } else { ERR_EXPLAIN("Camera should be in 'orthographic' or 'perspective'"); ERR_FAIL_V(ERR_PARSE_ERROR); } state.cameras.push_back(camera); } print_verbose("glTF: Total cameras: " + itos(state.cameras.size())); return OK; } Error EditorSceneImporterGLTF::_parse_animations(GLTFState &state) { if (!state.json.has("animations")) return OK; Array animations = state.json["animations"]; for (int i = 0; i < animations.size(); i++) { Dictionary d = animations[i]; GLTFAnimation animation; if (!d.has("channels") || !d.has("samplers")) continue; Array channels = d["channels"]; Array samplers = d["samplers"]; if (d.has("name")) { animation.name = d["name"]; } for (int j = 0; j < channels.size(); j++) { Dictionary c = channels[j]; if (!c.has("target")) continue; Dictionary t = c["target"]; if (!t.has("node") || !t.has("path")) { continue; } ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR); int sampler = c["sampler"]; ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR); int node = t["node"]; String path = t["path"]; ERR_FAIL_INDEX_V(node, state.nodes.size(), ERR_PARSE_ERROR); GLTFAnimation::Track *track = NULL; if (!animation.tracks.has(node)) { animation.tracks[node] = GLTFAnimation::Track(); } track = &animation.tracks[node]; Dictionary s = samplers[sampler]; ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR); ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR); int input = s["input"]; int output = s["output"]; GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR; if (s.has("interpolation")) { String in = s["interpolation"]; if (in == "STEP") { interp = GLTFAnimation::INTERP_STEP; } else if (in == "LINEAR") { interp = GLTFAnimation::INTERP_LINEAR; } else if (in == "CATMULLROMSPLINE") { interp = GLTFAnimation::INTERP_CATMULLROMSPLINE; } else if (in == "CUBICSPLINE") { interp = GLTFAnimation::INTERP_CUBIC_SPLINE; } } PoolVector times = _decode_accessor_as_floats(state, input, false); if (path == "translation") { PoolVector translations = _decode_accessor_as_vec3(state, output, false); track->translation_track.interpolation = interp; track->translation_track.times = Variant(times); //convert via variant track->translation_track.values = Variant(translations); //convert via variant } else if (path == "rotation") { Vector rotations = _decode_accessor_as_quat(state, output, false); track->rotation_track.interpolation = interp; track->rotation_track.times = Variant(times); //convert via variant track->rotation_track.values = rotations; //convert via variant } else if (path == "scale") { PoolVector scales = _decode_accessor_as_vec3(state, output, false); track->scale_track.interpolation = interp; track->scale_track.times = Variant(times); //convert via variant track->scale_track.values = Variant(scales); //convert via variant } else if (path == "weights") { PoolVector weights = _decode_accessor_as_floats(state, output, false); ERR_FAIL_INDEX_V(state.nodes[node]->mesh, state.meshes.size(), ERR_PARSE_ERROR); const GLTFMesh *mesh = &state.meshes[state.nodes[node]->mesh]; ERR_FAIL_COND_V(mesh->blend_weights.size() == 0, ERR_PARSE_ERROR); int wc = mesh->blend_weights.size(); track->weight_tracks.resize(wc); int wlen = weights.size() / wc; PoolVector::Read r = weights.read(); for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea GLTFAnimation::Channel cf; cf.interpolation = interp; cf.times = Variant(times); Vector wdata; wdata.resize(wlen); for (int l = 0; l < wlen; l++) { wdata.write[l] = r[l * wc + k]; } cf.values = wdata; track->weight_tracks.write[k] = cf; } } else { WARN_PRINTS("Invalid path: " + path); } } state.animations.push_back(animation); } print_verbose("glTF: Total animations: " + itos(state.animations.size())); return OK; } void EditorSceneImporterGLTF::_assign_scene_names(GLTFState &state) { for (int i = 0; i < state.nodes.size(); i++) { GLTFNode *n = state.nodes[i]; if (n->name == "") { if (n->mesh >= 0) { n->name = "Mesh"; } else if (n->joints.size()) { n->name = "Bone"; } else { n->name = "Node"; } } n->name = _gen_unique_name(state, n->name); } } void EditorSceneImporterGLTF::_reparent_skeleton(GLTFState &state, int p_node, Vector &skeletons, Node *p_parent_node) { //reparent skeletons to proper place Vector nodes = state.skeleton_nodes[p_node]; for (int i = 0; i < nodes.size(); i++) { Skeleton *skeleton = skeletons[nodes[i]]; Node *owner = skeleton->get_owner(); skeleton->get_parent()->remove_child(skeleton); p_parent_node->add_child(skeleton); skeleton->set_owner(owner); //may have meshes as children, set owner in them too for (int j = 0; j < skeleton->get_child_count(); j++) { skeleton->get_child(j)->set_owner(owner); } } } void EditorSceneImporterGLTF::_generate_node(GLTFState &state, int p_node, Node *p_parent, Node *p_owner, Vector &skeletons) { ERR_FAIL_INDEX(p_node, state.nodes.size()); GLTFNode *n = state.nodes[p_node]; Spatial *node; if (n->mesh >= 0) { ERR_FAIL_INDEX(n->mesh, state.meshes.size()); MeshInstance *mi = memnew(MeshInstance); print_verbose("glTF: Creating mesh for: " + n->name); GLTFMesh &mesh = state.meshes.write[n->mesh]; mi->set_mesh(mesh.mesh); if (mesh.mesh->get_name() == "") { mesh.mesh->set_name(n->name); } for (int i = 0; i < mesh.blend_weights.size(); i++) { mi->set("blend_shapes/" + mesh.mesh->get_blend_shape_name(i), mesh.blend_weights[i]); } node = mi; } else if (n->camera >= 0) { ERR_FAIL_INDEX(n->camera, state.cameras.size()); Camera *camera = memnew(Camera); const GLTFCamera &c = state.cameras[n->camera]; if (c.perspective) { camera->set_perspective(c.fov_size, c.znear, c.znear); } else { camera->set_orthogonal(c.fov_size, c.znear, c.znear); } node = camera; } else { node = memnew(Spatial); } node->set_name(n->name); n->godot_nodes.push_back(node); if (n->skin >= 0 && n->skin < skeletons.size() && Object::cast_to(node)) { MeshInstance *mi = Object::cast_to(node); Skeleton *s = skeletons[n->skin]; s->add_child(node); //According to spec, mesh should actually act as a child of the skeleton, as it inherits its transform mi->set_skeleton_path(String("..")); } else { p_parent->add_child(node); node->set_transform(n->xform); } node->set_owner(p_owner); #if 0 for (int i = 0; i < n->skeleton_children.size(); i++) { Skeleton *s = skeletons[n->skeleton_children[i]]; s->get_parent()->remove_child(s); node->add_child(s); s->set_owner(p_owner); } #endif for (int i = 0; i < n->children.size(); i++) { if (state.nodes[n->children[i]]->joints.size()) { _generate_bone(state, n->children[i], skeletons, node); } else { _generate_node(state, n->children[i], node, p_owner, skeletons); } } if (state.skeleton_nodes.has(p_node)) { _reparent_skeleton(state, p_node, skeletons, node); } } void EditorSceneImporterGLTF::_generate_bone(GLTFState &state, int p_node, Vector &skeletons, Node *p_parent_node) { ERR_FAIL_INDEX(p_node, state.nodes.size()); if (state.skeleton_nodes.has(p_node)) { _reparent_skeleton(state, p_node, skeletons, p_parent_node); } GLTFNode *n = state.nodes[p_node]; for (int i = 0; i < n->joints.size(); i++) { const int skin = n->joints[i].skin; ERR_FAIL_COND(skin < 0); Skeleton *s = skeletons[skin]; const GLTFNode *gltf_bone_node = state.nodes[state.skins[skin].bones[n->joints[i].bone].node]; const String bone_name = gltf_bone_node->name; const int parent = gltf_bone_node->parent; const int parent_index = s->find_bone(state.nodes[parent]->name); const int bone_index = s->find_bone(bone_name); s->set_bone_parent(bone_index, parent_index); n->godot_nodes.push_back(s); n->joints.write[i].godot_bone_index = bone_index; } for (int i = 0; i < n->children.size(); i++) { _generate_bone(state, n->children[i], skeletons, p_parent_node); } } template struct EditorSceneImporterGLTFInterpolate { T lerp(const T &a, const T &b, float c) const { return a + (b - a) * c; } T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) { float t2 = t * t; float t3 = t2 * t; return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4 * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3); } T bezier(T start, T control_1, T control_2, T end, float t) { /* Formula from Wikipedia article on Bezier curves. */ real_t omt = (1.0 - t); real_t omt2 = omt * omt; real_t omt3 = omt2 * omt; real_t t2 = t * t; real_t t3 = t2 * t; return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; } }; //thank you for existing, partial specialization template <> struct EditorSceneImporterGLTFInterpolate { Quat lerp(const Quat &a, const Quat &b, float c) const { ERR_FAIL_COND_V(!a.is_normalized(), Quat()); ERR_FAIL_COND_V(!b.is_normalized(), Quat()); return a.slerp(b, c).normalized(); } Quat catmull_rom(const Quat &p0, const Quat &p1, const Quat &p2, const Quat &p3, float c) { ERR_FAIL_COND_V(!p1.is_normalized(), Quat()); ERR_FAIL_COND_V(!p2.is_normalized(), Quat()); return p1.slerp(p2, c).normalized(); } Quat bezier(Quat start, Quat control_1, Quat control_2, Quat end, float t) { ERR_FAIL_COND_V(!start.is_normalized(), Quat()); ERR_FAIL_COND_V(!end.is_normalized(), Quat()); return start.slerp(end, t).normalized(); } }; template T EditorSceneImporterGLTF::_interpolate_track(const Vector &p_times, const Vector &p_values, float p_time, GLTFAnimation::Interpolation p_interp) { //could use binary search, worth it? int idx = -1; for (int i = 0; i < p_times.size(); i++) { if (p_times[i] > p_time) break; idx++; } EditorSceneImporterGLTFInterpolate interp; switch (p_interp) { case GLTFAnimation::INTERP_LINEAR: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.lerp(p_values[idx], p_values[idx + 1], c); } break; case GLTFAnimation::INTERP_STEP: { if (idx == -1) { return p_values[0]; } else if (idx >= p_times.size() - 1) { return p_values[p_times.size() - 1]; } return p_values[idx]; } break; case GLTFAnimation::INTERP_CATMULLROMSPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[1 + p_times.size() - 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c); } break; case GLTFAnimation::INTERP_CUBIC_SPLINE: { if (idx == -1) { return p_values[1]; } else if (idx >= p_times.size() - 1) { return p_values[(p_times.size() - 1) * 3 + 1]; } float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]); T from = p_values[idx * 3 + 1]; T c1 = from + p_values[idx * 3 + 2]; T to = p_values[idx * 3 + 4]; T c2 = to + p_values[idx * 3 + 3]; return interp.bezier(from, c1, c2, to, c); } break; } ERR_FAIL_V(p_values[0]); } void EditorSceneImporterGLTF::_import_animation(GLTFState &state, AnimationPlayer *ap, int index, int bake_fps, Vector skeletons) { const GLTFAnimation &anim = state.animations[index]; String name = anim.name; if (name == "") { name = _gen_unique_name(state, "Animation"); } Ref animation; animation.instance(); animation->set_name(name); float length = 0; for (Map::Element *E = anim.tracks.front(); E; E = E->next()) { const GLTFAnimation::Track &track = E->get(); //need to find the path NodePath node_path; GLTFNode *node = state.nodes[E->key()]; for (int n = 0; n < node->godot_nodes.size(); n++) { if (node->joints.size()) { Skeleton *sk = (Skeleton *)node->godot_nodes[n]; String path = ap->get_parent()->get_path_to(sk); String bone = sk->get_bone_name(node->joints[n].godot_bone_index); node_path = path + ":" + bone; } else { node_path = ap->get_parent()->get_path_to(node->godot_nodes[n]); } for (int i = 0; i < track.rotation_track.times.size(); i++) { length = MAX(length, track.rotation_track.times[i]); } for (int i = 0; i < track.translation_track.times.size(); i++) { length = MAX(length, track.translation_track.times[i]); } for (int i = 0; i < track.scale_track.times.size(); i++) { length = MAX(length, track.scale_track.times[i]); } for (int i = 0; i < track.weight_tracks.size(); i++) { for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { length = MAX(length, track.weight_tracks[i].times[j]); } } if (track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) { //make transform track int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_TRANSFORM); animation->track_set_path(track_idx, node_path); //first determine animation length float increment = 1.0 / float(bake_fps); float time = 0.0; Vector3 base_pos; Quat base_rot; Vector3 base_scale = Vector3(1, 1, 1); if (!track.rotation_track.values.size()) { base_rot = state.nodes[E->key()]->rotation.normalized(); } if (!track.translation_track.values.size()) { base_pos = state.nodes[E->key()]->translation; } if (!track.scale_track.values.size()) { base_scale = state.nodes[E->key()]->scale; } bool last = false; while (true) { Vector3 pos = base_pos; Quat rot = base_rot; Vector3 scale = base_scale; if (track.translation_track.times.size()) { pos = _interpolate_track(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation); } if (track.rotation_track.times.size()) { rot = _interpolate_track(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation); } if (track.scale_track.times.size()) { scale = _interpolate_track(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation); } if (node->joints.size()) { Transform xform; //xform.basis = Basis(rot); //xform.basis.scale(scale); xform.basis.set_quat_scale(rot, scale); xform.origin = pos; Skeleton *skeleton = skeletons[node->joints[n].skin]; int bone = node->joints[n].godot_bone_index; xform = skeleton->get_bone_rest(bone).affine_inverse() * xform; rot = xform.basis.get_rotation_quat(); rot.normalize(); scale = xform.basis.get_scale(); pos = xform.origin; } animation->transform_track_insert_key(track_idx, time, pos, rot, scale); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } } for (int i = 0; i < track.weight_tracks.size(); i++) { ERR_CONTINUE(node->mesh < 0 || node->mesh >= state.meshes.size()); const GLTFMesh &mesh = state.meshes[node->mesh]; String prop = "blend_shapes/" + mesh.mesh->get_blend_shape_name(i); node_path = String(node_path) + ":" + prop; int track_idx = animation->get_track_count(); animation->add_track(Animation::TYPE_VALUE); animation->track_set_path(track_idx, node_path); // Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation, // the other modes have to be baked. GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation; if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) { animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR); for (int j = 0; j < track.weight_tracks[i].times.size(); j++) { float t = track.weight_tracks[i].times[j]; float w = track.weight_tracks[i].values[j]; animation->track_insert_key(track_idx, t, w); } } else { // CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies. float increment = 1.0 / float(bake_fps); float time = 0.0; bool last = false; while (true) { _interpolate_track(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp); if (last) { break; } time += increment; if (time >= length) { last = true; time = length; } } } } } } animation->set_length(length); ap->add_animation(name, animation); } Spatial *EditorSceneImporterGLTF::_generate_scene(GLTFState &state, int p_bake_fps) { Spatial *root = memnew(Spatial); root->set_name(state.scene_name); //generate skeletons Vector skeletons; for (int i = 0; i < state.skins.size(); i++) { Skeleton *s = memnew(Skeleton); s->set_use_bones_in_world_transform(false); //GLTF does not need this since meshes are always local String name = state.skins[i].name; if (name == "") { name = _gen_unique_name(state, "Skeleton"); } for (int j = 0; j < state.skins[i].bones.size(); j++) { s->add_bone(state.nodes[state.skins[i].bones[j].node]->name); s->set_bone_rest(j, state.skins[i].bones[j].inverse_bind.affine_inverse()); } s->set_name(name); root->add_child(s); s->set_owner(root); skeletons.push_back(s); } for (int i = 0; i < state.root_nodes.size(); i++) { if (state.nodes[state.root_nodes[i]]->joints.size()) { _generate_bone(state, state.root_nodes[i], skeletons, root); } else { _generate_node(state, state.root_nodes[i], root, root, skeletons); } } for (int i = 0; i < skeletons.size(); i++) { skeletons[i]->localize_rests(); } if (state.animations.size()) { AnimationPlayer *ap = memnew(AnimationPlayer); ap->set_name("AnimationPlayer"); root->add_child(ap); ap->set_owner(root); for (int i = 0; i < state.animations.size(); i++) { _import_animation(state, ap, i, p_bake_fps, skeletons); } } return root; } Node *EditorSceneImporterGLTF::import_scene(const String &p_path, uint32_t p_flags, int p_bake_fps, List *r_missing_deps, Error *r_err) { GLTFState state; if (p_path.to_lower().ends_with("glb")) { //binary file //text file Error err = _parse_glb(p_path, state); if (err) return NULL; } else { //text file Error err = _parse_json(p_path, state); if (err) return NULL; } ERR_FAIL_COND_V(!state.json.has("asset"), NULL); Dictionary asset = state.json["asset"]; ERR_FAIL_COND_V(!asset.has("version"), NULL); String version = asset["version"]; state.major_version = version.get_slice(".", 0).to_int(); state.minor_version = version.get_slice(".", 1).to_int(); /* STEP 0 PARSE SCENE */ Error err = _parse_scenes(state); if (err != OK) return NULL; /* STEP 1 PARSE NODES */ err = _parse_nodes(state); if (err != OK) return NULL; /* STEP 2 PARSE BUFFERS */ err = _parse_buffers(state, p_path.get_base_dir()); if (err != OK) return NULL; /* STEP 3 PARSE BUFFER VIEWS */ err = _parse_buffer_views(state); if (err != OK) return NULL; /* STEP 4 PARSE ACCESSORS */ err = _parse_accessors(state); if (err != OK) return NULL; /* STEP 5 PARSE IMAGES */ err = _parse_images(state, p_path.get_base_dir()); if (err != OK) return NULL; /* STEP 6 PARSE TEXTURES */ err = _parse_textures(state); if (err != OK) return NULL; /* STEP 7 PARSE TEXTURES */ err = _parse_materials(state); if (err != OK) return NULL; /* STEP 8 PARSE MESHES (we have enough info now) */ err = _parse_meshes(state); if (err != OK) return NULL; /* STEP 9 PARSE SKINS */ err = _parse_skins(state); if (err != OK) return NULL; /* STEP 10 PARSE CAMERAS */ err = _parse_cameras(state); if (err != OK) return NULL; /* STEP 11 PARSE ANIMATIONS */ err = _parse_animations(state); if (err != OK) return NULL; /* STEP 12 ASSIGN SCENE NAMES */ _assign_scene_names(state); /* STEP 13 MAKE SCENE! */ Spatial *scene = _generate_scene(state, p_bake_fps); return scene; } Ref EditorSceneImporterGLTF::import_animation(const String &p_path, uint32_t p_flags, int p_bake_fps) { return Ref(); } EditorSceneImporterGLTF::EditorSceneImporterGLTF() { }