/*************************************************************************/ /* math_2d.h */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #ifndef MATH_2D_H #define MATH_2D_H #include "math_funcs.h" #include "ustring.h" /** @author Juan Linietsky */ enum Margin { MARGIN_LEFT, MARGIN_TOP, MARGIN_RIGHT, MARGIN_BOTTOM }; enum Orientation { HORIZONTAL, VERTICAL }; enum HAlign { HALIGN_LEFT, HALIGN_CENTER, HALIGN_RIGHT }; enum VAlign { VALIGN_TOP, VALIGN_CENTER, VALIGN_BOTTOM }; struct Vector2 { union { real_t x; real_t width; }; union { real_t y; real_t height; }; _FORCE_INLINE_ real_t& operator[](int p_idx) { return p_idx?y:x; } _FORCE_INLINE_ const real_t& operator[](int p_idx) const { return p_idx?y:x; } void normalize(); Vector2 normalized() const; real_t length() const; real_t length_squared() const; real_t distance_to(const Vector2& p_vector2) const; real_t distance_squared_to(const Vector2& p_vector2) const; real_t angle_to(const Vector2& p_vector2) const; real_t angle_to_point(const Vector2& p_vector2) const; real_t dot(const Vector2& p_other) const; real_t cross(const Vector2& p_other) const; Vector2 cross(real_t p_other) const; Vector2 project(const Vector2& p_vec) const; Vector2 plane_project(real_t p_d, const Vector2& p_vec) const; Vector2 clamped(real_t p_len) const; _FORCE_INLINE_ static Vector2 linear_interpolate(const Vector2& p_a, const Vector2& p_b,real_t p_t); _FORCE_INLINE_ Vector2 linear_interpolate(const Vector2& p_b,real_t p_t) const; Vector2 cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,real_t p_t) const; Vector2 cubic_interpolate_soft(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,real_t p_t) const; Vector2 slide(const Vector2& p_vec) const; Vector2 reflect(const Vector2& p_vec) const; Vector2 operator+(const Vector2& p_v) const; void operator+=(const Vector2& p_v); Vector2 operator-(const Vector2& p_v) const; void operator-=(const Vector2& p_v); Vector2 operator*(const Vector2 &p_v1) const; Vector2 operator*(const real_t &rvalue) const; void operator*=(const real_t &rvalue); void operator*=(const Vector2 &rvalue) { *this = *this * rvalue; } Vector2 operator/(const Vector2 &p_v1) const; Vector2 operator/(const real_t &rvalue) const; void operator/=(const real_t &rvalue); Vector2 operator-() const; bool operator==(const Vector2& p_vec2) const; bool operator!=(const Vector2& p_vec2) const; bool operator<(const Vector2& p_vec2) const { return (x==p_vec2.x)?(y= (p_rect.pos.x + p_rect.size.width) ) return false; if ( (pos.x+size.width) <= p_rect.pos.x ) return false; if ( pos.y >= (p_rect.pos.y + p_rect.size.height) ) return false; if ( (pos.y+size.height) <= p_rect.pos.y ) return false; return true; } inline real_t distance_to(const Vector2& p_point) const { real_t dist = 1e20; if (p_point.x < pos.x) { dist=MIN(dist,pos.x-p_point.x); } if (p_point.y < pos.y) { dist=MIN(dist,pos.y-p_point.y); } if (p_point.x >= (pos.x+size.x) ) { dist=MIN(p_point.x-(pos.x+size.x),dist); } if (p_point.y >= (pos.y+size.y) ) { dist=MIN(p_point.y-(pos.y+size.y),dist); } if (dist==1e20) return 0; else return dist; } _FORCE_INLINE_ bool intersects_transformed(const Transform2D& p_xform, const Rect2& p_rect) const; bool intersects_segment(const Point2& p_from, const Point2& p_to, Point2* r_pos=NULL, Point2* r_normal=NULL) const; inline bool encloses(const Rect2& p_rect) const { return (p_rect.pos.x>=pos.x) && (p_rect.pos.y>=pos.y) && ((p_rect.pos.x+p_rect.size.x)<(pos.x+size.x)) && ((p_rect.pos.y+p_rect.size.y)<(pos.y+size.y)); } inline bool has_no_area() const { return (size.x<=0 || size.y<=0); } inline Rect2 clip(const Rect2& p_rect) const { /// return a clipped rect Rect2 new_rect=p_rect; if (!intersects( new_rect )) return Rect2(); new_rect.pos.x = MAX( p_rect.pos.x , pos.x ); new_rect.pos.y = MAX( p_rect.pos.y , pos.y ); Point2 p_rect_end=p_rect.pos+p_rect.size; Point2 end=pos+size; new_rect.size.x=MIN(p_rect_end.x,end.x) - new_rect.pos.x; new_rect.size.y=MIN(p_rect_end.y,end.y) - new_rect.pos.y; return new_rect; } inline Rect2 merge(const Rect2& p_rect) const { ///< return a merged rect Rect2 new_rect; new_rect.pos.x=MIN( p_rect.pos.x , pos.x ); new_rect.pos.y=MIN( p_rect.pos.y , pos.y ); new_rect.size.x = MAX( p_rect.pos.x+p_rect.size.x , pos.x+size.x ); new_rect.size.y = MAX( p_rect.pos.y+p_rect.size.y , pos.y+size.y ); new_rect.size = new_rect.size - new_rect.pos; //make relative again return new_rect; }; inline bool has_point(const Point2& p_point) const { if (p_point.x < pos.x) return false; if (p_point.y < pos.y) return false; if (p_point.x >= (pos.x+size.x) ) return false; if (p_point.y >= (pos.y+size.y) ) return false; return true; } inline bool no_area() const { return (size.width<=0 || size.height<=0 ); } bool operator==(const Rect2& p_rect) const { return pos==p_rect.pos && size==p_rect.size; } bool operator!=(const Rect2& p_rect) const { return pos!=p_rect.pos || size!=p_rect.size; } bool nan_equals(const Rect2& p_rect) const { return pos.nan_equals(p_rect.pos) && size == p_rect.size; } inline Rect2 grow(real_t p_by) const { Rect2 g=*this; g.pos.x-=p_by; g.pos.y-=p_by; g.size.width+=p_by*2; g.size.height+=p_by*2; return g; } inline Rect2 expand(const Vector2& p_vector) const { Rect2 r = *this; r.expand_to(p_vector); return r; } inline void expand_to(const Vector2& p_vector) { //in place function for speed Vector2 begin=pos; Vector2 end=pos+size; if (p_vector.xend.x) end.x=p_vector.x; if (p_vector.y>end.y) end.y=p_vector.y; pos=begin; size=end-begin; } operator String() const { return String(pos)+", "+String(size); } Rect2() {} Rect2( real_t p_x, real_t p_y, real_t p_width, real_t p_height) { pos=Point2(p_x,p_y); size=Size2( p_width, p_height ); } Rect2( const Point2& p_pos, const Size2& p_size ) { pos=p_pos; size=p_size; } }; /* INTEGER STUFF */ struct Point2i { union { int x; int width; }; union { int y; int height; }; _FORCE_INLINE_ int& operator[](int p_idx) { return p_idx?y:x; } _FORCE_INLINE_ const int& operator[](int p_idx) const { return p_idx?y:x; } Point2i operator+(const Point2i& p_v) const; void operator+=(const Point2i& p_v); Point2i operator-(const Point2i& p_v) const; void operator-=(const Point2i& p_v); Point2i operator*(const Point2i &p_v1) const; Point2i operator*(const int &rvalue) const; void operator*=(const int &rvalue); Point2i operator/(const Point2i &p_v1) const; Point2i operator/(const int &rvalue) const; void operator/=(const int &rvalue); Point2i operator-() const; bool operator<(const Point2i& p_vec2) const { return (x==p_vec2.x)?(y(const Point2i& p_vec2) const { return (x==p_vec2.x)?(y>p_vec2.y):(x>p_vec2.x); } bool operator==(const Point2i& p_vec2) const; bool operator!=(const Point2i& p_vec2) const; real_t get_aspect() const { return width/(real_t)height; } operator String() const { return String::num(x)+", "+String::num(y); } operator Vector2() const { return Vector2(x,y); } inline Point2i(const Vector2& p_vec2) { x=(int)p_vec2.x; y=(int)p_vec2.y; } inline Point2i(int p_x,int p_y) { x=p_x; y=p_y; } inline Point2i() { x=0; y=0; } }; typedef Point2i Size2i; struct Rect2i { Point2i pos; Size2i size; const Point2i& get_pos() const { return pos; } void set_pos(const Point2i& p_pos) { pos=p_pos; } const Point2i& get_size() const { return size; } void set_size(const Point2i& p_size) { size=p_size; } int get_area() const { return size.width*size.height; } inline bool intersects(const Rect2i& p_rect) const { if ( pos.x > (p_rect.pos.x + p_rect.size.width) ) return false; if ( (pos.x+size.width) < p_rect.pos.x ) return false; if ( pos.y > (p_rect.pos.y + p_rect.size.height) ) return false; if ( (pos.y+size.height) < p_rect.pos.y ) return false; return true; } inline bool encloses(const Rect2i& p_rect) const { return (p_rect.pos.x>=pos.x) && (p_rect.pos.y>=pos.y) && ((p_rect.pos.x+p_rect.size.x)<(pos.x+size.x)) && ((p_rect.pos.y+p_rect.size.y)<(pos.y+size.y)); } inline bool has_no_area() const { return (size.x<=0 || size.y<=0); } inline Rect2i clip(const Rect2i& p_rect) const { /// return a clipped rect Rect2i new_rect=p_rect; if (!intersects( new_rect )) return Rect2i(); new_rect.pos.x = MAX( p_rect.pos.x , pos.x ); new_rect.pos.y = MAX( p_rect.pos.y , pos.y ); Point2 p_rect_end=p_rect.pos+p_rect.size; Point2 end=pos+size; new_rect.size.x=(int)(MIN(p_rect_end.x,end.x) - new_rect.pos.x); new_rect.size.y=(int)(MIN(p_rect_end.y,end.y) - new_rect.pos.y); return new_rect; } inline Rect2i merge(const Rect2i& p_rect) const { ///< return a merged rect Rect2i new_rect; new_rect.pos.x=MIN( p_rect.pos.x , pos.x ); new_rect.pos.y=MIN( p_rect.pos.y , pos.y ); new_rect.size.x = MAX( p_rect.pos.x+p_rect.size.x , pos.x+size.x ); new_rect.size.y = MAX( p_rect.pos.y+p_rect.size.y , pos.y+size.y ); new_rect.size = new_rect.size - new_rect.pos; //make relative again return new_rect; }; bool has_point(const Point2& p_point) const { if (p_point.x < pos.x) return false; if (p_point.y < pos.y) return false; if (p_point.x >= (pos.x+size.x) ) return false; if (p_point.y >= (pos.y+size.y) ) return false; return true; } bool no_area() { return (size.width<=0 || size.height<=0 ); } bool operator==(const Rect2i& p_rect) const { return pos==p_rect.pos && size==p_rect.size; } bool operator!=(const Rect2i& p_rect) const { return pos!=p_rect.pos || size!=p_rect.size; } Rect2i grow(int p_by) const { Rect2i g=*this; g.pos.x-=p_by; g.pos.y-=p_by; g.size.width+=p_by*2; g.size.height+=p_by*2; return g; } inline void expand_to(const Point2i& p_vector) { Point2i begin=pos; Point2i end=pos+size; if (p_vector.xend.x) end.x=p_vector.x; if (p_vector.y>end.y) end.y=p_vector.y; pos=begin; size=end-begin; } operator String() const { return String(pos)+", "+String(size); } operator Rect2() const { return Rect2(pos,size); } Rect2i(const Rect2& p_r2) { pos=p_r2.pos; size=p_r2.size; } Rect2i() {} Rect2i( int p_x, int p_y, int p_width, int p_height) { pos=Point2(p_x,p_y); size=Size2( p_width, p_height ); } Rect2i( const Point2& p_pos, const Size2& p_size ) { pos=p_pos; size=p_size; } }; struct Transform2D { // Warning #1: basis of Transform2D is stored differently from Basis. In terms of elements array, the basis matrix looks like "on paper": // M = (elements[0][0] elements[1][0]) // (elements[0][1] elements[1][1]) // This is such that the columns, which can be interpreted as basis vectors of the coordinate system "painted" on the object, can be accessed as elements[i]. // Note that this is the opposite of the indices in mathematical texts, meaning: $M_{12}$ in a math book corresponds to elements[1][0] here. // This requires additional care when working with explicit indices. // See https://en.wikipedia.org/wiki/Row-_and_column-major_order for further reading. // Warning #2: 2D be aware that unlike 3D code, 2D code uses a left-handed coordinate system: Y-axis points down, // and angle is measure from +X to +Y in a clockwise-fashion. Vector2 elements[3]; _FORCE_INLINE_ real_t tdotx(const Vector2& v) const { return elements[0][0] * v.x + elements[1][0] * v.y; } _FORCE_INLINE_ real_t tdoty(const Vector2& v) const { return elements[0][1] * v.x + elements[1][1] * v.y; } const Vector2& operator[](int p_idx) const { return elements[p_idx]; } Vector2& operator[](int p_idx) { return elements[p_idx]; } _FORCE_INLINE_ Vector2 get_axis(int p_axis) const { ERR_FAIL_INDEX_V(p_axis,3,Vector2()); return elements[p_axis]; } _FORCE_INLINE_ void set_axis(int p_axis,const Vector2& p_vec) { ERR_FAIL_INDEX(p_axis,3); elements[p_axis]=p_vec; } void invert(); Transform2D inverse() const; void affine_invert(); Transform2D affine_inverse() const; void set_rotation(real_t p_phi); real_t get_rotation() const; _FORCE_INLINE_ void set_rotation_and_scale(real_t p_phi,const Size2& p_scale); void rotate(real_t p_phi); void scale(const Size2& p_scale); void scale_basis(const Size2& p_scale); void translate( real_t p_tx, real_t p_ty); void translate( const Vector2& p_translation ); real_t basis_determinant() const; Size2 get_scale() const; _FORCE_INLINE_ const Vector2& get_origin() const { return elements[2]; } _FORCE_INLINE_ void set_origin(const Vector2& p_origin) { elements[2]=p_origin; } Transform2D scaled(const Size2& p_scale) const; Transform2D basis_scaled(const Size2& p_scale) const; Transform2D translated(const Vector2& p_offset) const; Transform2D rotated(real_t p_phi) const; Transform2D untranslated() const; void orthonormalize(); Transform2D orthonormalized() const; bool operator==(const Transform2D& p_transform) const; bool operator!=(const Transform2D& p_transform) const; void operator*=(const Transform2D& p_transform); Transform2D operator*(const Transform2D& p_transform) const; Transform2D interpolate_with(const Transform2D& p_transform, real_t p_c) const; _FORCE_INLINE_ Vector2 basis_xform(const Vector2& p_vec) const; _FORCE_INLINE_ Vector2 basis_xform_inv(const Vector2& p_vec) const; _FORCE_INLINE_ Vector2 xform(const Vector2& p_vec) const; _FORCE_INLINE_ Vector2 xform_inv(const Vector2& p_vec) const; _FORCE_INLINE_ Rect2 xform(const Rect2& p_vec) const; _FORCE_INLINE_ Rect2 xform_inv(const Rect2& p_vec) const; operator String() const; Transform2D(real_t xx, real_t xy, real_t yx, real_t yy, real_t ox, real_t oy) { elements[0][0] = xx; elements[0][1] = xy; elements[1][0] = yx; elements[1][1] = yy; elements[2][0] = ox; elements[2][1] = oy; } Transform2D(real_t p_rot, const Vector2& p_pos); Transform2D() { elements[0][0]=1.0; elements[1][1]=1.0; } }; bool Rect2::intersects_transformed(const Transform2D& p_xform, const Rect2& p_rect) const { //SAT intersection between local and transformed rect2 Vector2 xf_points[4]={ p_xform.xform(p_rect.pos), p_xform.xform(Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y)), p_xform.xform(Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y)), p_xform.xform(Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y)), }; real_t low_limit; //base rect2 first (faster) if (xf_points[0].y>pos.y) goto next1; if (xf_points[1].y>pos.y) goto next1; if (xf_points[2].y>pos.y) goto next1; if (xf_points[3].y>pos.y) goto next1; return false; next1: low_limit=pos.y+size.y; if (xf_points[0].ypos.x) goto next3; if (xf_points[1].x>pos.x) goto next3; if (xf_points[2].x>pos.x) goto next3; if (xf_points[3].x>pos.x) goto next3; return false; next3: low_limit=pos.x+size.x; if (xf_points[0].x maxb ) return false; if ( minb > maxa ) return false; maxa=p_xform.elements[1].dot(xf_points2[0]); mina=maxa; dp = p_xform.elements[1].dot(xf_points2[1]); maxa=MAX(dp,maxa); mina=MIN(dp,mina); dp = p_xform.elements[1].dot(xf_points2[2]); maxa=MAX(dp,maxa); mina=MIN(dp,mina); dp = p_xform.elements[1].dot(xf_points2[3]); maxa=MAX(dp,maxa); mina=MIN(dp,mina); maxb=p_xform.elements[1].dot(xf_points[0]); minb=maxb; dp = p_xform.elements[1].dot(xf_points[1]); maxb=MAX(dp,maxb); minb=MIN(dp,minb); dp = p_xform.elements[1].dot(xf_points[2]); maxb=MAX(dp,maxb); minb=MIN(dp,minb); dp = p_xform.elements[1].dot(xf_points[3]); maxb=MAX(dp,maxb); minb=MIN(dp,minb); if ( mina > maxb ) return false; if ( minb > maxa ) return false; return true; } Vector2 Transform2D::basis_xform(const Vector2& v) const { return Vector2( tdotx(v), tdoty(v) ); } Vector2 Transform2D::basis_xform_inv(const Vector2& v) const{ return Vector2( elements[0].dot(v), elements[1].dot(v) ); } Vector2 Transform2D::xform(const Vector2& v) const { return Vector2( tdotx(v), tdoty(v) ) + elements[2]; } Vector2 Transform2D::xform_inv(const Vector2& p_vec) const { Vector2 v = p_vec - elements[2]; return Vector2( elements[0].dot(v), elements[1].dot(v) ); } Rect2 Transform2D::xform(const Rect2& p_rect) const { Vector2 x=elements[0]*p_rect.size.x; Vector2 y=elements[1]*p_rect.size.y; Vector2 pos = xform( p_rect.pos ); Rect2 new_rect; new_rect.pos=pos; new_rect.expand_to( pos+x ); new_rect.expand_to( pos+y ); new_rect.expand_to( pos+x+y ); return new_rect; } void Transform2D::set_rotation_and_scale(real_t p_rot,const Size2& p_scale) { elements[0][0]=Math::cos(p_rot)*p_scale.x; elements[1][1]=Math::cos(p_rot)*p_scale.y; elements[1][0]=-Math::sin(p_rot)*p_scale.y; elements[0][1]=Math::sin(p_rot)*p_scale.x; } Rect2 Transform2D::xform_inv(const Rect2& p_rect) const { Vector2 ends[4]={ xform_inv( p_rect.pos ), xform_inv( Vector2(p_rect.pos.x,p_rect.pos.y+p_rect.size.y ) ), xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y+p_rect.size.y ) ), xform_inv( Vector2(p_rect.pos.x+p_rect.size.x,p_rect.pos.y ) ) }; Rect2 new_rect; new_rect.pos=ends[0]; new_rect.expand_to(ends[1]); new_rect.expand_to(ends[2]); new_rect.expand_to(ends[3]); return new_rect; } #endif