#include "Shape.h" #include #include "arithmetics.hpp" namespace msdfgen { Shape::Shape() : inverseYAxis(false) { } void Shape::addContour(const Contour &contour) { contours.push_back(contour); } #ifdef MSDFGEN_USE_CPP11 void Shape::addContour(Contour &&contour) { contours.push_back((Contour &&) contour); } #endif Contour & Shape::addContour() { contours.resize(contours.size()+1); return contours.back(); } bool Shape::validate() const { for (std::vector::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) { if (!contour->edges.empty()) { Point2 corner = contour->edges.back()->point(1); for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { if (!*edge) return false; if ((*edge)->point(0) != corner) return false; corner = (*edge)->point(1); } } } return true; } static void deconvergeEdge(EdgeHolder &edgeHolder, int param) { { const QuadraticSegment *quadraticSegment = dynamic_cast(&*edgeHolder); if (quadraticSegment) edgeHolder = quadraticSegment->convertToCubic(); } { CubicSegment *cubicSegment = dynamic_cast(&*edgeHolder); if (cubicSegment) cubicSegment->deconverge(param, MSDFGEN_DECONVERGENCE_FACTOR); } } void Shape::normalize() { for (std::vector::iterator contour = contours.begin(); contour != contours.end(); ++contour) { if (contour->edges.size() == 1) { EdgeSegment *parts[3] = { }; contour->edges[0]->splitInThirds(parts[0], parts[1], parts[2]); contour->edges.clear(); contour->edges.push_back(EdgeHolder(parts[0])); contour->edges.push_back(EdgeHolder(parts[1])); contour->edges.push_back(EdgeHolder(parts[2])); } else { EdgeHolder *prevEdge = &contour->edges.back(); for (std::vector::iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { Vector2 prevDir = (*prevEdge)->direction(1).normalize(); Vector2 curDir = (*edge)->direction(0).normalize(); if (dotProduct(prevDir, curDir) < MSDFGEN_CORNER_DOT_EPSILON-1) { deconvergeEdge(*prevEdge, 1); deconvergeEdge(*edge, 0); } prevEdge = &*edge; } } } } void Shape::bound(double &l, double &b, double &r, double &t) const { for (std::vector::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) contour->bound(l, b, r, t); } void Shape::boundMiters(double &l, double &b, double &r, double &t, double border, double miterLimit, int polarity) const { for (std::vector::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) contour->boundMiters(l, b, r, t, border, miterLimit, polarity); } Shape::Bounds Shape::getBounds(double border, double miterLimit, int polarity) const { static const double LARGE_VALUE = 1e240; Shape::Bounds bounds = { +LARGE_VALUE, +LARGE_VALUE, -LARGE_VALUE, -LARGE_VALUE }; bound(bounds.l, bounds.b, bounds.r, bounds.t); if (border > 0) { bounds.l -= border, bounds.b -= border; bounds.r += border, bounds.t += border; if (miterLimit > 0) boundMiters(bounds.l, bounds.b, bounds.r, bounds.t, border, miterLimit, polarity); } return bounds; } void Shape::scanline(Scanline &line, double y) const { std::vector intersections; double x[3]; int dy[3]; for (std::vector::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) { for (std::vector::const_iterator edge = contour->edges.begin(); edge != contour->edges.end(); ++edge) { int n = (*edge)->scanlineIntersections(x, dy, y); for (int i = 0; i < n; ++i) { Scanline::Intersection intersection = { x[i], dy[i] }; intersections.push_back(intersection); } } } #ifdef MSDFGEN_USE_CPP11 line.setIntersections((std::vector &&) intersections); #else line.setIntersections(intersections); #endif } int Shape::edgeCount() const { int total = 0; for (std::vector::const_iterator contour = contours.begin(); contour != contours.end(); ++contour) total += (int) contour->edges.size(); return total; } void Shape::orientContours() { struct Intersection { double x; int direction; int contourIndex; static int compare(const void *a, const void *b) { return sign(reinterpret_cast(a)->x-reinterpret_cast(b)->x); } }; const double ratio = .5*(sqrt(5)-1); // an irrational number to minimize chance of intersecting a corner or other point of interest std::vector orientations(contours.size()); std::vector intersections; for (int i = 0; i < (int) contours.size(); ++i) { if (!orientations[i] && !contours[i].edges.empty()) { // Find an Y that crosses the contour double y0 = contours[i].edges.front()->point(0).y; double y1 = y0; for (std::vector::const_iterator edge = contours[i].edges.begin(); edge != contours[i].edges.end() && y0 == y1; ++edge) y1 = (*edge)->point(1).y; for (std::vector::const_iterator edge = contours[i].edges.begin(); edge != contours[i].edges.end() && y0 == y1; ++edge) y1 = (*edge)->point(ratio).y; // in case all endpoints are in a horizontal line double y = mix(y0, y1, ratio); // Scanline through whole shape at Y double x[3]; int dy[3]; for (int j = 0; j < (int) contours.size(); ++j) { for (std::vector::const_iterator edge = contours[j].edges.begin(); edge != contours[j].edges.end(); ++edge) { int n = (*edge)->scanlineIntersections(x, dy, y); for (int k = 0; k < n; ++k) { Intersection intersection = { x[k], dy[k], j }; intersections.push_back(intersection); } } } qsort(&intersections[0], intersections.size(), sizeof(Intersection), &Intersection::compare); // Disqualify multiple intersections for (int j = 1; j < (int) intersections.size(); ++j) if (intersections[j].x == intersections[j-1].x) intersections[j].direction = intersections[j-1].direction = 0; // Inspect scanline and deduce orientations of intersected contours for (int j = 0; j < (int) intersections.size(); ++j) if (intersections[j].direction) orientations[intersections[j].contourIndex] += 2*((j&1)^(intersections[j].direction > 0))-1; intersections.clear(); } } // Reverse contours that have the opposite orientation for (int i = 0; i < (int) contours.size(); ++i) if (orientations[i] < 0) contours[i].reverse(); } }