// Copyright 2012 Google Inc. All Rights Reserved. // // Use of this source code is governed by a BSD-style license // that can be found in the COPYING file in the root of the source // tree. An additional intellectual property rights grant can be found // in the file PATENTS. All contributing project authors may // be found in the AUTHORS file in the root of the source tree. // ----------------------------------------------------------------------------- // // Author: Jyrki Alakuijala (jyrki@google.com) // #include #include #include "./backward_references.h" #include "./histogram.h" #include "../dsp/lossless.h" #include "../utils/color_cache.h" #include "../utils/utils.h" #define VALUES_IN_BYTE 256 #define MIN_BLOCK_SIZE 256 // minimum block size for backward references #define MAX_ENTROPY (1e30f) // 1M window (4M bytes) minus 120 special codes for short distances. #define WINDOW_SIZE ((1 << 20) - 120) // Bounds for the match length. #define MIN_LENGTH 2 #define MAX_LENGTH 4096 // ----------------------------------------------------------------------------- static const uint8_t plane_to_code_lut[128] = { 96, 73, 55, 39, 23, 13, 5, 1, 255, 255, 255, 255, 255, 255, 255, 255, 101, 78, 58, 42, 26, 16, 8, 2, 0, 3, 9, 17, 27, 43, 59, 79, 102, 86, 62, 46, 32, 20, 10, 6, 4, 7, 11, 21, 33, 47, 63, 87, 105, 90, 70, 52, 37, 28, 18, 14, 12, 15, 19, 29, 38, 53, 71, 91, 110, 99, 82, 66, 48, 35, 30, 24, 22, 25, 31, 36, 49, 67, 83, 100, 115, 108, 94, 76, 64, 50, 44, 40, 34, 41, 45, 51, 65, 77, 95, 109, 118, 113, 103, 92, 80, 68, 60, 56, 54, 57, 61, 69, 81, 93, 104, 114, 119, 116, 111, 106, 97, 88, 84, 74, 72, 75, 85, 89, 98, 107, 112, 117 }; static int DistanceToPlaneCode(int xsize, int dist) { const int yoffset = dist / xsize; const int xoffset = dist - yoffset * xsize; if (xoffset <= 8 && yoffset < 8) { return plane_to_code_lut[yoffset * 16 + 8 - xoffset] + 1; } else if (xoffset > xsize - 8 && yoffset < 7) { return plane_to_code_lut[(yoffset + 1) * 16 + 8 + (xsize - xoffset)] + 1; } return dist + 120; } static WEBP_INLINE int FindMatchLength(const uint32_t* const array1, const uint32_t* const array2, int best_len_match, int max_limit) { #if !defined(__x86_64__) // TODO(vrabaud): Compare on other architectures. int match_len = 0; // Before 'expensive' linear match, check if the two arrays match at the // current best length index. if (array1[best_len_match] != array2[best_len_match]) return 0; while (match_len < max_limit && array1[match_len] == array2[match_len]) { ++match_len; } return match_len; #else const uint32_t* array1_32 = array1; const uint32_t* array2_32 = array2; // max value is aligned to (uint64_t*) array1 const uint32_t* const array1_32_max = array1 + (max_limit & ~1); // Before 'expensive' linear match, check if the two arrays match at the // current best length index. if (array1[best_len_match] != array2[best_len_match]) return 0; // TODO(vrabaud): add __predict_true on bound checking? while (array1_32 < array1_32_max) { if (*(uint64_t*)array1_32 == *(uint64_t*)array2_32) { array1_32 += 2; array2_32 += 2; } else { // if the uint32_t pointed to are the same, then the following ones have // to be different return (array1_32 - array1) + (*array1_32 == *array2_32); } } // Deal with the potential last uint32_t. if ((max_limit & 1) && (*array1_32 != *array2_32)) return max_limit - 1; return max_limit; #endif } // ----------------------------------------------------------------------------- // VP8LBackwardRefs struct PixOrCopyBlock { PixOrCopyBlock* next_; // next block (or NULL) PixOrCopy* start_; // data start int size_; // currently used size }; static void ClearBackwardRefs(VP8LBackwardRefs* const refs) { assert(refs != NULL); if (refs->tail_ != NULL) { *refs->tail_ = refs->free_blocks_; // recycle all blocks at once } refs->free_blocks_ = refs->refs_; refs->tail_ = &refs->refs_; refs->last_block_ = NULL; refs->refs_ = NULL; } void VP8LBackwardRefsClear(VP8LBackwardRefs* const refs) { assert(refs != NULL); ClearBackwardRefs(refs); while (refs->free_blocks_ != NULL) { PixOrCopyBlock* const next = refs->free_blocks_->next_; WebPSafeFree(refs->free_blocks_); refs->free_blocks_ = next; } } void VP8LBackwardRefsInit(VP8LBackwardRefs* const refs, int block_size) { assert(refs != NULL); memset(refs, 0, sizeof(*refs)); refs->tail_ = &refs->refs_; refs->block_size_ = (block_size < MIN_BLOCK_SIZE) ? MIN_BLOCK_SIZE : block_size; } VP8LRefsCursor VP8LRefsCursorInit(const VP8LBackwardRefs* const refs) { VP8LRefsCursor c; c.cur_block_ = refs->refs_; if (refs->refs_ != NULL) { c.cur_pos = c.cur_block_->start_; c.last_pos_ = c.cur_pos + c.cur_block_->size_; } else { c.cur_pos = NULL; c.last_pos_ = NULL; } return c; } void VP8LRefsCursorNextBlock(VP8LRefsCursor* const c) { PixOrCopyBlock* const b = c->cur_block_->next_; c->cur_pos = (b == NULL) ? NULL : b->start_; c->last_pos_ = (b == NULL) ? NULL : b->start_ + b->size_; c->cur_block_ = b; } // Create a new block, either from the free list or allocated static PixOrCopyBlock* BackwardRefsNewBlock(VP8LBackwardRefs* const refs) { PixOrCopyBlock* b = refs->free_blocks_; if (b == NULL) { // allocate new memory chunk const size_t total_size = sizeof(*b) + refs->block_size_ * sizeof(*b->start_); b = (PixOrCopyBlock*)WebPSafeMalloc(1ULL, total_size); if (b == NULL) { refs->error_ |= 1; return NULL; } b->start_ = (PixOrCopy*)((uint8_t*)b + sizeof(*b)); // not always aligned } else { // recycle from free-list refs->free_blocks_ = b->next_; } *refs->tail_ = b; refs->tail_ = &b->next_; refs->last_block_ = b; b->next_ = NULL; b->size_ = 0; return b; } static WEBP_INLINE void BackwardRefsCursorAdd(VP8LBackwardRefs* const refs, const PixOrCopy v) { PixOrCopyBlock* b = refs->last_block_; if (b == NULL || b->size_ == refs->block_size_) { b = BackwardRefsNewBlock(refs); if (b == NULL) return; // refs->error_ is set } b->start_[b->size_++] = v; } int VP8LBackwardRefsCopy(const VP8LBackwardRefs* const src, VP8LBackwardRefs* const dst) { const PixOrCopyBlock* b = src->refs_; ClearBackwardRefs(dst); assert(src->block_size_ == dst->block_size_); while (b != NULL) { PixOrCopyBlock* const new_b = BackwardRefsNewBlock(dst); if (new_b == NULL) return 0; // dst->error_ is set memcpy(new_b->start_, b->start_, b->size_ * sizeof(*b->start_)); new_b->size_ = b->size_; b = b->next_; } return 1; } // ----------------------------------------------------------------------------- // Hash chains // initialize as empty static void HashChainReset(VP8LHashChain* const p) { int i; assert(p != NULL); for (i = 0; i < p->size_; ++i) { p->chain_[i] = -1; } for (i = 0; i < HASH_SIZE; ++i) { p->hash_to_first_index_[i] = -1; } } int VP8LHashChainInit(VP8LHashChain* const p, int size) { assert(p->size_ == 0); assert(p->chain_ == NULL); assert(size > 0); p->chain_ = (int*)WebPSafeMalloc(size, sizeof(*p->chain_)); if (p->chain_ == NULL) return 0; p->size_ = size; HashChainReset(p); return 1; } void VP8LHashChainClear(VP8LHashChain* const p) { assert(p != NULL); WebPSafeFree(p->chain_); p->size_ = 0; p->chain_ = NULL; } // ----------------------------------------------------------------------------- #define HASH_MULTIPLIER_HI (0xc6a4a793U) #define HASH_MULTIPLIER_LO (0x5bd1e996U) static WEBP_INLINE uint32_t GetPixPairHash64(const uint32_t* const argb) { uint32_t key; key = argb[1] * HASH_MULTIPLIER_HI; key += argb[0] * HASH_MULTIPLIER_LO; key = key >> (32 - HASH_BITS); return key; } // Insertion of two pixels at a time. static void HashChainInsert(VP8LHashChain* const p, const uint32_t* const argb, int pos) { const uint32_t hash_code = GetPixPairHash64(argb); p->chain_[pos] = p->hash_to_first_index_[hash_code]; p->hash_to_first_index_[hash_code] = pos; } // Returns the maximum number of hash chain lookups to do for a // given compression quality. Return value in range [6, 86]. static int GetMaxItersForQuality(int quality, int low_effort) { return (low_effort ? 6 : 8) + (quality * quality) / 128; } static int GetWindowSizeForHashChain(int quality, int xsize) { const int max_window_size = (quality > 75) ? WINDOW_SIZE : (quality > 50) ? (xsize << 8) : (quality > 25) ? (xsize << 6) : (xsize << 4); assert(xsize > 0); return (max_window_size > WINDOW_SIZE) ? WINDOW_SIZE : max_window_size; } static WEBP_INLINE int MaxFindCopyLength(int len) { return (len < MAX_LENGTH) ? len : MAX_LENGTH; } static void HashChainFindOffset(const VP8LHashChain* const p, int base_position, const uint32_t* const argb, int len, int window_size, int* const distance_ptr) { const uint32_t* const argb_start = argb + base_position; const int min_pos = (base_position > window_size) ? base_position - window_size : 0; int pos; assert(len <= MAX_LENGTH); for (pos = p->hash_to_first_index_[GetPixPairHash64(argb_start)]; pos >= min_pos; pos = p->chain_[pos]) { const int curr_length = FindMatchLength(argb + pos, argb_start, len - 1, len); if (curr_length == len) break; } *distance_ptr = base_position - pos; } static int HashChainFindCopy(const VP8LHashChain* const p, int base_position, const uint32_t* const argb, int max_len, int window_size, int iter_max, int* const distance_ptr, int* const length_ptr) { const uint32_t* const argb_start = argb + base_position; int iter = iter_max; int best_length = 0; int best_distance = 0; const int min_pos = (base_position > window_size) ? base_position - window_size : 0; int pos; int length_max = 256; if (max_len < length_max) { length_max = max_len; } for (pos = p->hash_to_first_index_[GetPixPairHash64(argb_start)]; pos >= min_pos; pos = p->chain_[pos]) { int curr_length; int distance; if (--iter < 0) { break; } curr_length = FindMatchLength(argb + pos, argb_start, best_length, max_len); if (best_length < curr_length) { distance = base_position - pos; best_length = curr_length; best_distance = distance; if (curr_length >= length_max) { break; } } } *distance_ptr = best_distance; *length_ptr = best_length; return (best_length >= MIN_LENGTH); } static WEBP_INLINE void AddSingleLiteral(uint32_t pixel, int use_color_cache, VP8LColorCache* const hashers, VP8LBackwardRefs* const refs) { PixOrCopy v; if (use_color_cache) { const uint32_t key = VP8LColorCacheGetIndex(hashers, pixel); if (VP8LColorCacheLookup(hashers, key) == pixel) { v = PixOrCopyCreateCacheIdx(key); } else { v = PixOrCopyCreateLiteral(pixel); VP8LColorCacheSet(hashers, key, pixel); } } else { v = PixOrCopyCreateLiteral(pixel); } BackwardRefsCursorAdd(refs, v); } static int BackwardReferencesRle(int xsize, int ysize, const uint32_t* const argb, int cache_bits, VP8LBackwardRefs* const refs) { const int pix_count = xsize * ysize; int i, k; const int use_color_cache = (cache_bits > 0); VP8LColorCache hashers; if (use_color_cache && !VP8LColorCacheInit(&hashers, cache_bits)) { return 0; } ClearBackwardRefs(refs); // Add first pixel as literal. AddSingleLiteral(argb[0], use_color_cache, &hashers, refs); i = 1; while (i < pix_count) { const int max_len = MaxFindCopyLength(pix_count - i); const int kMinLength = 4; const int rle_len = FindMatchLength(argb + i, argb + i - 1, 0, max_len); const int prev_row_len = (i < xsize) ? 0 : FindMatchLength(argb + i, argb + i - xsize, 0, max_len); if (rle_len >= prev_row_len && rle_len >= kMinLength) { BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(1, rle_len)); // We don't need to update the color cache here since it is always the // same pixel being copied, and that does not change the color cache // state. i += rle_len; } else if (prev_row_len >= kMinLength) { BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(xsize, prev_row_len)); if (use_color_cache) { for (k = 0; k < prev_row_len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } i += prev_row_len; } else { AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); i++; } } if (use_color_cache) VP8LColorCacheClear(&hashers); return !refs->error_; } static int BackwardReferencesLz77(int xsize, int ysize, const uint32_t* const argb, int cache_bits, int quality, int low_effort, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { int i; int ok = 0; int cc_init = 0; const int use_color_cache = (cache_bits > 0); const int pix_count = xsize * ysize; VP8LColorCache hashers; int iter_max = GetMaxItersForQuality(quality, low_effort); const int window_size = GetWindowSizeForHashChain(quality, xsize); int min_matches = 32; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } ClearBackwardRefs(refs); HashChainReset(hash_chain); for (i = 0; i < pix_count - 2; ) { // Alternative#1: Code the pixels starting at 'i' using backward reference. int offset = 0; int len = 0; const int max_len = MaxFindCopyLength(pix_count - i); HashChainFindCopy(hash_chain, i, argb, max_len, window_size, iter_max, &offset, &len); if (len > MIN_LENGTH || (len == MIN_LENGTH && offset <= 512)) { int offset2 = 0; int len2 = 0; int k; min_matches = 8; HashChainInsert(hash_chain, &argb[i], i); if ((len < (max_len >> 2)) && !low_effort) { // Evaluate Alternative#2: Insert the pixel at 'i' as literal, and code // the pixels starting at 'i + 1' using backward reference. HashChainFindCopy(hash_chain, i + 1, argb, max_len - 1, window_size, iter_max, &offset2, &len2); if (len2 > len + 1) { AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); i++; // Backward reference to be done for next pixel. len = len2; offset = offset2; } } BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } // Add to the hash_chain (but cannot add the last pixel). if (offset >= 3 && offset != xsize) { const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; for (k = 2; k < last - 8; k += 2) { HashChainInsert(hash_chain, &argb[i + k], i + k); } for (; k < last; ++k) { HashChainInsert(hash_chain, &argb[i + k], i + k); } } i += len; } else { AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); HashChainInsert(hash_chain, &argb[i], i); ++i; --min_matches; if (min_matches <= 0) { AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); HashChainInsert(hash_chain, &argb[i], i); ++i; } } } while (i < pix_count) { // Handle the last pixel(s). AddSingleLiteral(argb[i], use_color_cache, &hashers, refs); ++i; } ok = !refs->error_; Error: if (cc_init) VP8LColorCacheClear(&hashers); return ok; } // ----------------------------------------------------------------------------- typedef struct { double alpha_[VALUES_IN_BYTE]; double red_[VALUES_IN_BYTE]; double blue_[VALUES_IN_BYTE]; double distance_[NUM_DISTANCE_CODES]; double* literal_; } CostModel; static int BackwardReferencesTraceBackwards( int xsize, int ysize, const uint32_t* const argb, int quality, int cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs); static void ConvertPopulationCountTableToBitEstimates( int num_symbols, const uint32_t population_counts[], double output[]) { uint32_t sum = 0; int nonzeros = 0; int i; for (i = 0; i < num_symbols; ++i) { sum += population_counts[i]; if (population_counts[i] > 0) { ++nonzeros; } } if (nonzeros <= 1) { memset(output, 0, num_symbols * sizeof(*output)); } else { const double logsum = VP8LFastLog2(sum); for (i = 0; i < num_symbols; ++i) { output[i] = logsum - VP8LFastLog2(population_counts[i]); } } } static int CostModelBuild(CostModel* const m, int cache_bits, VP8LBackwardRefs* const refs) { int ok = 0; VP8LHistogram* const histo = VP8LAllocateHistogram(cache_bits); if (histo == NULL) goto Error; VP8LHistogramCreate(histo, refs, cache_bits); ConvertPopulationCountTableToBitEstimates( VP8LHistogramNumCodes(histo->palette_code_bits_), histo->literal_, m->literal_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo->red_, m->red_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo->blue_, m->blue_); ConvertPopulationCountTableToBitEstimates( VALUES_IN_BYTE, histo->alpha_, m->alpha_); ConvertPopulationCountTableToBitEstimates( NUM_DISTANCE_CODES, histo->distance_, m->distance_); ok = 1; Error: VP8LFreeHistogram(histo); return ok; } static WEBP_INLINE double GetLiteralCost(const CostModel* const m, uint32_t v) { return m->alpha_[v >> 24] + m->red_[(v >> 16) & 0xff] + m->literal_[(v >> 8) & 0xff] + m->blue_[v & 0xff]; } static WEBP_INLINE double GetCacheCost(const CostModel* const m, uint32_t idx) { const int literal_idx = VALUES_IN_BYTE + NUM_LENGTH_CODES + idx; return m->literal_[literal_idx]; } static WEBP_INLINE double GetLengthCost(const CostModel* const m, uint32_t length) { int code, extra_bits; VP8LPrefixEncodeBits(length, &code, &extra_bits); return m->literal_[VALUES_IN_BYTE + code] + extra_bits; } static WEBP_INLINE double GetDistanceCost(const CostModel* const m, uint32_t distance) { int code, extra_bits; VP8LPrefixEncodeBits(distance, &code, &extra_bits); return m->distance_[code] + extra_bits; } static void AddSingleLiteralWithCostModel( const uint32_t* const argb, VP8LHashChain* const hash_chain, VP8LColorCache* const hashers, const CostModel* const cost_model, int idx, int is_last, int use_color_cache, double prev_cost, float* const cost, uint16_t* const dist_array) { double cost_val = prev_cost; const uint32_t color = argb[0]; if (!is_last) { HashChainInsert(hash_chain, argb, idx); } if (use_color_cache && VP8LColorCacheContains(hashers, color)) { const double mul0 = 0.68; const int ix = VP8LColorCacheGetIndex(hashers, color); cost_val += GetCacheCost(cost_model, ix) * mul0; } else { const double mul1 = 0.82; if (use_color_cache) VP8LColorCacheInsert(hashers, color); cost_val += GetLiteralCost(cost_model, color) * mul1; } if (cost[idx] > cost_val) { cost[idx] = (float)cost_val; dist_array[idx] = 1; // only one is inserted. } } static int BackwardReferencesHashChainDistanceOnly( int xsize, int ysize, const uint32_t* const argb, int quality, int cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs, uint16_t* const dist_array) { int i; int ok = 0; int cc_init = 0; const int pix_count = xsize * ysize; const int use_color_cache = (cache_bits > 0); float* const cost = (float*)WebPSafeMalloc(pix_count, sizeof(*cost)); const size_t literal_array_size = sizeof(double) * (NUM_LITERAL_CODES + NUM_LENGTH_CODES + ((cache_bits > 0) ? (1 << cache_bits) : 0)); const size_t cost_model_size = sizeof(CostModel) + literal_array_size; CostModel* const cost_model = (CostModel*)WebPSafeMalloc(1ULL, cost_model_size); VP8LColorCache hashers; const int skip_length = 32 + quality; const int skip_min_distance_code = 2; int iter_max = GetMaxItersForQuality(quality, 0); const int window_size = GetWindowSizeForHashChain(quality, xsize); if (cost == NULL || cost_model == NULL) goto Error; cost_model->literal_ = (double*)(cost_model + 1); if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } if (!CostModelBuild(cost_model, cache_bits, refs)) { goto Error; } for (i = 0; i < pix_count; ++i) cost[i] = 1e38f; // We loop one pixel at a time, but store all currently best points to // non-processed locations from this point. dist_array[0] = 0; HashChainReset(hash_chain); // Add first pixel as literal. AddSingleLiteralWithCostModel(argb + 0, hash_chain, &hashers, cost_model, 0, 0, use_color_cache, 0.0, cost, dist_array); for (i = 1; i < pix_count - 1; ++i) { int offset = 0; int len = 0; double prev_cost = cost[i - 1]; const int max_len = MaxFindCopyLength(pix_count - i); HashChainFindCopy(hash_chain, i, argb, max_len, window_size, iter_max, &offset, &len); if (len >= MIN_LENGTH) { const int code = DistanceToPlaneCode(xsize, offset); const double distance_cost = prev_cost + GetDistanceCost(cost_model, code); int k; for (k = 1; k < len; ++k) { const double cost_val = distance_cost + GetLengthCost(cost_model, k); if (cost[i + k] > cost_val) { cost[i + k] = (float)cost_val; dist_array[i + k] = k + 1; } } // This if is for speedup only. It roughly doubles the speed, and // makes compression worse by .1 %. if (len >= skip_length && code <= skip_min_distance_code) { // Long copy for short distances, let's skip the middle // lookups for better copies. // 1) insert the hashes. if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } // 2) Add to the hash_chain (but cannot add the last pixel) { const int last = (len + i < pix_count - 1) ? len + i : pix_count - 1; for (k = i; k < last; ++k) { HashChainInsert(hash_chain, &argb[k], k); } } // 3) jump. i += len - 1; // for loop does ++i, thus -1 here. goto next_symbol; } if (len != MIN_LENGTH) { int code_min_length; double cost_total; HashChainFindOffset(hash_chain, i, argb, MIN_LENGTH, window_size, &offset); code_min_length = DistanceToPlaneCode(xsize, offset); cost_total = prev_cost + GetDistanceCost(cost_model, code_min_length) + GetLengthCost(cost_model, 1); if (cost[i + 1] > cost_total) { cost[i + 1] = (float)cost_total; dist_array[i + 1] = 2; } } } AddSingleLiteralWithCostModel(argb + i, hash_chain, &hashers, cost_model, i, 0, use_color_cache, prev_cost, cost, dist_array); next_symbol: ; } // Handle the last pixel. if (i == (pix_count - 1)) { AddSingleLiteralWithCostModel(argb + i, hash_chain, &hashers, cost_model, i, 1, use_color_cache, cost[pix_count - 2], cost, dist_array); } ok = !refs->error_; Error: if (cc_init) VP8LColorCacheClear(&hashers); WebPSafeFree(cost_model); WebPSafeFree(cost); return ok; } // We pack the path at the end of *dist_array and return // a pointer to this part of the array. Example: // dist_array = [1x2xx3x2] => packed [1x2x1232], chosen_path = [1232] static void TraceBackwards(uint16_t* const dist_array, int dist_array_size, uint16_t** const chosen_path, int* const chosen_path_size) { uint16_t* path = dist_array + dist_array_size; uint16_t* cur = dist_array + dist_array_size - 1; while (cur >= dist_array) { const int k = *cur; --path; *path = k; cur -= k; } *chosen_path = path; *chosen_path_size = (int)(dist_array + dist_array_size - path); } static int BackwardReferencesHashChainFollowChosenPath( int xsize, int ysize, const uint32_t* const argb, int quality, int cache_bits, const uint16_t* const chosen_path, int chosen_path_size, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { const int pix_count = xsize * ysize; const int use_color_cache = (cache_bits > 0); int ix; int i = 0; int ok = 0; int cc_init = 0; const int window_size = GetWindowSizeForHashChain(quality, xsize); VP8LColorCache hashers; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } ClearBackwardRefs(refs); HashChainReset(hash_chain); for (ix = 0; ix < chosen_path_size; ++ix) { int offset = 0; const int len = chosen_path[ix]; if (len != 1) { int k; HashChainFindOffset(hash_chain, i, argb, len, window_size, &offset); BackwardRefsCursorAdd(refs, PixOrCopyCreateCopy(offset, len)); if (use_color_cache) { for (k = 0; k < len; ++k) { VP8LColorCacheInsert(&hashers, argb[i + k]); } } { const int last = (len < pix_count - 1 - i) ? len : pix_count - 1 - i; for (k = 0; k < last; ++k) { HashChainInsert(hash_chain, &argb[i + k], i + k); } } i += len; } else { PixOrCopy v; if (use_color_cache && VP8LColorCacheContains(&hashers, argb[i])) { // push pixel as a color cache index const int idx = VP8LColorCacheGetIndex(&hashers, argb[i]); v = PixOrCopyCreateCacheIdx(idx); } else { if (use_color_cache) VP8LColorCacheInsert(&hashers, argb[i]); v = PixOrCopyCreateLiteral(argb[i]); } BackwardRefsCursorAdd(refs, v); if (i + 1 < pix_count) { HashChainInsert(hash_chain, &argb[i], i); } ++i; } } ok = !refs->error_; Error: if (cc_init) VP8LColorCacheClear(&hashers); return ok; } // Returns 1 on success. static int BackwardReferencesTraceBackwards(int xsize, int ysize, const uint32_t* const argb, int quality, int cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs) { int ok = 0; const int dist_array_size = xsize * ysize; uint16_t* chosen_path = NULL; int chosen_path_size = 0; uint16_t* dist_array = (uint16_t*)WebPSafeMalloc(dist_array_size, sizeof(*dist_array)); if (dist_array == NULL) goto Error; if (!BackwardReferencesHashChainDistanceOnly( xsize, ysize, argb, quality, cache_bits, hash_chain, refs, dist_array)) { goto Error; } TraceBackwards(dist_array, dist_array_size, &chosen_path, &chosen_path_size); if (!BackwardReferencesHashChainFollowChosenPath( xsize, ysize, argb, quality, cache_bits, chosen_path, chosen_path_size, hash_chain, refs)) { goto Error; } ok = 1; Error: WebPSafeFree(dist_array); return ok; } static void BackwardReferences2DLocality(int xsize, const VP8LBackwardRefs* const refs) { VP8LRefsCursor c = VP8LRefsCursorInit(refs); while (VP8LRefsCursorOk(&c)) { if (PixOrCopyIsCopy(c.cur_pos)) { const int dist = c.cur_pos->argb_or_distance; const int transformed_dist = DistanceToPlaneCode(xsize, dist); c.cur_pos->argb_or_distance = transformed_dist; } VP8LRefsCursorNext(&c); } } // Returns entropy for the given cache bits. static double ComputeCacheEntropy(const uint32_t* argb, const VP8LBackwardRefs* const refs, int cache_bits) { const int use_color_cache = (cache_bits > 0); int cc_init = 0; double entropy = MAX_ENTROPY; const double kSmallPenaltyForLargeCache = 4.0; VP8LColorCache hashers; VP8LRefsCursor c = VP8LRefsCursorInit(refs); VP8LHistogram* histo = VP8LAllocateHistogram(cache_bits); if (histo == NULL) goto Error; if (use_color_cache) { cc_init = VP8LColorCacheInit(&hashers, cache_bits); if (!cc_init) goto Error; } if (!use_color_cache) { while (VP8LRefsCursorOk(&c)) { VP8LHistogramAddSinglePixOrCopy(histo, c.cur_pos); VP8LRefsCursorNext(&c); } } else { while (VP8LRefsCursorOk(&c)) { const PixOrCopy* const v = c.cur_pos; if (PixOrCopyIsLiteral(v)) { const uint32_t pix = *argb++; const uint32_t key = VP8LColorCacheGetIndex(&hashers, pix); if (VP8LColorCacheLookup(&hashers, key) == pix) { ++histo->literal_[NUM_LITERAL_CODES + NUM_LENGTH_CODES + key]; } else { VP8LColorCacheSet(&hashers, key, pix); ++histo->blue_[pix & 0xff]; ++histo->literal_[(pix >> 8) & 0xff]; ++histo->red_[(pix >> 16) & 0xff]; ++histo->alpha_[pix >> 24]; } } else { int len = PixOrCopyLength(v); int code, extra_bits; VP8LPrefixEncodeBits(len, &code, &extra_bits); ++histo->literal_[NUM_LITERAL_CODES + code]; VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); ++histo->distance_[code]; do { VP8LColorCacheInsert(&hashers, *argb++); } while(--len != 0); } VP8LRefsCursorNext(&c); } } entropy = VP8LHistogramEstimateBits(histo) + kSmallPenaltyForLargeCache * cache_bits; Error: if (cc_init) VP8LColorCacheClear(&hashers); VP8LFreeHistogram(histo); return entropy; } // Evaluate optimal cache bits for the local color cache. // The input *best_cache_bits sets the maximum cache bits to use (passing 0 // implies disabling the local color cache). The local color cache is also // disabled for the lower (<= 25) quality. // Returns 0 in case of memory error. static int CalculateBestCacheSize(const uint32_t* const argb, int xsize, int ysize, int quality, VP8LHashChain* const hash_chain, VP8LBackwardRefs* const refs, int* const lz77_computed, int* const best_cache_bits) { int eval_low = 1; int eval_high = 1; double entropy_low = MAX_ENTROPY; double entropy_high = MAX_ENTROPY; const double cost_mul = 5e-4; int cache_bits_low = 0; int cache_bits_high = (quality <= 25) ? 0 : *best_cache_bits; assert(cache_bits_high <= MAX_COLOR_CACHE_BITS); *lz77_computed = 0; if (cache_bits_high == 0) { *best_cache_bits = 0; // Local color cache is disabled. return 1; } if (!BackwardReferencesLz77(xsize, ysize, argb, cache_bits_low, quality, 0, hash_chain, refs)) { return 0; } // Do a binary search to find the optimal entropy for cache_bits. while (eval_low || eval_high) { if (eval_low) { entropy_low = ComputeCacheEntropy(argb, refs, cache_bits_low); entropy_low += entropy_low * cache_bits_low * cost_mul; eval_low = 0; } if (eval_high) { entropy_high = ComputeCacheEntropy(argb, refs, cache_bits_high); entropy_high += entropy_high * cache_bits_high * cost_mul; eval_high = 0; } if (entropy_high < entropy_low) { const int prev_cache_bits_low = cache_bits_low; *best_cache_bits = cache_bits_high; cache_bits_low = (cache_bits_low + cache_bits_high) / 2; if (cache_bits_low != prev_cache_bits_low) eval_low = 1; } else { *best_cache_bits = cache_bits_low; cache_bits_high = (cache_bits_low + cache_bits_high) / 2; if (cache_bits_high != cache_bits_low) eval_high = 1; } } *lz77_computed = 1; return 1; } // Update (in-place) backward references for specified cache_bits. static int BackwardRefsWithLocalCache(const uint32_t* const argb, int cache_bits, VP8LBackwardRefs* const refs) { int pixel_index = 0; VP8LColorCache hashers; VP8LRefsCursor c = VP8LRefsCursorInit(refs); if (!VP8LColorCacheInit(&hashers, cache_bits)) return 0; while (VP8LRefsCursorOk(&c)) { PixOrCopy* const v = c.cur_pos; if (PixOrCopyIsLiteral(v)) { const uint32_t argb_literal = v->argb_or_distance; if (VP8LColorCacheContains(&hashers, argb_literal)) { const int ix = VP8LColorCacheGetIndex(&hashers, argb_literal); *v = PixOrCopyCreateCacheIdx(ix); } else { VP8LColorCacheInsert(&hashers, argb_literal); } ++pixel_index; } else { // refs was created without local cache, so it can not have cache indexes. int k; assert(PixOrCopyIsCopy(v)); for (k = 0; k < v->len; ++k) { VP8LColorCacheInsert(&hashers, argb[pixel_index++]); } } VP8LRefsCursorNext(&c); } VP8LColorCacheClear(&hashers); return 1; } static VP8LBackwardRefs* GetBackwardReferencesLowEffort( int width, int height, const uint32_t* const argb, int quality, int* const cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { VP8LBackwardRefs* refs_lz77 = &refs_array[0]; *cache_bits = 0; if (!BackwardReferencesLz77(width, height, argb, 0, quality, 1 /* Low effort. */, hash_chain, refs_lz77)) { return NULL; } BackwardReferences2DLocality(width, refs_lz77); return refs_lz77; } static VP8LBackwardRefs* GetBackwardReferences( int width, int height, const uint32_t* const argb, int quality, int* const cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { int lz77_is_useful; int lz77_computed; double bit_cost_lz77, bit_cost_rle; VP8LBackwardRefs* best = NULL; VP8LBackwardRefs* refs_lz77 = &refs_array[0]; VP8LBackwardRefs* refs_rle = &refs_array[1]; VP8LHistogram* histo = NULL; if (!CalculateBestCacheSize(argb, width, height, quality, hash_chain, refs_lz77, &lz77_computed, cache_bits)) { goto Error; } if (lz77_computed) { // Transform refs_lz77 for the optimized cache_bits. if (*cache_bits > 0) { if (!BackwardRefsWithLocalCache(argb, *cache_bits, refs_lz77)) { goto Error; } } } else { if (!BackwardReferencesLz77(width, height, argb, *cache_bits, quality, 0 /* Low effort. */, hash_chain, refs_lz77)) { goto Error; } } if (!BackwardReferencesRle(width, height, argb, *cache_bits, refs_rle)) { goto Error; } histo = VP8LAllocateHistogram(*cache_bits); if (histo == NULL) goto Error; { // Evaluate LZ77 coding. VP8LHistogramCreate(histo, refs_lz77, *cache_bits); bit_cost_lz77 = VP8LHistogramEstimateBits(histo); // Evaluate RLE coding. VP8LHistogramCreate(histo, refs_rle, *cache_bits); bit_cost_rle = VP8LHistogramEstimateBits(histo); // Decide if LZ77 is useful. lz77_is_useful = (bit_cost_lz77 < bit_cost_rle); } // Choose appropriate backward reference. if (lz77_is_useful) { // TraceBackwards is costly. Don't execute it at lower quality. const int try_lz77_trace_backwards = (quality >= 25); best = refs_lz77; // default guess: lz77 is better if (try_lz77_trace_backwards) { VP8LBackwardRefs* const refs_trace = refs_rle; if (!VP8LBackwardRefsCopy(refs_lz77, refs_trace)) { best = NULL; goto Error; } if (BackwardReferencesTraceBackwards(width, height, argb, quality, *cache_bits, hash_chain, refs_trace)) { double bit_cost_trace; // Evaluate LZ77 coding. VP8LHistogramCreate(histo, refs_trace, *cache_bits); bit_cost_trace = VP8LHistogramEstimateBits(histo); if (bit_cost_trace < bit_cost_lz77) { best = refs_trace; } } } } else { best = refs_rle; } BackwardReferences2DLocality(width, best); Error: VP8LFreeHistogram(histo); return best; } VP8LBackwardRefs* VP8LGetBackwardReferences( int width, int height, const uint32_t* const argb, int quality, int low_effort, int* const cache_bits, VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[2]) { if (low_effort) { return GetBackwardReferencesLowEffort(width, height, argb, quality, cache_bits, hash_chain, refs_array); } else { return GetBackwardReferences(width, height, argb, quality, cache_bits, hash_chain, refs_array); } }