#ifndef RASTERIZERSCENEGLES3_H #define RASTERIZERSCENEGLES3_H #include "rasterizer_storage_gles3.h" #include "drivers/gles3/shaders/scene.glsl.h" #include "drivers/gles3/shaders/cube_to_dp.glsl.h" #include "drivers/gles3/shaders/resolve.glsl.h" #include "drivers/gles3/shaders/screen_space_reflection.glsl.h" #include "drivers/gles3/shaders/effect_blur.glsl.h" #include "drivers/gles3/shaders/subsurf_scattering.glsl.h" #include "drivers/gles3/shaders/ssao_minify.glsl.h" #include "drivers/gles3/shaders/ssao.glsl.h" #include "drivers/gles3/shaders/ssao_blur.glsl.h" #include "drivers/gles3/shaders/exposure.glsl.h" #include "drivers/gles3/shaders/tonemap.glsl.h" class RasterizerSceneGLES3 : public RasterizerScene { public: enum ShadowFilterMode { SHADOW_FILTER_NEAREST, SHADOW_FILTER_PCF5, SHADOW_FILTER_PCF13, }; ShadowFilterMode shadow_filter_mode; uint64_t shadow_atlas_realloc_tolerance_msec; enum SubSurfaceScatterQuality { SSS_QUALITY_LOW, SSS_QUALITY_MEDIUM, SSS_QUALITY_HIGH, }; SubSurfaceScatterQuality subsurface_scatter_quality; float subsurface_scatter_size; bool subsurface_scatter_follow_surface; uint64_t render_pass; uint64_t scene_pass; uint32_t current_material_index; uint32_t current_geometry_index; RID default_material; RID default_material_twosided; RID default_shader; RID default_shader_twosided; RasterizerStorageGLES3 *storage; Vector exposure_shrink; int exposure_shrink_size; struct State { bool texscreen_copied; int current_blend_mode; float current_line_width; int current_depth_draw; GLuint current_main_tex; SceneShaderGLES3 scene_shader; CubeToDpShaderGLES3 cube_to_dp_shader; ResolveShaderGLES3 resolve_shader; ScreenSpaceReflectionShaderGLES3 ssr_shader; EffectBlurShaderGLES3 effect_blur_shader; SubsurfScatteringShaderGLES3 sss_shader; SsaoMinifyShaderGLES3 ssao_minify_shader; SsaoShaderGLES3 ssao_shader; SsaoBlurShaderGLES3 ssao_blur_shader; ExposureShaderGLES3 exposure_shader; TonemapShaderGLES3 tonemap_shader; struct SceneDataUBO { float projection_matrix[16]; float camera_inverse_matrix[16]; float camera_matrix[16]; float time[4]; float ambient_light_color[4]; float bg_color[4]; float ambient_energy; float bg_energy; float shadow_z_offset; float shadow_slope_scale; float shadow_dual_paraboloid_render_zfar; float shadow_dual_paraboloid_render_side; float shadow_atlas_pixel_size[2]; float shadow_directional_pixel_size[2]; float reflection_multiplier; float subsurface_scatter_width; float ambient_occlusion_affect_light; } ubo_data; GLuint scene_ubo; struct EnvironmentRadianceUBO { float transform[16]; float box_min[4]; //unused for now float box_max[4]; float ambient_contribution; } env_radiance_data; GLuint env_radiance_ubo; GLuint brdf_texture; GLuint skybox_verts; GLuint skybox_array; GLuint directional_ubo; GLuint spot_array_ubo; GLuint omni_array_ubo; GLuint reflection_array_ubo; GLuint immediate_buffer; GLuint immediate_array; uint32_t ubo_light_size; uint8_t *spot_array_tmp; uint8_t *omni_array_tmp; uint8_t *reflection_array_tmp; int max_ubo_lights; int max_forward_lights_per_object; int max_ubo_reflections; int max_skeleton_bones; int spot_light_count; int omni_light_count; int directional_light_count; int reflection_probe_count; bool cull_front; bool used_sss; } state; /* SHADOW ATLAS API */ struct ShadowAtlas : public RID_Data { enum { QUADRANT_SHIFT=27, SHADOW_INDEX_MASK=(1< shadows; Quadrant() { subdivision=0; //not in use } } quadrants[4]; int size_order[4]; uint32_t smallest_subdiv; int size; GLuint fbo; GLuint depth; Map shadow_owners; }; struct ShadowCubeMap { GLuint fbo_id[6]; GLuint cubemap; int size; }; Vector shadow_cubemaps; RID_Owner shadow_atlas_owner; RID shadow_atlas_create(); void shadow_atlas_set_size(RID p_atlas,int p_size); void shadow_atlas_set_quadrant_subdivision(RID p_atlas,int p_quadrant,int p_subdivision); bool _shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow); bool shadow_atlas_update_light(RID p_atlas,RID p_light_intance,float p_coverage,uint64_t p_light_version); struct DirectionalShadow { GLuint fbo; GLuint depth; int light_count; int size; int current_light; } directional_shadow; virtual int get_directional_light_shadow_size(RID p_light_intance); virtual void set_directional_shadow_count(int p_count); /* REFLECTION PROBE ATLAS API */ struct ReflectionAtlas : public RID_Data { int subdiv; int size; struct Reflection { RID owner; uint64_t last_frame; }; GLuint fbo[6]; GLuint color; Vector reflections; }; mutable RID_Owner reflection_atlas_owner; virtual RID reflection_atlas_create(); virtual void reflection_atlas_set_size(RID p_ref_atlas,int p_size); virtual void reflection_atlas_set_subdivision(RID p_ref_atlas,int p_subdiv); /* REFLECTION CUBEMAPS */ struct ReflectionCubeMap { GLuint fbo_id[6]; GLuint cubemap; GLuint depth; int size; }; Vector reflection_cubemaps; /* REFLECTION PROBE INSTANCE */ struct ReflectionProbeInstance : public RID_Data { RasterizerStorageGLES3::ReflectionProbe *probe_ptr; RID probe; RID self; RID atlas; int reflection_atlas_index; int render_step; uint64_t last_pass; int reflection_index; Transform transform; }; struct ReflectionProbeDataUBO { float box_extents[4]; float box_ofs[4]; float params[4]; // intensity, 0, 0, boxproject float ambient[4]; //color, probe contrib float atlas_clamp[4]; float local_matrix[16]; //up to here for spot and omni, rest is for directional //notes: for ambientblend, use distance to edge to blend between already existing global environment }; mutable RID_Owner reflection_probe_instance_owner; virtual RID reflection_probe_instance_create(RID p_probe); virtual void reflection_probe_instance_set_transform(RID p_instance,const Transform& p_transform); virtual void reflection_probe_release_atlas_index(RID p_instance); virtual bool reflection_probe_instance_needs_redraw(RID p_instance); virtual bool reflection_probe_instance_has_reflection(RID p_instance); virtual bool reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas); virtual bool reflection_probe_instance_postprocess_step(RID p_instance); /* ENVIRONMENT API */ struct Environment : public RID_Data { VS::EnvironmentBG bg_mode; RID skybox; float skybox_scale; Color bg_color; float bg_energy; float skybox_ambient; Color ambient_color; float ambient_energy; float ambient_skybox_contribution; int canvas_max_layer; bool ssr_enabled; int ssr_max_steps; float ssr_accel; float ssr_fade; float ssr_depth_tolerance; bool ssr_smooth; bool ssr_roughness; bool ssao_enabled; float ssao_intensity; float ssao_radius; float ssao_intensity2; float ssao_radius2; float ssao_bias; float ssao_light_affect; Color ssao_color; bool ssao_filter; bool glow_enabled; int glow_levels; float glow_intensity; float glow_strength; float glow_bloom; VS::EnvironmentGlowBlendMode glow_blend_mode; float glow_hdr_bleed_treshold; float glow_hdr_bleed_scale; bool glow_bicubic_upscale; VS::EnvironmentToneMapper tone_mapper; float tone_mapper_exposure; float tone_mapper_exposure_white; bool auto_exposure; float auto_exposure_speed; float auto_exposure_min; float auto_exposure_max; float auto_exposure_grey; bool dof_blur_far_enabled; float dof_blur_far_distance; float dof_blur_far_transition; float dof_blur_far_amount; VS::EnvironmentDOFBlurQuality dof_blur_far_quality; bool dof_blur_near_enabled; float dof_blur_near_distance; float dof_blur_near_transition; float dof_blur_near_amount; VS::EnvironmentDOFBlurQuality dof_blur_near_quality; Environment() { bg_mode=VS::ENV_BG_CLEAR_COLOR; skybox_scale=1.0; bg_energy=1.0; skybox_ambient=0; ambient_energy=1.0; ambient_skybox_contribution=0.0; canvas_max_layer=0; ssr_enabled=false; ssr_max_steps=64; ssr_accel=0.04; ssr_fade=2.0; ssr_depth_tolerance=0.2; ssr_smooth=true; ssr_roughness=true; ssao_enabled=false; ssao_intensity=1.0; ssao_radius=1.0; ssao_intensity2=1.0; ssao_radius2=0.0; ssao_bias=0.01; ssao_light_affect=0; ssao_filter=true; tone_mapper=VS::ENV_TONE_MAPPER_LINEAR; tone_mapper_exposure=1.0; tone_mapper_exposure_white=1.0; auto_exposure=false; auto_exposure_speed=0.5; auto_exposure_min=0.05; auto_exposure_max=8; auto_exposure_grey=0.4; glow_enabled=false; glow_levels=(1<<2)|(1<<4); glow_intensity=0.8; glow_strength=1.0; glow_bloom=0.0; glow_blend_mode=VS::GLOW_BLEND_MODE_SOFTLIGHT; glow_hdr_bleed_treshold=1.0; glow_hdr_bleed_scale=2.0; glow_bicubic_upscale=false; dof_blur_far_enabled=false; dof_blur_far_distance=10; dof_blur_far_transition=5; dof_blur_far_amount=0.1; dof_blur_far_quality=VS::ENV_DOF_BLUR_QUALITY_MEDIUM; dof_blur_near_enabled=false; dof_blur_near_distance=2; dof_blur_near_transition=1; dof_blur_near_amount=0.1; dof_blur_near_quality=VS::ENV_DOF_BLUR_QUALITY_MEDIUM; } }; RID_Owner environment_owner; virtual RID environment_create(); virtual void environment_set_background(RID p_env,VS::EnvironmentBG p_bg); virtual void environment_set_skybox(RID p_env,RID p_skybox); virtual void environment_set_skybox_scale(RID p_env,float p_scale); virtual void environment_set_bg_color(RID p_env,const Color& p_color); virtual void environment_set_bg_energy(RID p_env,float p_energy); virtual void environment_set_canvas_max_layer(RID p_env,int p_max_layer); virtual void environment_set_ambient_light(RID p_env,const Color& p_color,float p_energy=1.0,float p_skybox_contribution=0.0); virtual void environment_set_dof_blur_near(RID p_env,bool p_enable,float p_distance,float p_transition,float p_far_amount,VS::EnvironmentDOFBlurQuality p_quality); virtual void environment_set_dof_blur_far(RID p_env,bool p_enable,float p_distance,float p_transition,float p_far_amount,VS::EnvironmentDOFBlurQuality p_quality); virtual void environment_set_glow(RID p_env,bool p_enable,int p_level_flags,float p_intensity,float p_strength,float p_bloom_treshold,VS::EnvironmentGlowBlendMode p_blend_mode,float p_hdr_bleed_treshold,float p_hdr_bleed_scale,bool p_bicubic_upscale); virtual void environment_set_fog(RID p_env,bool p_enable,float p_begin,float p_end,RID p_gradient_texture); virtual void environment_set_ssr(RID p_env,bool p_enable, int p_max_steps,float p_accel,float p_fade,float p_depth_tolerance,bool p_smooth,bool p_roughness); virtual void environment_set_ssao(RID p_env,bool p_enable, float p_radius, float p_radius2, float p_intensity2, float p_intensity, float p_bias, float p_light_affect,const Color &p_color,bool p_blur); virtual void environment_set_tonemap(RID p_env,VS::EnvironmentToneMapper p_tone_mapper,float p_exposure,float p_white,bool p_auto_exposure,float p_min_luminance,float p_max_luminance,float p_auto_exp_speed,float p_auto_exp_scale); virtual void environment_set_adjustment(RID p_env,bool p_enable,float p_brightness,float p_contrast,float p_saturation,RID p_ramp); /* LIGHT INSTANCE */ struct LightDataUBO { float light_pos_inv_radius[4]; float light_direction_attenuation[4]; float light_color_energy[4]; float light_params[4]; //spot attenuation, spot angle, specular, shadow enabled float light_clamp[4]; float light_shadow_color[4]; float shadow_matrix1[16]; //up to here for spot and omni, rest is for directional float shadow_matrix2[16]; float shadow_matrix3[16]; float shadow_matrix4[16]; float shadow_split_offsets[4]; }; struct LightInstance : public RID_Data { struct ShadowTransform { CameraMatrix camera; Transform transform; float farplane; float split; }; ShadowTransform shadow_transform[4]; RID self; RID light; RasterizerStorageGLES3::Light *light_ptr; Transform transform; Vector3 light_vector; Vector3 spot_vector; float linear_att; uint64_t shadow_pass; uint64_t last_scene_pass; uint64_t last_scene_shadow_pass; uint64_t last_pass; uint16_t light_index; uint16_t light_directional_index; uint32_t current_shadow_atlas_key; Vector2 dp; Rect2 directional_rect; Set shadow_atlases; //shadow atlases where this light is registered LightInstance() { } }; mutable RID_Owner light_instance_owner; virtual RID light_instance_create(RID p_light); virtual void light_instance_set_transform(RID p_light_instance,const Transform& p_transform); virtual void light_instance_set_shadow_transform(RID p_light_instance,const CameraMatrix& p_projection,const Transform& p_transform,float p_far,float p_split,int p_pass); virtual void light_instance_mark_visible(RID p_light_instance); /* REFLECTION INSTANCE */ struct GIProbeInstance : public RID_Data { RID data; RasterizerStorageGLES3::GIProbe *probe; GLuint tex_cache; Vector3 cell_size_cache; Vector3 bounds; Transform transform_to_data; GIProbeInstance() { probe=NULL; tex_cache=0; } }; mutable RID_Owner gi_probe_instance_owner; virtual RID gi_probe_instance_create(); virtual void gi_probe_instance_set_light_data(RID p_probe,RID p_base,RID p_data); virtual void gi_probe_instance_set_transform_to_data(RID p_probe,const Transform& p_xform); virtual void gi_probe_instance_set_bounds(RID p_probe,const Vector3& p_bounds); /* RENDER LIST */ struct RenderList { enum { DEFAULT_MAX_ELEMENTS=65536, SORT_FLAG_SKELETON=1, SORT_FLAG_INSTANCING=2, MAX_DIRECTIONAL_LIGHTS=16, MAX_LIGHTS=4096, MAX_REFLECTIONS=1024, SORT_KEY_DEPTH_LAYER_SHIFT=60, SORT_KEY_UNSHADED_FLAG=uint64_t(1)<<59, SORT_KEY_NO_DIRECTIONAL_FLAG=uint64_t(1)<<58, SORT_KEY_GI_PROBES_FLAG=uint64_t(1)<<57, SORT_KEY_SHADING_SHIFT=57, SORT_KEY_SHADING_MASK=7, SORT_KEY_MATERIAL_INDEX_SHIFT=40, SORT_KEY_GEOMETRY_INDEX_SHIFT=20, SORT_KEY_GEOMETRY_TYPE_SHIFT=15, SORT_KEY_SKELETON_FLAG=2, SORT_KEY_MIRROR_FLAG=1 }; int max_elements; struct Element { RasterizerScene::InstanceBase *instance; RasterizerStorageGLES3::Geometry *geometry; RasterizerStorageGLES3::Material *material; RasterizerStorageGLES3::GeometryOwner *owner; uint64_t sort_key; }; Element *_elements; Element **elements; int element_count; int alpha_element_count; void clear() { element_count=0; alpha_element_count=0; } //should eventually be replaced by radix struct SortByKey { _FORCE_INLINE_ bool operator()(const Element* A, const Element* B ) const { return A->sort_key < B->sort_key; } }; void sort_by_key(bool p_alpha) { SortArray sorter; if (p_alpha) { sorter.sort(&elements[max_elements-alpha_element_count],alpha_element_count); } else { sorter.sort(elements,element_count); } } struct SortByDepth { _FORCE_INLINE_ bool operator()(const Element* A, const Element* B ) const { return A->instance->depth > B->instance->depth; } }; void sort_by_depth(bool p_alpha) { SortArray sorter; if (p_alpha) { sorter.sort(&elements[max_elements-alpha_element_count],alpha_element_count); } else { sorter.sort(elements,element_count); } } _FORCE_INLINE_ Element* add_element() { if (element_count+alpha_element_count>=max_elements) return NULL; elements[element_count]=&_elements[element_count]; return elements[element_count++]; } _FORCE_INLINE_ Element* add_alpha_element() { if (element_count+alpha_element_count>=max_elements) return NULL; int idx = max_elements-alpha_element_count-1; elements[idx]=&_elements[idx]; alpha_element_count++; return elements[idx]; } void init() { element_count = 0; alpha_element_count =0; elements=memnew_arr(Element*,max_elements); _elements=memnew_arr(Element,max_elements); for (int i=0;i