/*************************************************************************/ /* geometry.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "geometry.h" #include "print_string.h" void Geometry::MeshData::optimize_vertices() { Map vtx_remap; for(int i=0;i new_vertices; new_vertices.resize(vtx_remap.size()); for(int i=0;i > (*Geometry::_decompose_func)(const Vector& p_polygon)=NULL; struct _FaceClassify { struct _Link { int face; int edge; void clear() { face=-1; edge=-1; } _Link() { face=-1; edge=-1; } }; bool valid; int group; _Link links[3]; Face3 face; _FaceClassify() { group=-1; valid=false; }; }; static bool _connect_faces(_FaceClassify *p_faces, int len, int p_group) { /* connect faces, error will occur if an edge is shared between more than 2 faces */ /* clear connections */ bool error=false; for (int i=0;i=0) return false; p_faces[p_index].group=p_group; for (int i=0;i<3;i++) { ERR_FAIL_INDEX_V(p_faces[p_index].links[i].face,len,true); _group_face(p_faces,len,p_faces[p_index].links[i].face,p_group); } return true; } DVector< DVector< Face3 > > Geometry::separate_objects( DVector< Face3 > p_array ) { DVector< DVector< Face3 > > objects; int len = p_array.size(); DVector::Read r=p_array.read(); const Face3* arrayptr = r.ptr(); DVector< _FaceClassify> fc; fc.resize( len ); DVector< _FaceClassify >::Write fcw=fc.write(); _FaceClassify * _fcptr = fcw.ptr(); for (int i=0;i >() ); // invalid geometry } /* group connected faces in separate objects */ int group=0; for (int i=0;i=0) { objects.resize(group); DVector< DVector >::Write obw=objects.write(); DVector< Face3 > *group_faces = obw.ptr(); for (int i=0;i=0 && _fcptr[i].group1?2:1; int div_y=len_y>1?2:1; int div_z=len_z>1?2:1; #define _SPLIT(m_i,m_div,m_v,m_len_v,m_new_v,m_new_len_v)\ if (m_div==1) {\ m_new_v=m_v;\ m_new_len_v=1; \ } else if (m_i==0) {\ m_new_v=m_v;\ m_new_len_v=m_len_v/2;\ } else {\ m_new_v=m_v+m_len_v/2;\ m_new_len_v=m_len_v-m_len_v/2; \ } int new_x; int new_len_x; int new_y; int new_len_y; int new_z; int new_len_z; for (int i=0;i=len_y); } break; case _CELL_PREV_Y_NEG: { y--; ERR_FAIL_COND(y<0); } break; case _CELL_PREV_X_POS: { x++; ERR_FAIL_COND(x>=len_x); } break; case _CELL_PREV_X_NEG: { x--; ERR_FAIL_COND(x<0); } break; case _CELL_PREV_Z_POS: { z++; ERR_FAIL_COND(z>=len_z); } break; case _CELL_PREV_Z_NEG: { z--; ERR_FAIL_COND(z<0); } break; default: { ERR_FAIL(); } } continue; } //printf("attempting new cell!\n"); int next_x=x,next_y=y,next_z=z; uint8_t prev=0; switch(c&_CELL_STEP_MASK) { case _CELL_STEP_Y_POS: { next_y++; prev=_CELL_PREV_Y_NEG; } break; case _CELL_STEP_Y_NEG: { next_y--; prev=_CELL_PREV_Y_POS; } break; case _CELL_STEP_X_POS: { next_x++; prev=_CELL_PREV_X_NEG; } break; case _CELL_STEP_X_NEG: { next_x--; prev=_CELL_PREV_X_POS; } break; case _CELL_STEP_Z_POS: { next_z++; prev=_CELL_PREV_Z_NEG; } break; case _CELL_STEP_Z_NEG: { next_z--; prev=_CELL_PREV_Z_POS; } break; default: ERR_FAIL(); } //printf("testing if new cell will be ok...!\n"); if (next_x<0 || next_x>=len_x) continue; if (next_y<0 || next_y>=len_y) continue; if (next_z<0 || next_z>=len_z) continue; //printf("testing if new cell is traversable\n"); if (p_cell_status[next_x][next_y][next_z]&3) continue; //printf("move to it\n"); x=next_x; y=next_y; z=next_z; p_cell_status[x][y][z]|=prev; } } static inline void _build_faces(uint8_t*** p_cell_status,int x,int y,int z,int len_x,int len_y,int len_z,DVector& p_faces) { ERR_FAIL_INDEX(x,len_x); ERR_FAIL_INDEX(y,len_y); ERR_FAIL_INDEX(z,len_z); if (p_cell_status[x][y][z]&_CELL_EXTERIOR) return; /* static const Vector3 vertices[8]={ Vector3(0,0,0), Vector3(0,0,1), Vector3(0,1,0), Vector3(0,1,1), Vector3(1,0,0), Vector3(1,0,1), Vector3(1,1,0), Vector3(1,1,1), }; */ #define vert(m_idx) Vector3( (m_idx&4)>>2, (m_idx&2)>>1, m_idx&1 ) static const uint8_t indices[6][4]={ {7,6,4,5}, {7,3,2,6}, {7,5,1,3}, {0,2,3,1}, {0,1,5,4}, {0,4,6,2}, }; /* {0,1,2,3}, {0,1,4,5}, {0,2,4,6}, {4,5,6,7}, {2,3,7,6}, {1,3,5,7}, {0,2,3,1}, {0,1,5,4}, {0,4,6,2}, {7,6,4,5}, {7,3,2,6}, {7,5,1,3}, */ for (int i=0;i<6;i++) { Vector3 face_points[4]; int disp_x=x+((i%3)==0?((i<3)?1:-1):0); int disp_y=y+(((i-1)%3)==0?((i<3)?1:-1):0); int disp_z=z+(((i-2)%3)==0?((i<3)?1:-1):0); bool plot=false; if (disp_x<0 || disp_x>=len_x) plot=true; if (disp_y<0 || disp_y>=len_y) plot=true; if (disp_z<0 || disp_z>=len_z) plot=true; if (!plot && (p_cell_status[disp_x][disp_y][disp_z]&_CELL_EXTERIOR)) plot=true; if (!plot) continue; for (int j=0;j<4;j++) face_points[j]=vert( indices[i][j] ) + Vector3(x,y,z); p_faces.push_back( Face3( face_points[0], face_points[1], face_points[2] ) ); p_faces.push_back( Face3( face_points[2], face_points[3], face_points[0] ) ); } } DVector< Face3 > Geometry::wrap_geometry( DVector< Face3 > p_array,float *p_error ) { #define _MIN_SIZE 1.0 #define _MAX_LENGTH 20 int face_count=p_array.size(); DVector::Read facesr=p_array.read(); const Face3 *faces = facesr.ptr(); AABB global_aabb; for(int i=0;i wrapped_faces; for (int i=0;i::Write wrapped_facesw=wrapped_faces.write(); Face3* wrapped_faces_ptr=wrapped_facesw.ptr(); for(int i=0;i &p_planes) { MeshData mesh; #define SUBPLANE_SIZE 1024.0 float subplane_size = 1024.0; // should compute this from the actual plane for (int i=0;i0.95) ref=Vector3(0.0,0.0,1.0); // change axis Vector3 right = p.normal.cross(ref).normalized(); Vector3 up = p.normal.cross( right ).normalized(); Vector< Vector3 > vertices; Vector3 center = p.get_any_point(); // make a quad clockwise vertices.push_back( center - up * subplane_size + right * subplane_size ); vertices.push_back( center - up * subplane_size - right * subplane_size ); vertices.push_back( center + up * subplane_size - right * subplane_size ); vertices.push_back( center + up * subplane_size + right * subplane_size ); for (int j=0;j new_vertices; Plane clip=p_planes[j]; if (clip.normal.dot(p.normal)>0.95) continue; if (vertices.size()<3) break; for(int k=0;k Geometry::build_box_planes(const Vector3& p_extents) { DVector planes; planes.push_back( Plane( Vector3(1,0,0), p_extents.x ) ); planes.push_back( Plane( Vector3(-1,0,0), p_extents.x ) ); planes.push_back( Plane( Vector3(0,1,0), p_extents.y ) ); planes.push_back( Plane( Vector3(0,-1,0), p_extents.y ) ); planes.push_back( Plane( Vector3(0,0,1), p_extents.z ) ); planes.push_back( Plane( Vector3(0,0,-1), p_extents.z ) ); return planes; } DVector Geometry::build_cylinder_planes(float p_radius, float p_height, int p_sides, Vector3::Axis p_axis) { DVector planes; for (int i=0;i Geometry::build_sphere_planes(float p_radius, int p_lats,int p_lons, Vector3::Axis p_axis) { DVector planes; Vector3 axis; axis[p_axis]=1.0; Vector3 axis_neg; axis_neg[(p_axis+1)%3]=1.0; axis_neg[(p_axis+2)%3]=1.0; axis_neg[p_axis]=-1.0; for (int i=0;i Geometry::build_capsule_planes(float p_radius, float p_height, int p_sides, int p_lats, Vector3::Axis p_axis) { DVector planes; Vector3 axis; axis[p_axis]=1.0; Vector3 axis_neg; axis_neg[(p_axis+1)%3]=1.0; axis_neg[(p_axis+2)%3]=1.0; axis_neg[p_axis]=-1.0; for (int i=0;i p_r.s.width; }; }; struct _AtlasWorkRectResult { Vector<_AtlasWorkRect> result; int max_w; int max_h; }; void Geometry::make_atlas(const Vector& p_rects,Vector& r_result, Size2i& r_size) { //super simple, almost brute force scanline stacking fitter //it's pretty basic for now, but it tries to make sure that the aspect ratio of the //resulting atlas is somehow square. This is necesary because video cards have limits //on texture size (usually 2048 or 4096), so the more square a texture, the more chances //it will work in every hardware. // for example, it will prioritize a 1024x1024 atlas (works everywhere) instead of a // 256x8192 atlas (won't work anywhere). ERR_FAIL_COND(p_rects.size()==0); Vector<_AtlasWorkRect> wrects; wrects.resize(p_rects.size()); for(int i=0;i results; for(int i=0;i<=12;i++) { int w = 1< hmax; hmax.resize(w); for(int j=0;j w) { ofs=0; } int from_y=0; for(int k=0;k from_y) from_y=hmax[ofs+k]; } wrects[j].p.x=ofs; wrects[j].p.y=from_y; int end_h = from_y+wrects[j].s.height; int end_w = ofs+wrects[j].s.width; if (ofs==0) limit_h=end_h; for(int k=0;k max_h) max_h=end_h; if (end_w > max_w) max_w=end_w; if (ofs==0 || end_h>limit_h ) //while h limit not reched, keep stacking ofs+=wrects[j].s.width; } _AtlasWorkRectResult result; result.result=wrects; result.max_h=max_h; result.max_w=max_w; results.push_back(result); } //find the result with the best aspect ratio int best=-1; float best_aspect=1e20; for(int i=0;iw ? h/w : w/h; if (aspect < best_aspect) { best=i; best_aspect=aspect; } } r_result.resize(p_rects.size()); for(int i=0;i