/*************************************************************************/ /* raycast_occlusion_cull.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "raycast_occlusion_cull.h" #include "core/config/project_settings.h" #include "core/templates/local_vector.h" #ifdef __SSE2__ #include #endif RaycastOcclusionCull *RaycastOcclusionCull::raycast_singleton = nullptr; void RaycastOcclusionCull::RaycastHZBuffer::clear() { HZBuffer::clear(); if (camera_rays_unaligned_buffer) { memfree(camera_rays_unaligned_buffer); camera_rays_unaligned_buffer = nullptr; camera_rays = nullptr; } camera_ray_masks.clear(); camera_rays_tile_count = 0; tile_grid_size = Size2i(); } void RaycastOcclusionCull::RaycastHZBuffer::resize(const Size2i &p_size) { if (p_size == Size2i()) { clear(); return; } if (!sizes.is_empty() && p_size == sizes[0]) { return; // Size didn't change } HZBuffer::resize(p_size); tile_grid_size = Size2i(Math::ceil(p_size.x / (float)TILE_SIZE), Math::ceil(p_size.y / (float)TILE_SIZE)); camera_rays_tile_count = tile_grid_size.x * tile_grid_size.y; if (camera_rays_unaligned_buffer) { memfree(camera_rays_unaligned_buffer); } const int alignment = 64; // Embree requires ray packets to be 64-aligned camera_rays_unaligned_buffer = (uint8_t *)memalloc(camera_rays_tile_count * sizeof(CameraRayTile) + alignment); camera_rays = (CameraRayTile *)(camera_rays_unaligned_buffer + alignment - (((uint64_t)camera_rays_unaligned_buffer) % alignment)); camera_ray_masks.resize(camera_rays_tile_count * TILE_RAYS); memset(camera_ray_masks.ptr(), ~0, camera_rays_tile_count * TILE_RAYS * sizeof(uint32_t)); } void RaycastOcclusionCull::RaycastHZBuffer::update_camera_rays(const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, ThreadWorkPool &p_thread_work_pool) { CameraRayThreadData td; td.thread_count = p_thread_work_pool.get_thread_count(); td.z_near = p_cam_projection.get_z_near(); td.z_far = p_cam_projection.get_z_far() * 1.05f; td.camera_pos = p_cam_transform.origin; td.camera_dir = -p_cam_transform.basis.get_axis(2); td.camera_orthogonal = p_cam_orthogonal; CameraMatrix inv_camera_matrix = p_cam_projection.inverse(); Vector3 camera_corner_proj = Vector3(-1.0f, -1.0f, -1.0f); Vector3 camera_corner_view = inv_camera_matrix.xform(camera_corner_proj); td.pixel_corner = p_cam_transform.xform(camera_corner_view); Vector3 top_corner_proj = Vector3(-1.0f, 1.0f, -1.0f); Vector3 top_corner_view = inv_camera_matrix.xform(top_corner_proj); Vector3 top_corner_world = p_cam_transform.xform(top_corner_view); Vector3 left_corner_proj = Vector3(1.0f, -1.0f, -1.0f); Vector3 left_corner_view = inv_camera_matrix.xform(left_corner_proj); Vector3 left_corner_world = p_cam_transform.xform(left_corner_view); td.pixel_u_interp = left_corner_world - td.pixel_corner; td.pixel_v_interp = top_corner_world - td.pixel_corner; debug_tex_range = td.z_far; p_thread_work_pool.do_work(td.thread_count, this, &RaycastHZBuffer::_camera_rays_threaded, &td); } void RaycastOcclusionCull::RaycastHZBuffer::_camera_rays_threaded(uint32_t p_thread, const CameraRayThreadData *p_data) { uint32_t total_tiles = camera_rays_tile_count; uint32_t total_threads = p_data->thread_count; uint32_t from = p_thread * total_tiles / total_threads; uint32_t to = (p_thread + 1 == total_threads) ? total_tiles : ((p_thread + 1) * total_tiles / total_threads); _generate_camera_rays(p_data, from, to); } void RaycastOcclusionCull::RaycastHZBuffer::_generate_camera_rays(const CameraRayThreadData *p_data, int p_from, int p_to) { const Size2i &buffer_size = sizes[0]; for (int i = p_from; i < p_to; i++) { CameraRayTile &tile = camera_rays[i]; int tile_x = (i % tile_grid_size.x) * TILE_SIZE; int tile_y = (i / tile_grid_size.x) * TILE_SIZE; for (int j = 0; j < TILE_RAYS; j++) { int x = tile_x + j % TILE_SIZE; int y = tile_y + j / TILE_SIZE; float u = (float(x) + 0.5f) / buffer_size.x; float v = (float(y) + 0.5f) / buffer_size.y; Vector3 pixel_pos = p_data->pixel_corner + u * p_data->pixel_u_interp + v * p_data->pixel_v_interp; tile.ray.tnear[j] = p_data->z_near; Vector3 dir; if (p_data->camera_orthogonal) { dir = -p_data->camera_dir; tile.ray.org_x[j] = pixel_pos.x - dir.x * p_data->z_near; tile.ray.org_y[j] = pixel_pos.y - dir.y * p_data->z_near; tile.ray.org_z[j] = pixel_pos.z - dir.z * p_data->z_near; } else { dir = (pixel_pos - p_data->camera_pos).normalized(); tile.ray.org_x[j] = p_data->camera_pos.x; tile.ray.org_y[j] = p_data->camera_pos.y; tile.ray.org_z[j] = p_data->camera_pos.z; tile.ray.tnear[j] /= dir.dot(p_data->camera_dir); } tile.ray.dir_x[j] = dir.x; tile.ray.dir_y[j] = dir.y; tile.ray.dir_z[j] = dir.z; tile.ray.tfar[j] = p_data->z_far; tile.ray.time[j] = 0.0f; tile.ray.flags[j] = 0; tile.ray.mask[j] = ~0U; tile.hit.geomID[j] = RTC_INVALID_GEOMETRY_ID; } } } void RaycastOcclusionCull::RaycastHZBuffer::sort_rays(const Vector3 &p_camera_dir, bool p_orthogonal) { ERR_FAIL_COND(is_empty()); Size2i buffer_size = sizes[0]; for (int i = 0; i < tile_grid_size.y; i++) { for (int j = 0; j < tile_grid_size.x; j++) { for (int tile_i = 0; tile_i < TILE_SIZE; tile_i++) { for (int tile_j = 0; tile_j < TILE_SIZE; tile_j++) { int x = j * TILE_SIZE + tile_j; int y = i * TILE_SIZE + tile_i; if (x >= buffer_size.x || y >= buffer_size.y) { continue; } int k = tile_i * TILE_SIZE + tile_j; int tile_index = i * tile_grid_size.x + j; float d = camera_rays[tile_index].ray.tfar[k]; if (!p_orthogonal) { const float &dir_x = camera_rays[tile_index].ray.dir_x[k]; const float &dir_y = camera_rays[tile_index].ray.dir_y[k]; const float &dir_z = camera_rays[tile_index].ray.dir_z[k]; float cos_theta = p_camera_dir.x * dir_x + p_camera_dir.y * dir_y + p_camera_dir.z * dir_z; d *= cos_theta; } mips[0][y * buffer_size.x + x] = d; } } } } } RaycastOcclusionCull::RaycastHZBuffer::~RaycastHZBuffer() { if (camera_rays_unaligned_buffer) { memfree(camera_rays_unaligned_buffer); } } //////////////////////////////////////////////////////// bool RaycastOcclusionCull::is_occluder(RID p_rid) { return occluder_owner.owns(p_rid); } RID RaycastOcclusionCull::occluder_allocate() { return occluder_owner.allocate_rid(); } void RaycastOcclusionCull::occluder_initialize(RID p_occluder) { Occluder *occluder = memnew(Occluder); occluder_owner.initialize_rid(p_occluder, occluder); } void RaycastOcclusionCull::occluder_set_mesh(RID p_occluder, const PackedVector3Array &p_vertices, const PackedInt32Array &p_indices) { Occluder *occluder = occluder_owner.get_or_null(p_occluder); ERR_FAIL_COND(!occluder); occluder->vertices = p_vertices; occluder->indices = p_indices; for (Set::Element *E = occluder->users.front(); E; E = E->next()) { RID scenario_rid = E->get().scenario; RID instance_rid = E->get().instance; ERR_CONTINUE(!scenarios.has(scenario_rid)); Scenario &scenario = scenarios[scenario_rid]; ERR_CONTINUE(!scenario.instances.has(instance_rid)); if (!scenario.dirty_instances.has(instance_rid)) { scenario.dirty_instances.insert(instance_rid); scenario.dirty_instances_array.push_back(instance_rid); } } } void RaycastOcclusionCull::free_occluder(RID p_occluder) { Occluder *occluder = occluder_owner.get_or_null(p_occluder); ERR_FAIL_COND(!occluder); memdelete(occluder); occluder_owner.free(p_occluder); } //////////////////////////////////////////////////////// void RaycastOcclusionCull::add_scenario(RID p_scenario) { if (scenarios.has(p_scenario)) { scenarios[p_scenario].removed = false; } else { scenarios[p_scenario] = Scenario(); } } void RaycastOcclusionCull::remove_scenario(RID p_scenario) { ERR_FAIL_COND(!scenarios.has(p_scenario)); Scenario &scenario = scenarios[p_scenario]; scenario.removed = true; } void RaycastOcclusionCull::scenario_set_instance(RID p_scenario, RID p_instance, RID p_occluder, const Transform3D &p_xform, bool p_enabled) { ERR_FAIL_COND(!scenarios.has(p_scenario)); Scenario &scenario = scenarios[p_scenario]; if (!scenario.instances.has(p_instance)) { scenario.instances[p_instance] = OccluderInstance(); } OccluderInstance &instance = scenario.instances[p_instance]; if (instance.removed) { instance.removed = false; scenario.removed_instances.erase(p_instance); } bool changed = false; if (instance.occluder != p_occluder) { Occluder *old_occluder = occluder_owner.get_or_null(instance.occluder); if (old_occluder) { old_occluder->users.erase(InstanceID(p_scenario, p_instance)); } instance.occluder = p_occluder; if (p_occluder.is_valid()) { Occluder *occluder = occluder_owner.get_or_null(p_occluder); ERR_FAIL_COND(!occluder); occluder->users.insert(InstanceID(p_scenario, p_instance)); } changed = true; } if (instance.xform != p_xform) { scenario.instances[p_instance].xform = p_xform; changed = true; } if (instance.enabled != p_enabled) { instance.enabled = p_enabled; scenario.dirty = true; // The scenario needs a scene re-build, but the instance doesn't need update } if (changed && !scenario.dirty_instances.has(p_instance)) { scenario.dirty_instances.insert(p_instance); scenario.dirty_instances_array.push_back(p_instance); scenario.dirty = true; } } void RaycastOcclusionCull::scenario_remove_instance(RID p_scenario, RID p_instance) { ERR_FAIL_COND(!scenarios.has(p_scenario)); Scenario &scenario = scenarios[p_scenario]; if (scenario.instances.has(p_instance)) { OccluderInstance &instance = scenario.instances[p_instance]; if (!instance.removed) { Occluder *occluder = occluder_owner.get_or_null(instance.occluder); if (occluder) { occluder->users.erase(InstanceID(p_scenario, p_instance)); } scenario.removed_instances.push_back(p_instance); instance.removed = true; } } } void RaycastOcclusionCull::Scenario::_update_dirty_instance_thread(int p_idx, RID *p_instances) { _update_dirty_instance(p_idx, p_instances, nullptr); } void RaycastOcclusionCull::Scenario::_update_dirty_instance(int p_idx, RID *p_instances, ThreadWorkPool *p_thread_pool) { OccluderInstance *occ_inst = instances.getptr(p_instances[p_idx]); if (!occ_inst) { return; } Occluder *occ = raycast_singleton->occluder_owner.get_or_null(occ_inst->occluder); if (!occ) { return; } int vertices_size = occ->vertices.size(); // Embree requires the last element to be readable by a 16-byte SSE load instruction, so we add padding to be safe. occ_inst->xformed_vertices.resize(vertices_size + 1); const Vector3 *read_ptr = occ->vertices.ptr(); Vector3 *write_ptr = occ_inst->xformed_vertices.ptr(); if (p_thread_pool && vertices_size > 1024) { TransformThreadData td; td.xform = occ_inst->xform; td.read = read_ptr; td.write = write_ptr; td.vertex_count = vertices_size; td.thread_count = p_thread_pool->get_thread_count(); p_thread_pool->do_work(td.thread_count, this, &Scenario::_transform_vertices_thread, &td); } else { _transform_vertices_range(read_ptr, write_ptr, occ_inst->xform, 0, vertices_size); } occ_inst->indices.resize(occ->indices.size()); memcpy(occ_inst->indices.ptr(), occ->indices.ptr(), occ->indices.size() * sizeof(int32_t)); } void RaycastOcclusionCull::Scenario::_transform_vertices_thread(uint32_t p_thread, TransformThreadData *p_data) { uint32_t vertex_total = p_data->vertex_count; uint32_t total_threads = p_data->thread_count; uint32_t from = p_thread * vertex_total / total_threads; uint32_t to = (p_thread + 1 == total_threads) ? vertex_total : ((p_thread + 1) * vertex_total / total_threads); _transform_vertices_range(p_data->read, p_data->write, p_data->xform, from, to); } void RaycastOcclusionCull::Scenario::_transform_vertices_range(const Vector3 *p_read, Vector3 *p_write, const Transform3D &p_xform, int p_from, int p_to) { for (int i = p_from; i < p_to; i++) { p_write[i] = p_xform.xform(p_read[i]); } } void RaycastOcclusionCull::Scenario::_commit_scene(void *p_ud) { Scenario *scenario = (Scenario *)p_ud; int commit_idx = 1 - (scenario->current_scene_idx); rtcCommitScene(scenario->ebr_scene[commit_idx]); scenario->commit_done = true; } bool RaycastOcclusionCull::Scenario::update(ThreadWorkPool &p_thread_pool) { ERR_FAIL_COND_V(singleton == nullptr, false); if (commit_thread == nullptr) { commit_thread = memnew(Thread); } if (commit_thread->is_started()) { if (commit_done) { commit_thread->wait_to_finish(); current_scene_idx = 1 - current_scene_idx; } else { return false; } } if (removed) { if (ebr_scene[0]) { rtcReleaseScene(ebr_scene[0]); } if (ebr_scene[1]) { rtcReleaseScene(ebr_scene[1]); } return true; } if (!dirty && removed_instances.is_empty() && dirty_instances_array.is_empty()) { return false; } for (unsigned int i = 0; i < removed_instances.size(); i++) { instances.erase(removed_instances[i]); } if (dirty_instances_array.size() / p_thread_pool.get_thread_count() > 128) { // Lots of instances, use per-instance threading p_thread_pool.do_work(dirty_instances_array.size(), this, &Scenario::_update_dirty_instance_thread, dirty_instances_array.ptr()); } else { // Few instances, use threading on the vertex transforms for (unsigned int i = 0; i < dirty_instances_array.size(); i++) { _update_dirty_instance(i, dirty_instances_array.ptr(), &p_thread_pool); } } dirty_instances.clear(); dirty_instances_array.clear(); removed_instances.clear(); if (raycast_singleton->ebr_device == nullptr) { raycast_singleton->_init_embree(); } int next_scene_idx = 1 - current_scene_idx; RTCScene &next_scene = ebr_scene[next_scene_idx]; if (next_scene) { rtcReleaseScene(next_scene); } next_scene = rtcNewScene(raycast_singleton->ebr_device); rtcSetSceneBuildQuality(next_scene, RTCBuildQuality(raycast_singleton->build_quality)); const RID *inst_rid = nullptr; while ((inst_rid = instances.next(inst_rid))) { OccluderInstance *occ_inst = instances.getptr(*inst_rid); Occluder *occ = raycast_singleton->occluder_owner.get_or_null(occ_inst->occluder); if (!occ || !occ_inst->enabled) { continue; } RTCGeometry geom = rtcNewGeometry(raycast_singleton->ebr_device, RTC_GEOMETRY_TYPE_TRIANGLE); rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_VERTEX, 0, RTC_FORMAT_FLOAT3, occ_inst->xformed_vertices.ptr(), 0, sizeof(Vector3), occ_inst->xformed_vertices.size()); rtcSetSharedGeometryBuffer(geom, RTC_BUFFER_TYPE_INDEX, 0, RTC_FORMAT_UINT3, occ_inst->indices.ptr(), 0, sizeof(uint32_t) * 3, occ_inst->indices.size() / 3); rtcCommitGeometry(geom); rtcAttachGeometry(next_scene, geom); rtcReleaseGeometry(geom); } dirty = false; commit_done = false; commit_thread->start(&Scenario::_commit_scene, this); return false; } void RaycastOcclusionCull::Scenario::_raycast(uint32_t p_idx, const RaycastThreadData *p_raycast_data) const { RTCIntersectContext ctx; rtcInitIntersectContext(&ctx); ctx.flags = RTC_INTERSECT_CONTEXT_FLAG_COHERENT; rtcIntersect16((const int *)&p_raycast_data->masks[p_idx * TILE_RAYS], ebr_scene[current_scene_idx], &ctx, &p_raycast_data->rays[p_idx]); } void RaycastOcclusionCull::Scenario::raycast(CameraRayTile *r_rays, const uint32_t *p_valid_masks, uint32_t p_tile_count, ThreadWorkPool &p_thread_pool) const { ERR_FAIL_COND(singleton == nullptr); if (raycast_singleton->ebr_device == nullptr) { return; // Embree is initialized on demand when there is some scenario with occluders in it. } if (ebr_scene[current_scene_idx] == nullptr) { return; } RaycastThreadData td; td.rays = r_rays; td.masks = p_valid_masks; p_thread_pool.do_work(p_tile_count, this, &Scenario::_raycast, &td); } //////////////////////////////////////////////////////// void RaycastOcclusionCull::add_buffer(RID p_buffer) { ERR_FAIL_COND(buffers.has(p_buffer)); buffers[p_buffer] = RaycastHZBuffer(); } void RaycastOcclusionCull::remove_buffer(RID p_buffer) { ERR_FAIL_COND(!buffers.has(p_buffer)); buffers.erase(p_buffer); } void RaycastOcclusionCull::buffer_set_scenario(RID p_buffer, RID p_scenario) { ERR_FAIL_COND(!buffers.has(p_buffer)); ERR_FAIL_COND(p_scenario.is_valid() && !scenarios.has(p_scenario)); buffers[p_buffer].scenario_rid = p_scenario; } void RaycastOcclusionCull::buffer_set_size(RID p_buffer, const Vector2i &p_size) { ERR_FAIL_COND(!buffers.has(p_buffer)); buffers[p_buffer].resize(p_size); } void RaycastOcclusionCull::buffer_update(RID p_buffer, const Transform3D &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_orthogonal, ThreadWorkPool &p_thread_pool) { if (!buffers.has(p_buffer)) { return; } RaycastHZBuffer &buffer = buffers[p_buffer]; if (buffer.is_empty() || !scenarios.has(buffer.scenario_rid)) { return; } Scenario &scenario = scenarios[buffer.scenario_rid]; bool removed = scenario.update(p_thread_pool); if (removed) { scenarios.erase(buffer.scenario_rid); return; } buffer.update_camera_rays(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_thread_pool); scenario.raycast(buffer.camera_rays, buffer.camera_ray_masks.ptr(), buffer.camera_rays_tile_count, p_thread_pool); buffer.sort_rays(-p_cam_transform.basis.get_axis(2), p_cam_orthogonal); buffer.update_mips(); } RaycastOcclusionCull::HZBuffer *RaycastOcclusionCull::buffer_get_ptr(RID p_buffer) { if (!buffers.has(p_buffer)) { return nullptr; } return &buffers[p_buffer]; } RID RaycastOcclusionCull::buffer_get_debug_texture(RID p_buffer) { ERR_FAIL_COND_V(!buffers.has(p_buffer), RID()); return buffers[p_buffer].get_debug_texture(); } //////////////////////////////////////////////////////// void RaycastOcclusionCull::set_build_quality(RS::ViewportOcclusionCullingBuildQuality p_quality) { if (build_quality == p_quality) { return; } build_quality = p_quality; const RID *scenario_rid = nullptr; while ((scenario_rid = scenarios.next(scenario_rid))) { scenarios[*scenario_rid].dirty = true; } } void RaycastOcclusionCull::_init_embree() { #ifdef __SSE2__ _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); #endif String settings = vformat("threads=%d", MAX(1, OS::get_singleton()->get_processor_count() - 2)); ebr_device = rtcNewDevice(settings.utf8().ptr()); } RaycastOcclusionCull::RaycastOcclusionCull() { raycast_singleton = this; int default_quality = GLOBAL_GET("rendering/occlusion_culling/bvh_build_quality"); build_quality = RS::ViewportOcclusionCullingBuildQuality(default_quality); } RaycastOcclusionCull::~RaycastOcclusionCull() { const RID *scenario_rid = nullptr; while ((scenario_rid = scenarios.next(scenario_rid))) { Scenario &scenario = scenarios[*scenario_rid]; if (scenario.commit_thread) { scenario.commit_thread->wait_to_finish(); memdelete(scenario.commit_thread); } for (int i = 0; i < 2; i++) { if (scenario.ebr_scene[i]) { rtcReleaseScene(scenario.ebr_scene[i]); } } } if (ebr_device != nullptr) { rtcReleaseDevice(ebr_device); } raycast_singleton = nullptr; }