/* clang-format off */ [vertex] layout(location = 0) in highp vec4 vertex_attrib; /* clang-format on */ layout(location = 4) in vec2 uv_in; out vec2 uv_interp; void main() { gl_Position = vertex_attrib; uv_interp = uv_in; #ifdef V_FLIP uv_interp.y = 1.0f - uv_interp.y; #endif } /* clang-format off */ [fragment] #if !defined(GLES_OVER_GL) precision mediump float; #endif /* clang-format on */ in vec2 uv_interp; uniform highp sampler2D source; //texunit:0 uniform float exposure; uniform float white; #ifdef USE_AUTO_EXPOSURE uniform highp sampler2D source_auto_exposure; //texunit:1 uniform highp float auto_exposure_grey; #endif #if defined(USE_GLOW_LEVEL1) || defined(USE_GLOW_LEVEL2) || defined(USE_GLOW_LEVEL3) || defined(USE_GLOW_LEVEL4) || defined(USE_GLOW_LEVEL5) || defined(USE_GLOW_LEVEL6) || defined(USE_GLOW_LEVEL7) #define USING_GLOW // only use glow when at least one glow level is selected uniform highp sampler2D source_glow; //texunit:2 uniform highp float glow_intensity; #endif #ifdef USE_BCS uniform vec3 bcs; #endif #ifdef USE_FXAA uniform vec2 pixel_size; #endif #ifdef USE_SHARPENING uniform float sharpen_intensity; #endif #ifdef USE_COLOR_CORRECTION uniform sampler2D color_correction; //texunit:3 #endif layout(location = 0) out vec4 frag_color; #ifdef USE_GLOW_FILTER_BICUBIC // w0, w1, w2, and w3 are the four cubic B-spline basis functions float w0(float a) { return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f); } float w1(float a) { return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f); } float w2(float a) { return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f); } float w3(float a) { return (1.0f / 6.0f) * (a * a * a); } // g0 and g1 are the two amplitude functions float g0(float a) { return w0(a) + w1(a); } float g1(float a) { return w2(a) + w3(a); } // h0 and h1 are the two offset functions float h0(float a) { return -1.0f + w1(a) / (w0(a) + w1(a)); } float h1(float a) { return 1.0f + w3(a) / (w2(a) + w3(a)); } uniform ivec2 glow_texture_size; vec4 texture2D_bicubic(sampler2D tex, vec2 uv, int p_lod) { float lod = float(p_lod); vec2 tex_size = vec2(glow_texture_size >> p_lod); vec2 texel_size = vec2(1.0f) / tex_size; uv = uv * tex_size + vec2(0.5f); vec2 iuv = floor(uv); vec2 fuv = fract(uv); float g0x = g0(fuv.x); float g1x = g1(fuv.x); float h0x = h0(fuv.x); float h1x = h1(fuv.x); float h0y = h0(fuv.y); float h1y = h1(fuv.y); vec2 p0 = (vec2(iuv.x + h0x, iuv.y + h0y) - vec2(0.5f)) * texel_size; vec2 p1 = (vec2(iuv.x + h1x, iuv.y + h0y) - vec2(0.5f)) * texel_size; vec2 p2 = (vec2(iuv.x + h0x, iuv.y + h1y) - vec2(0.5f)) * texel_size; vec2 p3 = (vec2(iuv.x + h1x, iuv.y + h1y) - vec2(0.5f)) * texel_size; return (g0(fuv.y) * (g0x * textureLod(tex, p0, lod) + g1x * textureLod(tex, p1, lod))) + (g1(fuv.y) * (g0x * textureLod(tex, p2, lod) + g1x * textureLod(tex, p3, lod))); } #define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) texture2D_bicubic(m_tex, m_uv, m_lod) #else #define GLOW_TEXTURE_SAMPLE(m_tex, m_uv, m_lod) textureLod(m_tex, m_uv, float(m_lod)) #endif vec3 tonemap_filmic(vec3 color, float white) { // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values) // has no effect on the curve's general shape or visual properties const float exposure_bias = 2.0f; const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance const float B = 0.30f * exposure_bias; const float C = 0.10f; const float D = 0.20f; const float E = 0.01f; const float F = 0.30f; vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F; float white_tonemapped = ((white * (A * white + C * B) + D * E) / (white * (A * white + B) + D * F)) - E / F; return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f)); } vec3 tonemap_aces(vec3 color, float white) { const float exposure_bias = 0.85f; const float A = 2.51f * exposure_bias * exposure_bias; const float B = 0.03f * exposure_bias; const float C = 2.43f * exposure_bias * exposure_bias; const float D = 0.59f * exposure_bias; const float E = 0.14f; vec3 color_tonemapped = (color * (A * color + B)) / (color * (C * color + D) + E); float white_tonemapped = (white * (A * white + B)) / (white * (C * white + D) + E); return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f)); } // Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl // (MIT License). vec3 tonemap_aces_fitted(vec3 color, float white) { const float exposure_bias = 1.8f; const float A = 0.0245786f; const float B = 0.000090537f; const float C = 0.983729f; const float D = 0.432951f; const float E = 0.238081f; // Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias` const mat3 rgb_to_rrt = mat3( vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias), vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias), vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias)); const mat3 odt_to_rgb = mat3( vec3(1.60475f, -0.53108f, -0.07367f), vec3(-0.10208f, 1.10813f, -0.00605f), vec3(-0.00327f, -0.07276f, 1.07602f)); color *= rgb_to_rrt; vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E); color_tonemapped *= odt_to_rgb; white *= exposure_bias; float white_tonemapped = (white * (white + A) - B) / (white * (C * white + D) + E); return clamp(color_tonemapped / white_tonemapped, vec3(0.0f), vec3(1.0f)); } vec3 tonemap_reinhard(vec3 color, float white) { return clamp((white * color + color) / (color * white + white), vec3(0.0f), vec3(1.0f)); } vec3 linear_to_srgb(vec3 color) { // convert linear rgb to srgb, assumes clamped input in range [0;1] const vec3 a = vec3(0.055f); return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f))); } // inputs are LINEAR, If Linear tonemapping is selected no transform is performed else outputs are clamped [0, 1] color vec3 apply_tonemapping(vec3 color, float white) { // Ensure color values are positive. // They can be negative in the case of negative lights, which leads to undesired behavior. #if defined(USE_REINHARD_TONEMAPPER) || defined(USE_FILMIC_TONEMAPPER) || defined(USE_ACES_TONEMAPPER) || defined(USE_ACES_FITTED_TONEMAPPER) color = max(vec3(0.0f), color); #endif #ifdef USE_REINHARD_TONEMAPPER return tonemap_reinhard(color, white); #endif #ifdef USE_FILMIC_TONEMAPPER return tonemap_filmic(color, white); #endif #ifdef USE_ACES_TONEMAPPER return tonemap_aces(color, white); #endif #ifdef USE_ACES_FITTED_TONEMAPPER return tonemap_aces_fitted(color, white); #endif return color; // no other selected -> linear: no color transform applied } vec3 gather_glow(sampler2D tex, vec2 uv) { // sample all selected glow levels vec3 glow = vec3(0.0f); #ifdef USE_GLOW_LEVEL1 glow += GLOW_TEXTURE_SAMPLE(tex, uv, 1).rgb; #endif #ifdef USE_GLOW_LEVEL2 glow += GLOW_TEXTURE_SAMPLE(tex, uv, 2).rgb; #endif #ifdef USE_GLOW_LEVEL3 glow += GLOW_TEXTURE_SAMPLE(tex, uv, 3).rgb; #endif #ifdef USE_GLOW_LEVEL4 glow += GLOW_TEXTURE_SAMPLE(tex, uv, 4).rgb; #endif #ifdef USE_GLOW_LEVEL5 glow += GLOW_TEXTURE_SAMPLE(tex, uv, 5).rgb; #endif #ifdef USE_GLOW_LEVEL6 glow += GLOW_TEXTURE_SAMPLE(tex, uv, 6).rgb; #endif #ifdef USE_GLOW_LEVEL7 glow += GLOW_TEXTURE_SAMPLE(tex, uv, 7).rgb; #endif return glow; } vec3 apply_glow(vec3 color, vec3 glow) { // apply glow using the selected blending mode #ifdef USE_GLOW_REPLACE color = glow; #endif #ifdef USE_GLOW_SCREEN //need color clamping color = clamp(color, vec3(0.0f), vec3(1.0f)); color = max((color + glow) - (color * glow), vec3(0.0)); #endif #ifdef USE_GLOW_SOFTLIGHT //need color clamping color = clamp(color, vec3(0.0f), vec3(1.0)); glow = glow * vec3(0.5f) + vec3(0.5f); color.r = (glow.r <= 0.5f) ? (color.r - (1.0f - 2.0f * glow.r) * color.r * (1.0f - color.r)) : (((glow.r > 0.5f) && (color.r <= 0.25f)) ? (color.r + (2.0f * glow.r - 1.0f) * (4.0f * color.r * (4.0f * color.r + 1.0f) * (color.r - 1.0f) + 7.0f * color.r)) : (color.r + (2.0f * glow.r - 1.0f) * (sqrt(color.r) - color.r))); color.g = (glow.g <= 0.5f) ? (color.g - (1.0f - 2.0f * glow.g) * color.g * (1.0f - color.g)) : (((glow.g > 0.5f) && (color.g <= 0.25f)) ? (color.g + (2.0f * glow.g - 1.0f) * (4.0f * color.g * (4.0f * color.g + 1.0f) * (color.g - 1.0f) + 7.0f * color.g)) : (color.g + (2.0f * glow.g - 1.0f) * (sqrt(color.g) - color.g))); color.b = (glow.b <= 0.5f) ? (color.b - (1.0f - 2.0f * glow.b) * color.b * (1.0f - color.b)) : (((glow.b > 0.5f) && (color.b <= 0.25f)) ? (color.b + (2.0f * glow.b - 1.0f) * (4.0f * color.b * (4.0f * color.b + 1.0f) * (color.b - 1.0f) + 7.0f * color.b)) : (color.b + (2.0f * glow.b - 1.0f) * (sqrt(color.b) - color.b))); #endif #if !defined(USE_GLOW_SCREEN) && !defined(USE_GLOW_SOFTLIGHT) && !defined(USE_GLOW_REPLACE) // no other selected -> additive color += glow; #endif return color; } vec3 apply_bcs(vec3 color, vec3 bcs) { color = mix(vec3(0.0f), color, bcs.x); color = mix(vec3(0.5f), color, bcs.y); color = mix(vec3(dot(vec3(1.0f), color) * 0.33333f), color, bcs.z); return color; } vec3 apply_color_correction(vec3 color, sampler2D correction_tex) { color.r = texture(correction_tex, vec2(color.r, 0.0f)).r; color.g = texture(correction_tex, vec2(color.g, 0.0f)).g; color.b = texture(correction_tex, vec2(color.b, 0.0f)).b; return color; } vec3 apply_fxaa(vec3 color, float exposure, vec2 uv_interp, vec2 pixel_size) { const float FXAA_REDUCE_MIN = (1.0 / 128.0); const float FXAA_REDUCE_MUL = (1.0 / 8.0); const float FXAA_SPAN_MAX = 8.0; vec3 rgbNW = textureLod(source, uv_interp + vec2(-1.0, -1.0) * pixel_size, 0.0).xyz * exposure; vec3 rgbNE = textureLod(source, uv_interp + vec2(1.0, -1.0) * pixel_size, 0.0).xyz * exposure; vec3 rgbSW = textureLod(source, uv_interp + vec2(-1.0, 1.0) * pixel_size, 0.0).xyz * exposure; vec3 rgbSE = textureLod(source, uv_interp + vec2(1.0, 1.0) * pixel_size, 0.0).xyz * exposure; vec3 rgbM = color; vec3 luma = vec3(0.299, 0.587, 0.114); float lumaNW = dot(rgbNW, luma); float lumaNE = dot(rgbNE, luma); float lumaSW = dot(rgbSW, luma); float lumaSE = dot(rgbSE, luma); float lumaM = dot(rgbM, luma); float lumaMin = min(lumaM, min(min(lumaNW, lumaNE), min(lumaSW, lumaSE))); float lumaMax = max(lumaM, max(max(lumaNW, lumaNE), max(lumaSW, lumaSE))); vec2 dir; dir.x = -((lumaNW + lumaNE) - (lumaSW + lumaSE)); dir.y = ((lumaNW + lumaSW) - (lumaNE + lumaSE)); float dirReduce = max((lumaNW + lumaNE + lumaSW + lumaSE) * (0.25 * FXAA_REDUCE_MUL), FXAA_REDUCE_MIN); float rcpDirMin = 1.0 / (min(abs(dir.x), abs(dir.y)) + dirReduce); dir = min(vec2(FXAA_SPAN_MAX, FXAA_SPAN_MAX), max(vec2(-FXAA_SPAN_MAX, -FXAA_SPAN_MAX), dir * rcpDirMin)) * pixel_size; vec3 rgbA = 0.5 * exposure * (textureLod(source, uv_interp + dir * (1.0 / 3.0 - 0.5), 0.0).xyz + textureLod(source, uv_interp + dir * (2.0 / 3.0 - 0.5), 0.0).xyz); vec3 rgbB = rgbA * 0.5 + 0.25 * exposure * (textureLod(source, uv_interp + dir * -0.5, 0.0).xyz + textureLod(source, uv_interp + dir * 0.5, 0.0).xyz); float lumaB = dot(rgbB, luma); if ((lumaB < lumaMin) || (lumaB > lumaMax)) { return rgbA; } else { return rgbB; } } // From http://alex.vlachos.com/graphics/Alex_Vlachos_Advanced_VR_Rendering_GDC2015.pdf // and https://www.shadertoy.com/view/MslGR8 (5th one starting from the bottom) // NOTE: `frag_coord` is in pixels (i.e. not normalized UV). vec3 screen_space_dither(vec2 frag_coord) { // Iestyn's RGB dither (7 asm instructions) from Portal 2 X360, slightly modified for VR. vec3 dither = vec3(dot(vec2(171.0, 231.0), frag_coord)); dither.rgb = fract(dither.rgb / vec3(103.0, 71.0, 97.0)); // Subtract 0.5 to avoid slightly brightening the whole viewport. return (dither.rgb - 0.5) / 255.0; } // Adapted from https://github.com/DadSchoorse/vkBasalt/blob/b929505ba71dea21d6c32a5a59f2d241592b30c4/src/shader/cas.frag.glsl // (MIT license). vec3 apply_cas(vec3 color, float exposure, vec2 uv_interp, float sharpen_intensity) { // Fetch a 3x3 neighborhood around the pixel 'e', // a b c // d(e)f // g h i vec3 a = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, -1)).rgb * exposure; vec3 b = textureLodOffset(source, uv_interp, 0.0, ivec2(0, -1)).rgb * exposure; vec3 c = textureLodOffset(source, uv_interp, 0.0, ivec2(1, -1)).rgb * exposure; vec3 d = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, 0)).rgb * exposure; vec3 e = color.rgb; vec3 f = textureLodOffset(source, uv_interp, 0.0, ivec2(1, 0)).rgb * exposure; vec3 g = textureLodOffset(source, uv_interp, 0.0, ivec2(-1, 1)).rgb * exposure; vec3 h = textureLodOffset(source, uv_interp, 0.0, ivec2(0, 1)).rgb * exposure; vec3 i = textureLodOffset(source, uv_interp, 0.0, ivec2(1, 1)).rgb * exposure; // Soft min and max. // a b c b // d e f * 0.5 + d e f * 0.5 // g h i h // These are 2.0x bigger (factored out the extra multiply). vec3 min_rgb = min(min(min(d, e), min(f, b)), h); vec3 min_rgb2 = min(min(min(min_rgb, a), min(g, c)), i); min_rgb += min_rgb2; vec3 max_rgb = max(max(max(d, e), max(f, b)), h); vec3 max_rgb2 = max(max(max(max_rgb, a), max(g, c)), i); max_rgb += max_rgb2; // Smooth minimum distance to signal limit divided by smooth max. vec3 rcp_max_rgb = vec3(1.0) / max_rgb; vec3 amp_rgb = clamp((min(min_rgb, 2.0 - max_rgb) * rcp_max_rgb), 0.0, 1.0); // Shaping amount of sharpening. amp_rgb = inversesqrt(amp_rgb); float peak = 8.0 - 3.0 * sharpen_intensity; vec3 w_rgb = -vec3(1) / (amp_rgb * peak); vec3 rcp_weight_rgb = vec3(1.0) / (1.0 + 4.0 * w_rgb); // 0 w 0 // Filter shape: w 1 w // 0 w 0 vec3 window = b + d + f + h; return max(vec3(0.0), (window * w_rgb + e) * rcp_weight_rgb); } void main() { vec3 color = textureLod(source, uv_interp, 0.0f).rgb; // Exposure float full_exposure = exposure; #ifdef USE_AUTO_EXPOSURE full_exposure /= texelFetch(source_auto_exposure, ivec2(0, 0), 0).r / auto_exposure_grey; #endif color *= full_exposure; #ifdef USE_FXAA // FXAA must be applied before tonemapping. color = apply_fxaa(color, full_exposure, uv_interp, pixel_size); #endif #ifdef USE_SHARPENING // CAS gives best results when applied after tonemapping, but `source` isn't tonemapped. // As a workaround, apply CAS before tonemapping so that the image still has a correct appearance when tonemapped. color = apply_cas(color, full_exposure, uv_interp, sharpen_intensity); #endif #ifdef USE_DEBANDING // For best results, debanding should be done before tonemapping. // Otherwise, we're adding noise to an already-quantized image. color += screen_space_dither(gl_FragCoord.xy); #endif // Early Tonemap & SRGB Conversion; note that Linear tonemapping does not clamp to [0, 1]; some operations below expect a [0, 1] range and will clamp color = apply_tonemapping(color, white); #ifdef KEEP_3D_LINEAR // leave color as is (-> don't convert to SRGB) #else //need color clamping color = clamp(color, vec3(0.0f), vec3(1.0f)); color = linear_to_srgb(color); // regular linear -> SRGB conversion (needs clamped values) #endif // Glow #ifdef USING_GLOW vec3 glow = gather_glow(source_glow, uv_interp) * glow_intensity; // high dynamic range -> SRGB glow = apply_tonemapping(glow, white); glow = clamp(glow, vec3(0.0f), vec3(1.0f)); glow = linear_to_srgb(glow); color = apply_glow(color, glow); #endif // Additional effects #ifdef USE_BCS color = apply_bcs(color, bcs); #endif #ifdef USE_COLOR_CORRECTION color = apply_color_correction(color, color_correction); #endif frag_color = vec4(color, 1.0f); }